
 

 

 

1. Introduction  

An engineering design problem (e.g. new airplane design, new concentrated solar power plant, dam, 

port, refrigerator, ship, shipyard, spacecraft, etc.) can be defined as a sort of the Multi-objective 
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A B S T R A C T P A P E R    I N F O 

The design of Renewable Energy Power Plants (REPPs) is crucial not only for the 

investments' performance and attractiveness measures, but also for the maximization of 

resource (source) usage (e.g. sun, water, and wind) and the minimization of raw 

materials (e.g. aluminum: Al, cadmium: Cd, iron: Fe, silicon: Si, and tellurium: Te) 

consumption. Hence, several appropriate and satisfactory Multi-objective Problems 

(MOPs) are mandatory during the REPPs' design phases. MOPs related tasks can only 

be managed by very well organized knowledge acquisition on all REPPs' design 

equations and models. The proposed MOPs need to be solved with one or more multi-

objective algorithm, such as Multi-objective Evolutionary Algorithms (MOEAs). In this 

respect, the first aim of this research study is to start gathering knowledge on the REPPs' 

MOPs. The second aim of this study is to gather detailed information about all MOEAs 

and available free software tools for their development. The main contribution of this 

research is the initialization of a proposed multi-objective evolutionary algorithm 

knowledge acquisition system for renewable energy power plants (MOEAs-KAS-F-

REPPs) (research and development loopwise process: develop, train, validate, improve, 

test, improve, operate, and improve). As a simple representative example of this 

knowledge acquisition system research with two selective and elective proposed 

standard objectives (as test objectives) and eight selective and elective proposed 

standard constraints (as test constraints) are generated and applied as a standardized 

MOP for a virtual small hydropower plant design and investment. The maximization of 

energy generation (MWh) and the minimization of initial investment cost (million €) 

are achieved by the Multi-objective Genetic Algorithm (MOGA), the Niched Sharing 

Genetic Algorithm/Non-dominated Sorting Genetic Algorithm (NSGA-I), and the 

NSGA-II algorithms in the Scilab 6.0.0 as only three standardized MOEAs amongst all 

proposed standardized MOEAs on two desktop computer configurations (Windows 10 

Home 1709 64 bits, Intel i5-7200 CPU @ 2.7 GHz, 8.00 GB RAM with internet 

connection and Windows 10 Pro, Intel(R) Core(TM) i5 CPU 650 @ 3.20 GHz, 6,00 GB 

RAM with internet connection). The algorithm run-times (computation time) of the 

current applications vary between 20.64 and 59.98 seconds.  
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Optimization Problem (MOP). According to [67], a MOP can be defined as “a vector of decision 

variables which satisfies constraints and optimizes a vector function whose elements represent the 

objective functions. These functions form a mathematical description of performance criteria which are 

usually in conflict with each other. Hence, the term “optimize” means finding such a solution which 

would give the values of all the objective functions acceptable to the decision maker”. Some 

synonymous or similar terms, such as multi-criteria optimization problem, multi-performance 

optimization problem or vector optimization problem are also used instead of the multi-objective 

optimization problem [22]. Although almost any design problem is a MOP by its nature, they can be 

modeled as either a Single Objective Optimization Problem (SOP) or a MOP. 

Some design models can cover a few objectives and some others can include some other objectives. 

Hence, SOPs and MOPs are almost equally important from a research perspective and they must be 

studied as deep as it can be researched in a timely manner. The definition of both problems is presented 

in Fig. 1. 

Fig. 1. Definition of SOP and MOP [22].  

The MOPs can be solved by several proposed methods in the literature. These methods are grouped 

under the “non-preference methods”, where the decision maker is not needed, the “a priori methods”, 

where the decision maker expresses his or her preferences before optimization (e.g. ε-Constraint, 

Weighted Sum), the “a posteriori methods”, where the decision maker makes choices amongst Pareto 

Optimal solutions (i.e. classical algorithms such as hypervolume, normal boundary intersection, 

ADBASE, normal constraint method, Benson’s algorithm, directed search domain; evolutionary 

algorithms such as vector evaluated genetic algorithm: VEGA and Non‐dominated Sorting Genetic 

Algorithm: NSGA-II), the “interactive methods”, where the decision maker guides the process in an 

interactive way (e.g. Zionts-Wallenius Method, Step Method: STEM, Synchronous NIMBUS Method, 

Pareto Navigator Method, Geoffrion-Dyer-Feinberg Method: GDF, Interactive Surrogate Worth Trade-

Off Method: ISWT, Sequential Proxy Optimization Technique: SPOT, and Pareto Race) [41, 42]. 

The Multi-objective Evolutionary Algorithms (MOEAs) are a class of the Genetic Algorithms set. The 

MOEAs have simply two main groups (Non-Pareto-based and Pareto-based) [5]. Moreover, the Pareto-

based methods include two main groups (Non-Elitist and Elitist) [5]. There are many MOEAs 

algorithms in the literature, such as the Lexicographic method, the aggregating functions, the 

population-based methods under the non-Pareto-based MOEAs, the Multi-objective Genetic Algorithm 

(MOGA), the Non-Dominated Sorting Genetic Algorithm (NSGA), the Niched-Pareto Genetic 

Algorithm (NPGA) under the non-elitist Pareto-based MOEAs; the Pareto Archived Evolution Strategy 

(PAES), the Strength Pareto Evolutionary Algorithm (SPEA), the Strength Pareto Evolutionary 

SOP MOP 

“Minimizing (or maximizing) f(x) subject 

to gi(x) ≤ 0, i = {1, … , m}, and hi(x) = 0, 

j = {1, … , p} x ∈ Ω. 

A solution minimizes (or maximizes) the 

scalar f(x) where x is a n-dimensional 

decision variable vector x = {x1, … , xn} 

from some universe Ω.” 

“minimizing (or maximizing) F(x) = (f1(x), … , fk(x)) subject 

to gi(x) ≤ 0, i = {1, … , m} , and hi(x) = 0 , j = {1, … , p} x ∈
Ω.  

A MOP solution minimizes (or maximizes) the components of 

a vector F(x) where x is a n-dimensional decision variable 

vector x = {x1, … , xn} from some universe Ω. It is noted that 

gi(x) ≤ 0 and hi(x) = 0 represent constraints that must be 

fulfilled while minimizing (or maximizing) F(x) and Ω 

contains all possible x that can be used to satisfy an evaluation 

of F(x).” 
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Algorithm 2 (SPEA2), the Nondominated Sorting Genetic Algorithm II (NSGA-II), the ε-dominance 

NSGA-II, the Adaptive Range Multi-objective Genetic Algorithm (ARMOGA), the ε-dominance 

ARMOGA (εμ ARMOGA) under the elitist Pareto-based MOEAs; the Multi-objective Messy Genetic 

Algorithm (MOMGA), the Pareto Envelope-based Selection Algorithm (PESA), the micro-genetic 

algorithm for multi-objective optimization, the Multi-objective Struggle GA (MOSGA), the Orthogonal 

Multi-objective Evolutionary Algorithm (OMOEA), the General Multi-objective Evolutionary 

Algorithm (GENMOP); the Efficient Global Optimization for Multi-objective Problems (EGOMOP), 

the Hierarchical Asynchronous Parallel Multi-objective Evolutionary Algorithm (HAPMOEA), the 

Gradient Enhanced Multi-objective Genetic Algorithm (GEMOGA), the Nondominated Sorting 

Evolutionary Algorithm+ (NSEA+9) (see [4, 5, 22, 23, 46]). 

This study aims to start finding detailed information about all MOEAs and their available free 

tools/software in the literature. Besides, their complete comparisons on MOPs are in this research scope. 

The main goal of this research, development, demonstration, and deployment (RD3) effort is to develop 

a very easy and useful multi-objective evolutionary algorithms knowledge acquisition system for 

renewable energy power plants (MOEAs-KAS-F-REPPs) in the next fifty years with integration and 

embedding into the original Anatolian honeybees’ investment decision support system and the Global 

Grid Prediction Systems (G2PS), the Global Grid Electricity Demand Prediction System (G2EDPS), and 

the Global Grid Peak Power Prediction System (G2P3S) (see [84-89]). 

As a simple application example of this research study, only one MOP has been studied with three 

Multi-objective Evolutionary Algorithms (MOEAs) according to basic parallel or series operating or 

running of multiple MOEAs principles in the proposed MOEAs-KAS-F-REPPs:  the Multi-objective 

Genetic Algorithm (MOGA) (1st Generation MOEA) [20],  the Niched Sharing Genetic Algorithm/Non-

dominated Sorting Genetic Algorithm (NSGA-I) (1st Generation MOEA) [100], and  the Niched Sharing 

Genetic Algorithm Version II (NSGA-II) (2nd Generation MOEA) [27]. 

This paper has four sections. Section 2 presents the review of the literature. Section 3 presents not only 

the proposed knowledge acquisition and gathering system but also the preliminaries and experiments. 

Finally, the Section 4 presents the concluding issues and planned following research studies. 

2. Literature Review 

The current review structure was influenced by Asadi and Sadjadi [6], Banos et al. [10], Iqbal et al. 

[46], Jebaraj and Iniyan [50], and Coello [21]. A detailed literature review was mainly conducted on 

the SOPs and MOPs applications in the renewable energy field, focusing on the optimization of the 

REPP design. The other research fields were also included in this literature review. The literature until 

2019 related to this subject was reviewed in two distinct literature review activities and summarized in 

this section. The first literature review was performed on a more general time frame. The second 

literature review was performed on a more targeted time frame, related to the recent literature. The key 

search terms were defined specifically for the online scientific and journal websites (e.g. ACM digital, 

ASCE online research library, American society of mechanical engineers, Cambridge journals online, 

directory of open access journals, emerald insight, google scholar, inderscience publishers, journal of 

applied research on industrial engineering, MedCrave group, science publishing group, springer, Taylor 

& Francis online/journals, Wiley-Blackwell/Wiley online library, world scientific publishing) in both 

literature review activities. The main search queries are “Multi-objective evolutionary algorithm” and 

(operator) “renewable”, and “multi-objective evolutionary algorithm” and (operator) “renewable”. The 
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search activity was performed in the order of the title, abstract, and full text. This order helped to focus 

on the appropriate publications. 

The application of the Single Objective Optimization Algorithms (SOAs) and the Multi-objective 

Optimization Algorithms (MOAs) were widely applied in many fields (especially in engineering and 

financial fields) since the 1970s. The early applications were in the 1970s. The MOPs were mainly 

solved with classical methods based on the differential calculations in the 1970s. Seo [93] presented 

one of the first studies that showed a brief survey of the multi-objective optimization techniques for the 

environmental assessment of the water resource systems in Japan. Blankenship and Fink [34] suggested 

that a power system control problem was actually a MOP (objective functions of production cost, 

environmental impact, and system operating security).  

Further studies in the same direction were conducted in the 1980s. The MOPs were still mainly solved 

with the classical methods based on the differential calculations in the 1980s. Yokoyama et al. [113], 

Chetty and Subramanian [18], and Yang and Chen [110] were focused on the energy management and 

the power dispatch optimization. Takama and Umeda [103], Rao [75], Acharya et al. [2], Krasławski 

[56], and García and Prett [36] presented some manufacturing processes optimization research studies. 

Ramlogan and Goulter [67], Ramologan [73], and Mitchell and Bingham [63] researched on the 

resources optimization and planning. Shimizu and Hirata [96] presented applications in the electronics.  

The bio-inspired algorithms, such as the genetic algorithms, were raised fast in the 1990s, because of 

their simplicity in comparison with the classical methods and their efficiency and capacity to include 

new constraints. Hence, the bio-inspired algorithms were mainly preferred to solve the MOPs in the 

1990s, in contrast with the classical methods based on the differential calculations in 1970s and 1980s. 

The bio-inspired algorithms were also favored by the development of faster and economic 

computational resources in the 1990s. Ishibuchi and Murata [48, 49, 64, 65] developed a multi-objective 

genetic algorithm (with and without local search) and applied it to solve the flow shop scheduling 

problem. Tamaki et al. [102] conducted a deep review on the multi-objective optimization by the genetic 

algorithms. Klemes et.al. [55], Chiang and Jean-Jumeau [19], Gorenstin et al. [37], Hsiao et al. [45] 

presented some optimal planning and expansion applications of the power systems. Azapagic and Clift 

[8], Adisa [9] researched on the life cycle assessment optimization. 

The bio-inspired algorithms were deeply developed and implemented since the beginnings of the 21st 

century. Deb et al. [27] developed the widely spread NSGA-II algorithm, which introduced the fast 

elitist non-dominated sorting concept in 2000. Other metaheuristic algorithms were also developed in 

that century (e.g. Talbi [101]). Coello and Lechuga [25], Hu and Eberhart [108], Tripathi et al. [104], 

and Sierra and Coello [98] interested in the particle swarm optimization algorithms. Abbass et al. [1], 

Kacem et al. [52], and Li and Zhang [58] presented more complicated optimization problems and 

complex Pareto sets with the capabilities of these algorithms and the greater computational resources. 

Ashby [7] applied the multi-objective optimization approach for the material options' selection (e.g. 

Aluminium, Magnesium, Titanium alloys, and cast irons). Zhang and Liu [115] formed a reactive power 

and voltage control multi-objective problem of a power system and solved it with a new Particle Swarm 

Optimization (PSO) evolutionary algorithm. Demirkaya et al. [29] aimed to optimize a combined 

power/cooling cycle (Goswami Cycle) with the NSGA-II (Matlab). Hamdy et al. [39] tried to optimize 

the nearly-zero energy buildings solutions with the NSGA-II, the pNSGA-II, and the aNSGA-II in the 

GenOpt. Dovgan et al. [30] applied optimization in a vehicle routing problem with the MODS algorithm 

(Java). He and Agarwal [40] aimed to optimize the wind turbine airfoil S809's shape with the MOGA 

in jMetal MOGA. Mansouri et al. [60] applied optimization with the MOGA (MATLAB) in a 3-D well 
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path design problem. Ratono et al. [74] used a Fuzzy-Multi-objective Genetic Algorithm (Fuzzy-

MOGA) approach for the enterprise resource planning system selection criteria optimization (Scilab 

5.4.1). Campos-Ciro et al. [17] presented a MOP related to an open shop scheduling problem based on 

a real mechanical workshop made of m machines that process n jobs. It dealt with different resource 

constraints related to tools allocation and multi-skills staff assignment. Wood [107] presented an 

interesting study on the optimization problems of the non-financial key performance indicators (KPIs), 

a mixed metrics such as earnings before interest tax depreciation and amortization (EBITDA), net 

present value (NPV), expected monetary value (EMV), capital investment (CAPEX), debt capitalization 

ratio for the gas and oil assets portfolio strategic decision makers with the simplex (linear) and the 

evolutionary (non-linear) (genetic) algorithms by the visual basic application (VBA) macros for the 

Microsoft excel workbooks. 

There were also very interesting and worth mentioning studies directly related to the renewable power 

or energy industry in this century. Anagnostopoulos and Papantonis [3] presented the optimum sizing 

of two turbines at a small hydropower plant with the objectives of maximization net present value, 

maximization load coefficient or maximization energy production index and the constraints of the 

NTUA by the MOEA of EASY EA on the tool of the NTUA. De Simón-Martín et al. [26] optimized 

single drive parallel kinematics solar tracker mechanism with the objectives of the solar tracker 

workspace maximization, the mechanism elements' lengths minimization and the constraint of the 

center mechanism workspace in the field. They solved this MOP with the MOEA of NSGA-II in the 

Scilab tool. Vazhayil and Balasubramanian [105] presented an electricity generation portfolio 

optimization problem with two minimization objective functions (i.e. portfolio cost, portfolio standard 

deviation) in India and solved the defined problem by an Intelligent Pareto search Genetic Algorithm 

(IPGA). Zhai et al. [118] applied a design optimization for an integrated parabolic trough solar coal-

fired power plant. Zhao et al. [116] designed a microgrid in Zhejiang province, China based on the life 

cycle cost, emissions minimization, and the renewable energy source maximization by a Genetic 

Algorithm (GA). Yao et al. [111] studied the integrated power distribution and electric vehicle charging 

systems with two maximization objectives (i.e. overall annual cost of investment, energy losses) by 

employing the decomposition based Multi-objective Evolutionary Algorithm (MOEA/D). Li and Qiu 

[57] presented an optimal solution for the Three Gorges Cascade Hydropower System (TGCHS) with 

two maximization objectives (i.e. power generation of the system and firm power) by employing the 

NSGA-II algorithm. Shi et al. [94] solved a Hybrid Renewable Energy System design problem (solar, 

wind, battery, and diesel generator) (HRES) with three minimization objectives (i.e. Annualized Cost 

of System (ACS), Loss Of Power Supply Probability (LPSP), fuel emissions during one year) by 

employing the modified Preference-Inspired Coevolutionary Algorithm using goal vectors with 

enhanced fitness assignment method (PICEA-ng). Wang et al. [106] presented an HRES (PV, wind, 

diesel, and battery) design problem with four maximization and minimization objectives (i.e. system 

output power, lifetime system cost, lifetime CO2 emissions, and lifetime SO2 emissions) by employing 

the MOEA/D. Hormozi et al. [44] solved a distribution network reconfiguration and placement 

distributed generation problem with two minimization objectives (i.e. power loss reduction) by 

employing the Binary Particular Swarm Optimization Algorithm (BPSO). Kamjoo et al. [54] presented 

an HRES design problem (solar, wind, and battery) with two maximization and minimization objectives 

(i.e. reliability and system total cost) by employing the NSGA-II algorithm and integration of the 

Chance Constrained Programming (CCP) to model. Shukla and Singh [97] optimized a short-term 

generation scheduling problem with two minimization objectives (i.e. cost and emission) by employing 

a weighted sum method integrated Weighted Improved Crazy Particle Swarm Optimization (WICPSO) 

algorithm (PSO variant). Zhao and Yuan [117] solved an HRES (PV, wind, diesel, and battery) design 

problem with two minimization objectives (i.e. annual total cost and system pollutant emission) by 
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employing the fruit fly optimization algorithm. Ming et al. [62] solved an HRES design problem (solar, 

wind, battery, and diesel generator) with three maximization and minimization objectives (i.e. system 

reliability/renewable ability, system cost, and fuel emission) by employing the MOEA/D using 

Localized Penalty-Based Boundary Intersection (LPBI) method. Qu et al. [72] solved a Dynamic 

Economic Emission Dispatch (DEED) problem considering electric vehicles and wind power with two 

minimization objectives (i.e. total fuel cost, total pollution emission) by employing the MOEA/D 

algorithm. Shi et al. [95] optimized a grid-connected HRES problem with two minimization objectives 

(i.e. total system cost, and fuel emissions) by employing the PICEA-ng. Biswas et al. [14] optimized 

the wind farm layouts with two maximization objectives (i.e. output power and wind farm efficiency). 

Biswas et al. [15] solved an economic-environmental dispatch problem of thermal, wind, solar and 

small-hydro power combination with two minimization objectives (i.e. cost and emission) by employing 

two different algorithms (MOEA based on decomposition using superiority of feasible solutions 

MOEA/D-SF, summation based multi-objective differential evolution using superiority of feasible 

solutions SMODE-SF). Li et al. [59] solved a solar and wind energy integration into the Combined 

Cooling, Heating, and Power (CCHP) system design problem with three minimization objectives (i.e. 

annual total cost, carbon dioxide emission, and loss of energy supply probability) by employing the 

Preference-Inspired Coevolutionary Algorithm (PICEA-g). Prina et al. [71] applied the EPLANopt 

model in the energy system of South Tyrol with three minimization objectives (i.e. total annual costs, 

CO2 emissions per person, and 100−%RES [%]). Xu et al. [109] solved a Hybrid Energy Storage System 

(HESS) problem (wind power, energy storage, and local user) with two maximization and minimization 

objectives (i.e. annual profit and wind curtailment rate) to determine two decision variables (numbers 

of batteries and super capacitors) by employing the NSGA-II algorithm. They concluded their study 

with the optimal solution selection with the VIKOR (VlseKriterijumska Optimizacija I Kompromisno 

Resenje) technique. Yazdi and Moridi [112] optimized the design of cascade hydropower reservoirs 

with three maximization and minimization objectives (i.e. total amount of produced energy, system 

reliability, and squared deviation of release from demands) by employing the Non-Dominated Sorting 

Differential Evolution (NSDE) algorithm. Yuan et al. [114] optimized a standalone HRES design 

problem with two minimization objectives (i.e. cost of the system in the life cycle and Loss of Power 

Supply Probability (LPSP) + Energy Excess Percentage (EXC)) by employing the Improved 

Gravitational Search Algorithm (GSA). 

Accordingly, there were many captivating and crucial studies with brilliant ideas in the single objective 

optimization and multi-objective optimization literature, however, none of the previous publications in 

the literature proposed a multi-objective evolutionary algorithm knowledge acquisition system for 

renewable energy power plants (MOEAs-KAS-F-REPPs). Hence, this research study and its first paper 

are unique with its proposed MOEAs-KAS-F-REPPs. 

3. Knowledge Acquisition System Initialization with Preliminaries and Experiments 

The knowledge acquisition for the MOEAs in the power industry (e.g. hydro and solar) is a major 

challenge, because of not only the complexity of the current MOEAs, but also the difficulty of 

developing generic structured MOPs in the power industry. Zitzler et al. [119] explains the complexity 

of the current MOEAs and the urgency of a text-based interface for searching algorithms: “these 

algorithms for each usage scenario becomes time consuming and error-prone”; “application engineers 

who need to choose, implement, and apply state-of the-art algorithms without in-depth programming 

knowledge and expertise in the optimization domain”; “developers of optimization methods who want 

to evaluate algorithms on different test problems and compare a variety of competing methods”. This 
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RD3 effort aims to overcome these major difficulties in the hydro and solar power industry at first and 

then all other renewable power industries by some unique MOEAs programming libraries (e.g. MOGA, 

NPGA, PAES, and εμ ARMOGA), some unique platforms (e.g. Scilab, Scilab Cloud, Python, and GNU 

Octave), and many standardized SOPs and MOPs. Hence, a multi-objective evolutionary algorithms 

knowledge acquisition system for renewable energy power plants (MOEAs-KAS-F-REPPs) and its RD3 

is recommended and presented in this study (Fig. 2). 

The proposed knowledge acquisition system has five consoles. These consoles are the standardized 

SOPs & MOPs console, the standardized MOEA console, the literature library console, the expert 

advice library console and the previous application library console. The library consoles (literature, 

expert advice, previous applications) collect and store all data and information. Then they feed two 

processing and storing consoles (standardized SOPs & MOPs, standardized MOEA). In these consoles, 

the standardization process is performed at first. Then the standardized SOPs & MOPs and also the 

standardized MOEA are stored in separate sectors and servers. When a new renewable energy power 

plant problem (e.g. a new solar power plant design, a new small hydropower plant design, a 

rehabilitation, replacement, and renewal of an operational solar power plant) is asked or requested at 

any time, the call is answered by the standardized SOPs & MOPs console and an SOP and/or MOP is 

offered to the users. Concurrently, the call or recall is also answered by the standardized MOEA console 

and algorithms with the tools are offered to the users. All of these activities may be done automatically 

or semi-automatically. 

In the library consoles (literature library console, experts advice library console, and previous 

application library console) there are several stored files in several different formats. They may be 

collected automatically, semi-automatically, or manually (non-automatic) in a regular periodical timely 

or instantaneous manner. The structure and examples of these library consoles are presented in Table 

1. 

 

Table 1. Structure of library consoles in the proposed MOEAs-KAS-F-REPPs (literature library console, expert 

advice library console, and previous application library console) (*CV: curriculum vitae). 

Library Consoles File Types (example) Reference Documents (example) 

 

 
Papers and reports database 

 

Expert 1 

Expert 2 

............ 

CVs* database 

  

Codes and applications database 
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Fig 2. Multi-objective evolutionary algorithms knowledge acquisition system for renewable energy power plants 

(MOEAs-KAS-F-REPPs). 

In the standardized SOPs & MOPs console, there are several renewable power technology modules (e.g. 

Hydro and Solar). These modules have empirical (depending upon experience or observation alone, 

without using the scientific method or theory, http://www.dictionary.com/browse/empirical?s=t) and 

natural (based on the state of things in nature, http://www.dictionary.com/browse/natural?s=t) standard 

objectives and constraints. The standardized objectives and constraints may be acquired automatically, 

semi-automatically or manually (non-automatic) in a regular periodic timely or instantaneous manner. 

These standardized SOPs & MOPs are classified according to the different renewable energy 

technologies (e.g. hydro, solar, wind, and geothermal) and also stored in separate sectors and servers. 

The structure and some examples of the standardized SOPs & MOPs console are presented in Table 2. 

 

 

 

http://www.dictionary.com/browse/empirical?s=t
http://www.dictionary.com/browse/natural?s=t
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Table 2. Structure and examples of the standardized SOPs & MOPs console in the proposed MOEAs-KAS-F-

REPPs (see also Abbreviations). 

The standardized MOEA console consists of two modules: Algorithms and Tools. In the algorithms 

module, all Non-Pareto-based and Pareto-based MOEAs will be presented in a detailed manner with 

their own reference documents. Moreover, the Pareto-based MOEAs will be grouped under Non-elitist 

and Elitist sets. The tools module will present all free tools in this research field. All of the important 

definitions and notations (e.g. feasible region, objective region, continuous multi-objective optimization 

problem, discrete multi-objective optimization problem, Pareto optimal set, and Pareto front) related to 

the MOEA will be presented very clearly in the manuals of the standardized MOEA console. For 

instance: 

 MOPs may be solved by aggregating multiple objectives into a single objective or by Pareto set 

approximation [119].  

 MOPs may be all minimization objective (1), all maximization objective (2) or minimization of some 

and maximization others (3). 

 A candidate solution which is better than all other candidates for each objective is said to dominate other 

candidates [13]. 

 A set of best solutions is identified in which the members are superior among all the candidate solutions 

when all the objectives are taken into account. This solution set is called Pareto Optimal Front. None of 

Standardized SOPs & 

MOPs Console 

Standard Objectives OR Standard Constraints 

(example) 

Reference Documents 

(example) 

Hydro Power Module  

> Natural 

(physical/chemical etc.)  

> Standard Objectives OR 

Standard Constraints 

Small Hydropower Power Plant Installed Capacity 

𝑃 = ηtr × ηg × ηt × ρw × 𝑔 × 𝑄 × Hnet 

 

Eliasson and Ludvigsson 

[31]; ESHA [32]; ESHA 

[33]; IFC [47]; Saracoglu 

[78]; Saracoglu [79]; 

Saracoglu [80]; 

Saracoglu [81]; 

Saracoglu [82]; 

Saracoglu [83] 

Small Hydropower Power Plant Total Energy 

𝐸 = 𝑃 × 𝑡 or 𝐸 = 𝑃 × 8760 × 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 

“Given that the flow-duration curve represents an 

annual cycle, each 5% interval on the curve is 

equivalent to 5% of 8,760 hours (number of hours 

per year)” 

𝐸 = ∑ (
𝑃5(𝑘−1) + 𝑃5𝑘

2
)

5

100
8760(1 − 𝐼𝑑𝑡)

20

𝑖=1

 

IFC [47]; Jindal [51]; 

RETScreen [76] 

Hydro Power Module  

> Empirical  

> Standard Objectives OR 

Standard Constraints 

Small Hydropower Power Plant Flow-Duration 

Curve (FDC) (site and case specific) 

𝑄∗ = -10,904 tQ
3 + 26,854 tQ

2 - 21,72 tQ + 5,8299 

Current Study 

(generated in this study) 

Total Investment Cost Equations In Turkey 

(Million €) 

Roughly for all: 𝐶𝑡𝑜𝑡𝑎𝑙 = 1,0 × 𝑃 

Large: 𝐶𝑡𝑜𝑡𝑎𝑙 = 0,97 × 𝑃 

Medium: 𝐶𝑡𝑜𝑡𝑎𝑙 = 0,90 × 𝑃 

Small: 𝐶𝑡𝑜𝑡𝑎𝑙 = 0,84 × 𝑃 

Haselsteiner et al. [43] 

Solar Power Module  

> Natural (physical or 

chemical etc.)  

> Standard Objectives OR 

Standard Constraints 

Concentrated Solar Power Plant net annual 

electricity generation (kWh) (without storage) 

should also be taken into account in this study. 

𝐸𝑠𝑜𝑙𝑎𝑟 = 𝐴𝑎 × 𝐷𝑁𝐼𝑎 ×  𝜂𝑠𝑓 ×  𝜂𝑝𝑎 ×  𝜂𝑝𝑏𝑛𝑒𝑡

×  𝜂𝑡𝑟𝑎𝑛𝑠 ×  𝜂𝑝𝑎𝑓 

Bode and sheer [16]; 

Gunther et al. [38] 
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the solutions included in the POF are better than the other solutions in the same POF for all the objectives 

being optimized. So, all of them are equally acceptable [13]. 

These standardized MOEAs are presented according to their classifications in the literature. The core 

idea of the standardized MOEAs console is presented in Table 5. 

Table 3. The core idea of the standardized MOEAs console in the proposed MOEAs-KAS-F-REPPs (see also 

electronic supplementary materials). 

The MOEA aims to find not one solution of a MOP, but the Pareto optimal set in a robust and simple 

way [5]. Some of the crucial issues related to the application of MOEAs are presented as follows: 

computationally expensive, flexible, low data dependency, poor scalability, and own ad-hoc encodings 

require specialized crossover and mutation operators associated to them [5]. 

A simple representative example of the application of this proposed MOEAs-KAS-F-REPPs is 

presented in the following paragraphs. It is assumed that there is a real-World Small Hydropower Plant 

Design and Investment (SHP-DI) problem with the proposed system (MOEAs-KAS-F-REPPs). Hence, 

it is entitled as Virtual SHP-DI. The presentation of how system aims to work, and when the data and 

information of the Virtual SHP-DI are given in the system is as follows (see Table 4). 

The MOGA, the NSGA-I, and the NSGA-II algorithms (solvers optim_moga, optim_nsga, and optim 

nsga2) on Scilab 5.5.2 are used in this study. The Scilab is also used by some researchers for 

optimization, where there can be different unknowns (small<20, medium<50, and large>100); type 

(binary, integer, and real); objective functions (linear, quadratic, based on min or max, and nonlinear); 

inequality or equality constrained (linear, quadratic, and nonlinear) or unconstrained models; convex or 

non-convex optimization MOPs (see Baudin and Steer [11]; Baudin and Couvert [12]; Margonari [61]; 

Deb [69]; Deb [70]). As a result, the Scilab is an excellent and compelling tool for the kickoff of this 

RD3 effort. The Pareto set and the Pareto front of the MOGA, the NSGA-I, and the NSGA-II algorithms 

on the Scilab 6.0.0 and the commented script for the Scilab 6.0.0 are presented as follows (see Fig. 3 

and electronic supplementary materials). 

 

 

 

Standardized MOEA Console Standard 

Algorithms 

(example) 

Reference Documents 

(example) 

Algorithms Module  

> Pareto-based   

> Non-elitist  

> Multi-objective Genetic Algorithm (MOGA) 

MOGA Pseudo Code 

 

Coello et al. [24];  

Fonseca and Fleming [20] 

 MOGA Algorithm 

Algorithms Module  

> Pareto-based   

> Non-elitist  

> Nondominated Sorting Genetic Algorithm-I 

(NSGA-I) 

NSGA Pseudo Code  

(NSGA-I) 

Coello et al. [24];  

Srinivas and Deb [99] 

NSGA-I Algorithm 

Algorithms Module  

> Pareto-based   

> Elitist  

> Nondominated Sorting Genetic Algorithm-II 

(NSGA-II) 

NSGA Pseudo Code  

(NSGA-II) 

 

Coello et al. [24];  

Deb et l. [27] 

NSGA-II Algorithm 
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Table 4. Standardized MOP (test MOP at the initialization stage of the proposed MOEAs-KAS-F-REPPs). 

Standardized Objective Functions 

Function 1 Energy Generation 

Maximization  

(healthy decision maker approach, more ↑ is better ↑) 

Function 2      Initial Investment Cost 

Minimization  

(healthy decision maker approach, less ↓ is better ↑) 

Standardized Constraints For Hydro Power (subject to) 

Function 1 Power Plant Installed Capacity 

Function 2 Efficiency of Transformers 

Function 3 Efficiency of Generators 

Function 4 Efficiency of Turbines 

Function 5 The density of Water (kg/m3) 

Function 6 Gravity of Earth (m/s2) 

Function 7 Rated Discharge (m3/s) 

Function 8 Net Head (m) 

Function 9 Flow-Duration Curve 

Standardized Test Objective Functions For Small HydropowerAt This Initialization Stage 

Function 1 Maximization  

Energy Generation (MWh) 

𝐸 = ∑(𝑃𝑖 ∗  𝑡𝑖)

100

𝑖=0

 

where 

Pi: power produced or generated (MW) 

ti: duration (%) period of time (% percentage of time) 

* Please do not use this function in any of scientific, engineering and commercial studies without 

any further investigations.  

Function 2 Minimization  

Initial Investment Cost (million €) 

𝐶𝑡𝑜𝑡𝑎𝑙 = −0,146 × 𝑃𝑖
2 +  4,2918 × 𝑃𝑖  +  2,2054 

where 

Pi: installed capacity in MW 

* Please do not use this function in any of scientific, engineering and commercial studies. This 

function is generated for the small hydropower plant investments in a South East European Grid 

country. It is a very specific experimental case study function. 

Standardized Constraints For Hydro Power 

Function 1 Power Plant Instantaneous Capacity For Installed Capacity 

𝑃𝑖 = ηtr × ηg × ηt × ρw × 𝑔 × 𝑄𝑖 × Hnet 

* Please feel free to use this function in any of scientific, engineering and commercial studies. This 

is a general function. 

Function 2 Efficiency of Transformers 

98−99,5% (a constant value or a function) 

Function 3 Efficiency of Generators 

90−98% (a constant value or a function) 

Function 4 Efficiency of Turbines 

89−92% (a constant value or a function) 

Function 5 The density of Water (kg/m3) 

998,65 - 992,22 (a constant value or a function) 

Function 6 Gravity of Earth (m/s2) 

9,78033 - 9,83203 (a constant value or a function) 

Function 7 Rated Discharge (m3/s)  

in accordance with Flow-Duration Curve 

𝑄𝑖  = -10,904 * ti
3 + 26,854 * ti

2 - 21,72 * ti + 5,8299 

where 

ti: Duration (%) period of time (% percentage of time) 

Function 8 Net Head (m) 

1,5−1900 (a constant value or a function) 
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The genetic algorithms have been introduced in the Scilab thanks to a work by Yann Collette 

(http://ycollette.free.fr) and allow a high-level programming model for the optimization solvers by some 

macros. This way, to represent an optimization problem in the Scilab, a cost function (or a multi-

objective non-linear cost function) to minimize with or without bound constraints must be introduced 

first (usually programmed as f). The Macros in the Scilab (optim_“algorithm name”) automatically 

work with a coding of the parameter set (they do not work with the parameters themselves), search from 

a population of points (which must be initialized), use the payoff information from the objective 

function (they do not use derivatives or other auxiliary functions), and use the probabilistic transition 

rules, not the deterministic rules. Moreover, it automatically includes three main GA operators: 

Reproduction, crossover, and mutation, which can be easily tuned by the parameters functions 

(“ga_params”). Actually, the parameters module in the Scilab provides the “init_param” function, 

which returns a new, empty, set of parameters, and the “add_param” function that allows setting 

individually named parameters, which can be configured with key-value pairs. 

The initialization function in the Scilab returns a population as a list made of “pop_size” individuals. If 

the “init_ga_default” function is used, then a population by performing a randomized discretization of 

the domain defined by the bounds as minimum and maximum arrays is computed. The MOGA 

implemented algorithm in the “optim_moga” function from the Scilab is based on Fonseca and Fleming 

[35], while the NSGA algorithm in “optim_nsga” solver is based on [100], and the NSGA-II algorithm 

implemented in “optim_nsga2” solver is based on Deb et al. [53]. 

Fig. 3 shows the results of the implemented MOP given by the different solvers (MOGA, NSGA-I, and 

NSGA-II). The Pareto front graphs show the solutions of the cost functions (two objective 

optimization), while the Pareto set graphs represent the values of the variables (net head and capacity 

respectively) corresponding to the previous solutions. The Pareto front solutions are those who are not 

dominated by any other solution in the set. Thus, they are located within the borders of the solution set. 

In the studied case, the first objective function (energy generation) must be maximized and the second 

objective function (initial investment cost) must be minimized. In order to take into account that both 

energy generation and initial investment cost values cannot be negative, both functions have to be the 

sign changed and thus, the first function must be minimized while the second function must be 

maximized. It can be observed that the MOGA algorithm only found one non-dominated solution 

(marked in green color), which is similar to the optimal solution found by NSGA algorithm. 

Nevertheless, NSGA-II algorithm found more non-dominated solutions (optimal Pareto front) thanks 

to it uses an elitist principle. It emphasizes non-dominated solutions and it uses an explicit diversity 

preserving mechanism. Thus, a complete Pareto front with the non-dominated solutions is offered, 

including the optimal solution found by the MOGA and NSGA algorithms. 
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Fig. 3. Pareto set & Pareto front of MOGA, NSGA-I, and NSGA-II algorithms on Scilab 6.0.0 (Windows 10 

Home 1709 64bits, Intel i5-7200 CPU @2.7 GHz, 8.00 GB RAM). 

The comparison of MOGA, NSGA-I, and NSGA-II algorithms on the Scilab 6.0.0 on a desktop 

computer with a PC Windows 10 Home 1709 64 bits, Intel i5-7200 CPU @ 2.7 GHz, and 8.00 GB 

RAM with internet connection and a PC Windows 10 Pro, Intel(R) Core(TM) i5 CPU 650 @ 3.20 GHz, 

and 6,00 GB RAM with the internet connection is performed and presented in Table 5. 
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The readers should be aware of the computational cost of these kinds of studies. They may be ranged 

from milliseconds to weeks (e.g. “1 simulation ≈ 1 ms → 1000 simulations = 1 second” and “1 

simulation ≈ 1 hour → 1000 simulations ≈ 42 days” [41]. 

 Table 5. Runtime (computation time) results for computing the algorithms. 

 

4. Conclusion and Future Work 

The major contribution of this research paper was its ability to present a new proposed multi-objective 

evolutionary algorithms knowledge acquisition system for renewable energy power plants (MOEAs-

KAS-F-REPPs) and its RD3 initialization. This new MOEAs-KAS-F-REPPs system will also possibly 

be evolved into a new multiobjective artificial intelligence system in future. The multi-objective 

evolutionary algorithms were started to be collected and grouped according to their general 

classifications in the literature during this research study (e.g. Non-Pareto-based or Pareto-based and 

Non-Elitist or Elitist). This classification study was a crucial research by itself so that it should be 

organized and presented in a meticulous manner. All single and multi-objective optimization algorithms 

in the literature will be tried to be collected and grouped in the following studies. The MOPs functions 

for the proposed MOEAs-KAS-F-REPPs were started to be generated, collected, and grouped according 

to their common properties during this research study. For instance, in this paper, two functions in the 

small hydropower plant designs were generated or collected during this study. All MOPs functions in 

the literature will be tried to be collected in the following studies. The free tools and software for the 

proposed MOEAs-KAS-F-REPPs were started to be collected in the literature during this research 

study. For instance, the information about Python (https://www.python.org/), R (https://www.r-

project.org/), and Scilab (https://www.scilab.org/) had been collected and archived during this study. 

The new proposed system (MOEAs-KAS-F-REPPs) was aimd to integrate all free tools and software 

under a unique platform that will be researched in a detailed manner. This system will allow the 

developers and contributors of all free tools and software to be scientifically honored. The RD3 studies 

and publications of this new proposed MOEAs-KAS-F-REPPs shall be tried to be developed like Open 

Source Initiative (https://opensource.org/) and Free Software Foundation (https://www.fsf.org/) 

approaches. All free tools and software in the literature will be tried to be collected and archived in the 

following studies. 

In future, newly proposed system integration for all multi-objective evolutionary algorithms will be 

researched and the related help manuals of this new system will be prepared in a detailed manner. 

Moreover, all functions relevant to renewable energy power plants will be researched, generated, 

collected, grouped, and presented in this new system. Special and specific research studies will be 

Computers Hardware Configuration MOGA  

Algorithm 

Runtime  

(seconds) 

NSGA-I 

Algorithm 

Runtime 

(seconds) 

NSGA-II  

Algorithm 

Runtime 

(seconds) 

1st PC Windows 10 Home 1709 64bits, 

Intel i5-7200 CPU @2.7 GHz, 

8.00 GB RAM 

46.47 41.82 20.64 

2nd PC Windows 10 Pro, Intel(R) 

Core(TM) i5 CPU 650 @ 3.20 

GHz, 6,00 GB RAM with internet 

connection 

50.32    59.98 28.52 

Performance Ratio (1st PC/2nd PC) %92 %69 %72 



199                  Initialization of a multi-objective evolutionary algorithms knowledge acquisition system  

conducted for a generation, collection, verification, validation, and quality assessment of these MOPs 

functions in the next years. In addition to these research improvements, all performance measures in 

the literature for comparison of single and multi-objective optimization algorithms will be found, 

collected, adapted, and used in new proposed MOEAs-KAS-F-REPPs in the future publications (e.g. 

algorithm runtime in seconds in this study). Finally, Multi-Criteria Decision Making (MCDM), 

Multiple–Criteria Decision Analysis (MCDA), Multiple Criteria Decision Aiding (MCDA) methods 

(e.g. Analytic Hierarchy Process (AHP), Consistency-Driven Pairwise Comparisons (CDPC), and 

Decision Expert for Education (DEXi))  will be integrated to complete the new proposed MOEAs-KAS-

F-REPPs to accomplish and handle the selection of the best alternative REPPs designs and investments 

(e.g. Ohunakin and Saracoglu [66]; Saracoglu [90, 91, 92]). It is believed that this new proposed 

MOEAs-KAS-F-REPPs will make it easier to use or apply multi-objective optimization algorithms in 

REPPs' designs and investments in every design and investment stage in daily engineering life (e.g. 

Ohunakin and Saracoglu [66]; Saracoglu [90, 91, 92]). Hence, the maximization of source usage (e.g. 

sun, wind, and water) and the minimization of resource consumption (e.g. raw materials) can be 

achieved all over the world in this century. It is also thought that similar systems can be developed in 

other engineering and industry fields too (e.g. Saracoglu [77]). 

Abbreviations 

𝑃: Power Plant Installed Capacity (MW). 

ηtr: Efficiency of transformer (98−99,5%). 

ηg: Efficiency of generator (90−98%). 

ηt: efficiency of turbine. 

ρw: Density of water (kg/m3). 

g: Gravity (m/s2) approx: 9.81 m/s2. 

Q: Rated discharge (m3/s). 

Hnet: Net head (m) (1.5−1900: Technical and technological limits in practice). 

E: Generated total energy (MWh). 

t: Period of time (h). 

Capacity factor (%) (typically 50 % to 60 %). 

𝐼𝑑𝑡: Annual downtime losses (%). 

𝑄∗: Small Hydropower Power Plant Flow-Duration Curve (FDC) (site and case specific). 

tQ: Period of time (% percentage of time). 

𝐶𝑡𝑜𝑡𝑎𝑙: Total Investment Cost Equations For Turkey (Million €). 

𝐸𝑠𝑜𝑙𝑎𝑟: Net annual solar electricity generation (kWh).  

Aa: Aperture area of solar field (m2). 

DNIa: Annual direct normal irradiation (kWh/m2/y). 

ηsf: solar field efficiency (%) (incl. collector (geometric (incident angle modifier, blocking & shading, 

intercept, cosine effect), optical), convection, radiation). 

ηpa: Efficiency due to parasitic (%). 

ηpbnet: Net power block efficiency (%). 

ηtrans: Heat to power system transfer system efficiency (%). 

ηpaf: Plant availability factor (%). 
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