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A B S T R A C T

Phishing attacks are one of the most challenging social engineering cyberattacks due to the large amount of
entities involved in online transactions and services. In these attacks, criminals deceive users to hijack their
credentials or sensitive data through a login form which replicates the original website and submits the data
to a malicious server. Many anti-phishing techniques have been developed in recent years, using different
resource such as the URL and HTML code from legitimate index websites and phishing ones. These techniques
have some limitations when predicting legitimate login websites, since, usually, no login forms are present
in the legitimate class used for training the proposed model. Hence, in this work we present a methodology
for phishing website detection in real scenarios, which uses URL, HTML, and web technology features. Since
there is not any updated and multipurpose dataset for this task, we crafted the Phishing Index Login Websites
Dataset (PILWD), an offline phishing dataset composed of 134,000 verified samples, that offers to researchers
a wide variety of data to test and compare their approaches. Since approximately three-quarters of collected
phishing samples request the introduction of credentials, we decided to crawl legitimate login websites to
match the phishing standpoint. The developed approach is independent of third party services and the method
relies on a new set of features used for the very first time in this problem, some of them extracted from the
web technologies used by the on each specific website. Experimental results show that phishing websites can
be detected with 97.95% accuracy using a LightGBM classifier and the complete set of the 54 features selected,
when it was evaluated on PILWD dataset.
1. Introduction

Phishing is one of the main social engineering attacks, where attack-
ers create a fake website to deceive users and obtain their passwords
or other sensitive data regarding a specific brand or web service (Mo-
hammad et al., 2015b). Phishing may occur through different attack
vectors, including emails, instant messaging, Short Message Service
(SMS) and many others. Moreover, one of the most important vectors
are the web pages (Chiew, Yong et al., 2018; Gupta et al., 2018), where
attackers emulate the website of a well-known company to obtain user
information, usually via login or a sign-up form. Since many phishing
attack vectors contain a Uniform Resource Locator (URL) pointing to a
website, we can identify websites as the final endpoint of the attacks.
Therefore, in this work, we focus on detecting those deceitful websites.
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The Anti-Phishing Working Group (APWG) detected up to 611,877
unique phishing websites during the last quarter of 2020. Financial
institutions were the main targets of those attacks (24.9%) followed by
social media (23.6%), SAAS (Software As A Service) and webmail ser-
vices (19.6%) and payment platforms (8.5%) (Anti-Phishing Working
Group, 2021). Phishing campaigns have a noticeable impact since the
private data revealed derives into economical losses that affect either
way to corporations, with more than 411 million US$ (Bose & Leung,
2014), and to users, with millions of US$ (Jain & Gupta, 2017; Shaikh
et al., 2016).

Also, the percentage of phishing websites using Secure Sockets Layer
protocol (SSL) has increased up to 83% (Anti-Phishing Working Group,
2021), which means that they display the green padlock on the browser
navigation bar. This is a misleading security indicator for users that
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Fig. 1. A new phishing website not yet registered on blocklists, displays the green
padlock and shows no previous warning to the user.

commonly identify this icon with a secure website. This statement also
compromises the effectiveness of previous phishing works which used
HTTPS as a key feature in their approaches (Adebowale et al., 2019; Li
et al., 2019; Rao et al., 2020).

Current defences for users against phishing websites are imple-
mented on browsers and operating systems like Windows. The most
common are Google SafeBrowsing1 for Google Chrome, PhishTank2 for
Firefox and SmartScreen3 for Windows. These systems rely on blocklists
where phishing URLs stack up when they are reported. Therefore, if a
user visits a recent phishing website that has not been reported yet, it
will not be detected. Then, the user will enter into the fake website with
no previous warning, exposing credentials to the attackers if they are
introduced. Fig. 1 displays an example with a recent phishing encounter
not listed on those blocklists.

To address this issue, researchers have developed different ap-
proaches to improve phishing detection, including list-based techniques
(Hong et al., 2020; Prakash et al., 2010) and also artificial intelligence-
based approaches, where they used different inputs such as URLs
(Abutair & Belghith, 2017; Marchal et al., 2016; Moghimi & Varjani,
2016; Rao et al., 2020; Sahingoz et al., 2019), the source code or HTML
(Adebowale et al., 2019; Li et al., 2019; Rao & Pais, 2019b) and images
(Bozkir & Aydos, 2020; Chiew et al., 2015; Dalgic et al., 2018; Dunlop
et al., 2010).

Some previous works (Adebowale et al., 2019; Sadique et al., 2020;
Xiang et al., 2011), have also used third-party services like Google
or WHOIS to include features such as the website ranking on Google
Browsing Index or the age of the domain registry. However, these
implementations have –at least– four drawbacks. The first one is their
reliance on services that could be offline or slow on their response
time, setting a boundary on the real-time application. Second, some
features have flaws for a specific group of websites, like the case of the
domain age feature, which may incorrectly classify legitimate websites
with a short life. A third drawback is that these techniques may fail
to detect phishing attacks hosted on compromised legitimate domains
(Rao & Pais, 2017). Finally, WHOIS features have some additional
limitations due to the rising of the WHOIS Privacy service, which hides

1 https://safebrowsing.google.com/.
2 https://www.phishtank.com/.
3 https://bit.ly/2OJDYBS.
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this information and denies feature extraction for works relying on that
data.

One of the most relevant concerns about the state-of-the-art ap-
proaches for phishing detection is the need for a standard, updated
and representative dataset for researchers to compare their works. The
comparison of phishing detection systems entails implementing other
methods and the usage of the same dataset, otherwise, comparisons
are relative and might obtain misleading conclusions. Also, most of the
studies presented tailored datasets to meet their approach, i.e., a work
using URL features usually presents a URL dataset (Sahingoz et al.,
2019). The first of these premises leads to a time-consuming task due
to the complexity of current works. The second one implies using the
same approach (URL, HTML, images or specific data) since a work using
HTML code cannot use a dataset built with only URLs. Therefore, fair
comparisons are limited to use the same type of data.

In our previous work (Sanchez-Paniagua et al., 2022), we identified
the problem of using outdated datasets for new model developments.
Constantly evolving phishing techniques degrade the performance of
models, which can no longer maintain the generalization performance
estimated at the learning stage. In order to ensure that new models
perform correctly on current environments, researchers should use
updated datasets. Phishing campaigns last an average of 21 h (Oest
et al., 2020), while URLs are stored for long periods of time. For this
reason, phishing websites should be collected as they appear to obtain
the data before they are seized or close. As far as we are aware, only
one known work is focused on building an offline phishing dataset
(Chiew, Chang et al., 2018). However, we found some issues regarding
the legitimate URLs and the screenshots, which is discussed later in
Section 2.

To address the drawbacks of published datasets and the lack of
offline datasets with raw data, in this work we introduce and make pub-
licly available4 PILWD-134K (Phishing Index Login Websites Dataset).
This dataset comprises 134,000 verified samples collected from August
2019 to September 2020. PILWD-134K covers six different kinds of raw
resources, including URLs, HTML code, screenshots, a copy of the web-
site files, web technologies analysis and extra metadata regarding the
phishing reports5 This new dataset can be used both as a large sample
of real-life websites and as a standard corpus for evaluating the results
using different phishing detection techniques over the same websites,
something that was not available until the creation of the introduced
dataset. Jointly with PILWD-134K, we provide baseline results using
traditional Machine Learning descriptors and a brief analysis of the
dataset itself.

Additionally to other approaches that commonly focus exclusively
on index pages, we propose a new approach for the phishing detection
task, trying to simulate a real-world situation when a user finds a phish-
ing website. A review of collected phishing websites shows that most of
them (77%) requested credentials through a login form. However, most
datasets used in the literature do not include the same amount of login
forms in their legitimate class, which causes bias in the classification
due to the significant differences between both types of web pages. El
Aassal et al. (2020) included a significant number of login websites
to avoid this bias in the legitimate class, However, the proportion of
login forms was still distant between both classes. We address this issue
by crawling and creating two legitimate subsets, one is built up with
homepages, and the other contains login websites. Then, we identify
the pages with a login form to merge them and build a final legitimate
class with the same number of forms as the phishing one.

Finally, we proposed a phishing website detection method using
and comparing legacy features used in previous works (Li et al., 2019;

4 Dataset will be available on our website https://gvis.unileon.es/dataset/
pilwd-134k/ once the paper is accepted.

5 Phishtank’s reports contain information related to the date, the brand
affected or the IP address.

https://safebrowsing.google.com/
https://www.phishtank.com/
https://bit.ly/2OJDYBS
https://gvis.unileon.es/dataset/pilwd-134k/
https://gvis.unileon.es/dataset/pilwd-134k/
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Sahingoz et al., 2019) and the novel features proposed in this pa-
per, such as the technology analysis and new HTML features. These
features were designed to improve detection performance, reliability
and resilience against upcoming phishing attacks and bypass methods,
such as clones and phishing kits (Bijmans et al., 2021). We use a
LightGBM (Light Gradient Boosting Machine) model to build an in-
dependent third-party system capable of detecting phishing websites
among legitimate login web pages.

The main contributions of this work are summarized in the
following items:

• Novel hand-crafted features: Attackers take advantage from pub-
lished phishing countermeasures to modify their websites and
bypass detection systems. We propose 27 novel features with
relevant information to achieve high performance for today’s
phishing detection tasks. We include a novel type of feature, web
technology analysis.

• Real-case phishing detection scenario. Almost half of the collected
phishing websites have login forms for users to input their cre-
dentials. For this reason, we focus on crawling legitimate login
forms. This way, we reproduce a challenging real-case scenario
that is representative to achieve the actual objective: Detecting
whether a website with a login form is legitimate or not.

• A publicly available dataset, with offline legitimate and phishing
samples. We present the Phishing Index Login Websites Dataset
(PILWD-134K), a balanced dataset with a high ratio of login forms
in both classes, that includes 134,000 verified samples and can
be used in a wide variety of phishing detection approaches. Each
sample contains raw data such as the URL, HTML, screenshots,
technology analysis and an offline version of the website. Since
the samples are taken into a verification process we also include
the remaining dismissed samples for researchers to implement
their methodology.

This paper is structured as follows. Section 2 presents a review
f the literature and related work. Section 3 introduces the dataset,
ts structure, properties and the quality filters. Section 4 explains the
ethodology, the features proposed and the metrics used. Section 5

ntroduces the experiments and the obtained results. Section 6 contains
he conclusion along with the limitations and future work.

. Related work

In previous years, researchers have developed phishing detection
ystems using different techniques and data sources. Next, we review
hese approaches together with the datasets presented.

.1. Phishing website detection

Zhang et al. (2007) implemented CANTINA, a phishing detection
ystem that uses TF-IDF (Term Frequency - Inverse Document Fre-
uency) technique to extract five signature words from a website and
se them into Google Search engine. If the analysed website domain
as within the first 30 results, the website was classified as legitimate.

n the following years, Xiang et al. (2011) presented CANTINA+, an
enhanced version which added two filters and 15 features related to
the URL, the HTML and web (PageRank, copyright and WHOIS). The
proposed system achieved 92% accuracy on an 8000 sample dataset
using a Bayesian Network.

Influenced by CANTINA works, He et al. (2011) selected 12 features
extracted from the URL, the requests carried out by the website and
the results of a search engine. Together with an SVM (Support Vector
Machine), these features led to a 97% accuracy using a small dataset
with 525 samples.

Gowtham and Krishnamurthi (2014) implemented a system with
three detection stages where the first two were intended to reduce cal-
3

culation time, and the last one performed the actual classification. The t
first stage consisted of a pre-approved site identifier, which checked
the website with an allowlist maintained by the user. The second stage
was a Login Form finder where if no login was detected, the website is
directly classified as legitimate. Finally, they extracted 15 features and
achieved a 99.62% accuracy on SVM with a 2464 samples dataset.

Marchal et al. (2014a) proposed a real-time URL phishing rating
system called PhishScore which focuses on intra-URL words relations.
For this task, they used 12 features; the first six used the Jaccard index
to calculate the similarity between different sets of words of the URL.
The last six were used to calculate the popularity of the URL using
Google, Yahoo and Alexa Website ranking. On a 96.018 URL samples
dataset, they achieved a 95.22% accuracy using an RF (Random Forest)
classifier.

Moghimi and Varjani (2016) implemented two sets of features,
the first one contained nine legacy features from previous phishing
detection works, and they were related to the URL and detecting a set
of keywords within the domain name, the path and the query of the
URL. The second set of eight proposed features included typosquatting
features between the URL and the source of the elements loaded in the
website (CSS, JavaScript, images and links) and the protocol used to
load those resources. Combining both sets of features, they achieved
an accuracy of 98.65% on a 1707 e-banking phishing dataset.

Rao and Pais (2017) presented FeedPhish, an application to detect
phishing based on the response to fake credentials submission. To
simulate the user input in the login form, the authors used Selenium
WebDriver and created three modules. First, the LoginCheck module
verifies if there is a login form in the website, then FeedFakeCredentials
introduces a random account and credential and HeuristicsCheck mod-
ule analyses the content of the response. Finally, TargetDomainCheck
compute the identity of the domain based on the anchor links. Results
showed that the proposed heuristics obtained 96.38% accuracy on a
2342 samples dataset. In subsequent studies, Rao and Pais (Rao & Pais,
2019a) proposed 16 legacy and novel features, which were divided into
three sets: URL obfuscation, third-party-based and hyperlink-based.
Combined with an RF classifier, they obtained 99.31% accuracy on a
3526 samples dataset.

Tan et al. (2018) compared five groups of features depending on
their target: URL obfuscation on the HTML, domain obfuscation in the
URL, HTML content, symbol exploit and web page URL properties.
Using a C4.5 classifier, they found that the URL obfuscation on the
HTML obtained the best performance with an accuracy of 95.97%,
followed by the symbol exploitation with 82.03%. Those tests were
performed on a 10,000 samples dataset.

Sahingoz et al. (2019) proposed two sets of features for phishing
detection through the URL: First, 39 NLP (Natural Language Processing)
features and second, a set of 102 word features. Using WEKA’s RF
nd only the NLP set of features, they obtained 97.98% accuracy on
73,575 phishing URL dataset collected on one of their previous work

Buber et al., 2018).
Li et al. (2019) proposed a stacking model using 20 features ex-

racted from the URL and the HTML code along with the combination of
BDT, XGBoost and lightGBM models. In addition, they proposed novel

eatures, like brand detection, consistency in the title and URL domain,
nd a string embedding extracted from the HTML using Word2Vec.
he first implementation with 20 features reached 97.11% accuracy
n their 50,000 samples dataset. Furthermore, they explored visual
eatures using website screenshots with a small CNN (Convolutional
eural Network), improving their model accuracy to 98.60%.

Adebowale et al. (2019) proposed an ANFIS (Adaptative Neuro-
uzzy Inference System) using three sets of features: (i) properties
rom website images, (ii) frame features, which aim to identify website
ehaviour in terms of redirections, pop-up windows and right-click
isabled among others; (iii) and a text subset related mainly with the
RL and third-party services like Google Page Rank and WHOIS. They
btained a 98.30% accuracy on Mohammad et al. (2015a) dataset for

he frame and text sets along with a self-collected image dataset.
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Ding et al. (2019) proposed an SHLR (Search & Heuristic Rule &
Logistic Regression) method to filter and detect phishing websites. First,
they search the website title into Baidu’s top 10 results. If a domain is
not found, URL heuristics are evaluated to determine if it is phishing
or not. If not, they extract a total of 37 features to be evaluated with
a logistic regression algorithm. They obtained 98.9% accuracy on their
20,384 samples dataset.

Rao et al. (2020) proposed CatchPhish, a phishing URL detection
method that combines TF-IDF and 35 handcrafted features, 16 of which
re focused on the hostname, and the rest use the path and the base
RL. First, they created a list of keywords that had a high frequency
n the phishing subset. Then, they used it to count the number of
ncounters within the hostname and in the URL. Using an RF classifier,
hey obtained 94.26% accuracy on their dataset, 98.25% on Sahingoz
t al. URL dataset (Sahingoz et al., 2019) and a 97.49% on a URL
ataset by Marchal et al. (2014b).

Aljofey et al. (2020) presented an RCNN model to classify phishing
RLs. They used the URL as input for a tokenizer and then used a one-
ot encoding to represent the URL as a matrix at a character level. They
sed a 310,642 URL dataset to feed the RCNN model and obtained a
5.02% accuracy using the aforementioned character embedding level
eatures.

Yang et al. (2021) presented an Extreme Learning Machine (ELM)
odel along with three different types of features: (i) Surface features
ses the information from the URL. Specifically, they used 12 URL hand-
rafted features and 4 Domain Name System (DNS) features related
o the registration date and the DNS records for the target domain;
ii) 28 Topological features related to the structure of the website.
inally, 12 deep features (iii) were obtained from the text, image and
verall similarity. Combining these features and the ELM classifier, they
btained 97.5% accuracy on a 60,000 samples dataset.

Gupta et al. (2021) proposed a real-time system focused on running
n constrained devices. They designed nine lexical features from the
RL, including length-related features and counting several elements

uch as digits, dots and symbols. They obtained 99.57% accuracy using
F classifier on the ISCXURL-2016 dataset which allocates 19,964
RLs.

Sadique et al. (2020) presented a framework for real-time phishing
etection using four sets of URL features: (i) Lexical features based on
he number of characters, dots and symbols found in different parts
f the URL, (ii) host-based features related with the server and the
P where the website is hosted, (iii) WHOIS features related to the
ays after the registration date and days before the expiration date,
nd (iv) GeoIP-based features like the Autonomous System Number
ASN), the country or the city where the website is hosted. A total
f 142 individual features were evaluated using 98,000 samples from
hishtank, where legitimate samples are also picked from false positives
ollected at PhishTank. They obtained a 90.51% accuracy on an RF
lassifier using the proposed descriptors.

.2. Dataset manufacture

Phishing detection is a relevant area of research, however, the lack
f large representative datasets has been an obstacle for uncovering the
eal problems and developing efficient solutions.

Recently, Chiew, Chang et al. (2018) worked on building an offline
tandard dataset for researchers to test their work. The dataset is
omposed of 30,000 samples, 15,000 for each class, and they contain
he URL, HTML files, a Screenshot, an offline copy of the website
etrieved with WGET and WHOIS information. APWG reports were used
o match the different phishing categories with the represented ones on
he dataset. They also used Alexa, DMOZ BOTZ and Phishtank as the
ource for the URLs and the domain names. Then, they built a web
rawler to visit the websites and retrieve the information indicated.
fter a close lookup on this dataset, we found that many screenshots
ere repeated or blank on both classes. Also, the URLs collected for the

egitimate class were only domain names and TLDs, with no subdomain,
rotocol or path. For this reason, we consider that researchers may find
4

bstacles to use this dataset for testing their methodology.
3. Phishing index login websites dataset

As seen in the previous section, the small set of publicly accessible
datasets forces researchers to build their own tailored dataset so it
meets their specific requirements. To the best of our knowledge, there
are no publicly available datasets that comprise multiple data from the
same website: complete URL, HTML, screenshots and website resources.
This makes comparison and benchmarking tasks unfeasible when used
resources are different between approaches.

In this section, we explain the process of building the Phishing Index
Login Websites Dataset (PILWD), with more than 134,000 verified
samples collected from August 2019 to September 2020. It includes raw
data from legitimate and phishing websites, allowing researchers to
extract their features and develop their phishing detection systems. It
covers a wide variety of raw data: URLs, source code, screenshots, tech-
nologies analysis and an offline replica of the website. In addition, other
metadata is also included for each sample: time of recollection, filters,
and PhishTank information in case of the phishing class. To collect the
samples, a web crawler was developed using Python3 and Selenium
WebDriver to visit the legitimate domains and the reported phishing
URLs. By loading the website, our crawler has various advantages in
terms of quality:

• The website was rendered to simulate the user access. Once the
site was fully loaded, we extracted the content as it is, includ-
ing browser screenshots. This way, we can include the same
information displayed to users.

• Loading the website in the web driver avoided web obfuscation.
Some phishers encrypt or encode the original HTML code and
embed it into an empty website. In order to render the HTML,
phishers include a JavaScript file used to decrypt or decode the
payload. This obfuscation method affects recollection procedures
that do not execute the website’s JavaScript.

• URL resolution. Legitimate datasets are usually composed of a list
of most visited domains. Nevertheless, once our crawler lands in
the website, the complete and final URL is saved. In the case of
phishing samples, phishers try to confuse users with re-directions.
By visiting the website, we could collect the URL corresponding to
the final phishing site, storing it along with the original reported
one.

3.1. Legitimate class

State-of-the-art papers generally use different sources for collecting
legitimate websites. They choose the most visited domains from Alexa
Topsites,6 DMOZ,7 and many others. We used Quantcast Top Sites8

and The Majestic Million9 as a source for the crawler. These services
provide the domains with the most referring subnets. Therefore, we can
assume that it is hard for a phishing website to enter these lists since
there are not enough websites pointing to them. From the first source,
we generated a list with 150,000 domains ordered by the number of
visitors and then appended the top million domains from Majestic. After
merging both lists, we removed the repeated domains.

Current phishing detection works (Aljofey et al., 2020; Li et al.,
2019; Rao et al., 2020) use most visited domains without further crawl-
ing into the domain, i.e., they use legitimate homepages (Fig. 2(a))
and phishing samples (Fig. 2(c)) to feed their algorithms. Nevertheless,
phishing attacks focus on stealing credentials, and most homepages do
not have login forms. Hence, instead of collecting only the legitimate
homepage, we decided to get closer to the real-case scenario (Sanchez-
Paniagua et al., 2022), where the user doubts whether a login page

6 https://www.alexa.com/topsites.
7 https://dmoz-odp.org/.
8 https://www.quantcast.com/top-sites/.
9
 https://majestic.com/reports/majestic-million.

https://www.alexa.com/topsites
https://dmoz-odp.org/
https://www.quantcast.com/top-sites/
https://majestic.com/reports/majestic-million
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Fig. 2. Pages collected for phishing detection. Legitimate homepage samples (a) differs
from the Phishing ones (c) while Legitimate login pages (b) has the same structure in
the URL and HTML look and feel.

(Fig. 2(b)) is legitimate or phishing (Fig. 2(c)). Fig. 2 depicts the
similarity between the legitimate login page and the phishing one,
specifically in the URL and the structure of the rendered HTML. In
the case of the legitimate homepage, differences are remarkable in
both items. Due to the similarity, we believe that this scenario is more
challenging for artificial intelligence algorithms.

For creating the homepage subset, the crawler visited each domain
from the list and retrieved the information on the landing page. For the
login subset, the crawler looked for the sign-in form of the service. If it
5

was not on the main page, it searched for any login link on the website
until it reached the objective. Unfortunately, not all websites had login
forms; therefore, they were not included in this subset.

In addition to this process, most websites had a large banner
containing the cookies consent, which could occlude information of
the captured screenshot. To enhance dataset quality, we improved the
crawler allowing it to accept the cookies automatically and remove the
banner. Since there are many types of cookies banners, we focused on
the most common ones.

3.2. Phishing dataset

As the majority of other research works (Chiew, Chang et al.,
2018; Ding et al., 2019; Li et al., 2019; Sahingoz et al., 2019), we
used Phishtank as the source for all the phishing URLs. Chiew, Yong
et al. (2018) used the online and verified indicators from Phishtank
to select 15,000 phishing URLs to visit. However, the online indicator
only ensures that the server is online, but the website content might be
seized or removed, which could bias the collected data. Since phishing
pages last an average of 21 h (Oest et al., 2020), we obtained all the
reported websites as soon as they were reported, so the crawler hits
the website on time before the attacker or the hosting service takes the
web page down.

Phishtank verifies reported websites using user votes, increasing the
chances of those samples being true phishing. As samples were col-
lected, we retrieved hourly JSON reports. Moreover, we requested the
API to verify the collected samples and retrieve some extra information
from the JSON report, including the IP address, the affected brand,
the server location and the announcing network. Unlike the legitimate
dataset collection, we did not interact with the website to find the login
form or remove the cookies banner. As a consequence, we collected
only the reported land page. Samples on Phishtank marked as spam,
or disabled from voting were omitted and not collected since the vast
majority were forums for malware download or websites that were
offline at the time of submission.

3.3. Structure

To make our dataset valuable for different phishing detection
methods, we collected the following information:

url.txt : Contains the complete final URL of the visited website, with
the Fully Qualified Domain Name (FQDN), the protocol and the path,
if it exists. We collected the URL displayed on the browser once we
reached the website since the reported URLs or the legitimate do-
main list are not entirely representative of the sample. Those reported
URLs could have redirections or lack information like the path or the
subdomain.

html_content.txt : Contains the source code of the website, including
in the same file, the HTML, the JavaScript code and the CSS.

Screenshots: We take two screenshots of the website in high resolu-
tion (1848 pixels width and 911 pixels height), one from the top of the
website and another from the bottom. These locations usually contain
the brand logo, which can be helpful for phishing detection (Bozkir &
Aydos, 2020; Chiew et al., 2015).

WGET : We retrieved the website with all the resources needed
to recreate it offline. We used WGET10 for this task with the fol-
lowing parameters: –no-check-certificate so it was collected even with
invalid certificate, –user-agent was set to ‘‘Mozilla/5.0 (Windows NT
10.0; WOW64)’’ to simulate as better as possible the request from a
browser, -p to retrieve the page requisites to load it offline (including
images, sounds and other resources) and last, -T 60 –tries = 3 to avoid
overwhelming loading times.

tech.json: With a local instance of Wappalyzer,11 we listed the tech-
nologies used by the website, and saved them with JSON format. These

10 https://www.gnu.org/software/wget/.
11 https://www.wappalyzer.com/.

https://www.gnu.org/software/wget/
https://www.wappalyzer.com/


Expert Systems With Applications 207 (2022) 118010M. Sánchez-Paniagua et al.
Fig. 3. Dataset structure. It contains the three subsets, labelled on the folder name
with L, LL and P for Legitimate, Legitimate Login and Phishing respectively. The inner
sample structure is uniform for every sample, no matter the class.

are detected due to the fingerprint generated by the technologies into
the HTML code. The output file also includes the different categories
of detected technologies such as E-commerce, databases or analytics.

info.json: It contains general information about the sample, includ-
ing the collection date, the URL, the ID and if it was compliant with
any of the filters applied. Moreover, we provide extra information for
the phishing samples, including the original URL reported, an attribute
indicating whether Phishtank verified the sample or not and when it
was verified. Finally, the attribute ‘‘banned’’ described in detail later in
this section.

To store the data above, we established a simple file structure
represented in Fig. 3. We distributed the collected samples in different
directories, labelled using the class as a prefix and the sample id within
that class. For instance, the directory named as P000000 stores the
first sample corresponding to the phishing class, P000001 stores the
second sample and so on. Prefixes L and LL stands for Legitimate and
Legitimate Login, respectively, on the labelling system. The distribution
of the samples is described in the following sections.

Furthermore, we created a metadata file with relevant information
for every sample. This metadata file contains the id, the URL, the
filtering information for all subsets, and Phishtank verification status
in the phishing subset. This way, researchers can fetch samples with
a specific condition without iterating over the whole dataset. It is
also worth noticing that the collected information is independent of
external services, therefore, we did not include data from WHOIS or
other services.

3.4. Filtering

After a deep analysis of the dataset, we developed a three-filter
system (𝐹1, 𝐹2 and 𝐹3) to increase the dataset quality. Information
regarding any of the filters is provided in the metadata file, so authors
can identify which samples are affected by each filter. Since no sample
is deleted, researchers can develop their filtering methods or reach
further conclusions. We proposed three filters:

3.4.1. Filter 1: Repeated legitimate websites in phishing reports
We visited all the phishing URLs as soon as they were reported for

reaching the original online version of the website. We found many
redirections to legitimate websites; therefore those collected samples
were stored as phishing. This occurrence introduced the hypothesis of
attackers using redirections to legitimate websites in order to confuse
detection systems. We found a significant amount of legitimate domains
within the phishing class; Table 1 shows the most repeated domains.
We manually checked those Fully Qualified Domain Names (FQDNs)
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Table 1
Most repeated domain names on phishing collection.

Domain name Samples Banned

Total samples 186,000 –

*.000webhostapp.com 5702 No
*.weebly.com 4044 No
docs.google.com 2849 No
*.godaddysites.com 1055 No
*.appspot.com 903 No
*.umbler.net 799 No
storage.googleapis.com 720 No
firebasestorage.googleapis.com 642 No

2m.ma 1680 Yes
www.google.com 1312 Yes
www.imdb.com 698 Yes
www.paypal.com 626 Yes
drive.google.com 386 Yes
www.amazon.co.jp 705 Yes
login.microsoftonline.com 356 Yes
www.icloud.com 325 Yes

Fig. 4. Google Form used for phishing, where attackers ask for users and passwords
from different websites and services.

and inspected the samples to confirm their legitimacy. After this in-
spection, filter one was implemented, which banned the false positives
found on the manually reviewed FQDN list. Also, it is noteworthy
the significant number of phishing websites hosted on 000webhost,
Weebly, googleapis, GoDaddySites, appspot and umbler. These services
allow the attackers to host their website at no cost. Finally, we noticed
that some phishers used Google Forms (docs.google.com) as a lazy
method to retrieve credentials, even when Google advises not to send
passwords through them as shown in Fig. 4.

3.4.2. Filter 2: Empty and error samples
Phishing websites are ephemeral (Oest et al., 2020), and even when

we visited the website within the next five minutes of its report, some
of them were already offline and could not be retrieved. Also, a few
of the online websites were empty or displayed errors related to the
following reasons: Empty Apache directories, Cloudflare access denied
or 403/404 errors. Those samples have no content, and they could
introduce bias in the data for HTML or image detection methods.
Consequently, these samples were banned in compliance with filter two
and include both cases: Blank samples (no content) and error websites.

https://.000webhostapp.com
https://.weebly.com
https://docs.google.com
https://.godaddysites.com
https://.appspot.com
https://.umbler.net
https://storage.googleapis.com
https://firebasestorage.googleapis.com
http://www.google.com
http://www.imdb.com
http://www.paypal.com
https://drive.google.com
http://www.amazon.co.jp
https://login.microsoftonline.com
http://www.icloud.com
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Table 2
Dataset distribution, on the left the total samples collected, then 𝐹1, 𝐹2 and 𝐹3 represents the number of samples affected by each filter. On the right, the final number of valid
samples and the amount of login forms within them in %.

Subset Original 𝐹1 𝐹2 𝐹3 Valid Forms Login forms
samples samples proportion proportion

Legitimate homepage 77,629 86 (0.1%) 3648 (4.7%) – 73,895 77.70% 10.70%
Legitimate Login 61,000 1072 (1.8%) 4104 (6.7%) – 55,847 92.42% 74.26%
Phishing 186,000 24,644 (13.2%) 23,419 (12.6%) 104,762 (56.3%) 66,964 72.44% 40.80%
Fig. 5. Summary of the main stages and contributions of this work, from the sample
gathering until the model generation.

3.4.3. Filter 3: Verified phishing samples
Not all reported phishing websites were real phishing. Phishtank

implements an internal voting system used for verifying samples. This
voting process can last up to a month, so samples within that time frame
were checked regularly. For this task, we used two verification methods
available at Phishtank:

• JSON report: Phishtank publishes an hourly report which con-
tains extensive information from the last verified samples. If any
sample in our dataset appeared in the report, we transferred the
relevant information into the corresponding sample metadata,
including the verified attribute.

• API request: The rest of the samples (not verified by the JSON
report) were audited using Phishtank API. This method retrieves
less information than JSON report, but includes the verification
status of the sample.

After applying this last filter, we found out that a significant number
of unverified websites were also real phishing. Since we have a large
phishing set, we decided to work only with verified samples, represent-
ing 56.3% of the total collected phishing samples. Therefore, filter three
was only applied to the phishing subset resulting in 104,762 unverified
samples out of 186,000 that were discarded.

After the filtering process, we checked for forms on the HTML code
and login forms with password fields (sign in forms). We found login
forms on 40.80% of the phishing samples, on 74.26% of the legitimate
login samples and on 10.71% of legitimate homepage samples. Table 2
summarize the available samples in the dataset.

4. Methodology

A representation of the complete work is provided in Fig. 5. First,
the dataset is collected, organized and filtered as explained in Section 3.
Then, the proposed features are extracted in the different sets explained
in this section. Finally, experiments are presented, where we compare
the performance of the different sets and features.
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4.1. Features groups

Our approach relies upon combining four groups of features: URL,
HTML, Hybrid and Technologies. The first three groups were built
with some of the most effective state-of-the-art features (Chiew et al.,
2019) and the new ones proposed in this study. Then, we introduced
the novel technology-based features to the technologies group. We
crafted 54 features, where half of them were legacy features from
previous works and the other half were proposed to enhance detection
performance. Each feature is labelled with a short tag composed of a
letter representing the group (‘U’ for URL, ‘H’ for HTML, ‘Y’ for Hybrid
and ‘T’ for technology) and a number to identify it within each group
of features. The tag starts with an ‘N’ in the case of the novel ones.

4.1.1. URL features
The URL is a unique identifier of the website and locates it on the

Internet. Attackers have different options to deploy their phishing sites:
free hosting services, compromised websites and hired domains and
servers (Jain & Gupta, 2022b; Moore & Clayton, 2007). When using
free hosting services, phishers can customize the subdomains and the
path. In a compromised server, attackers can set a specific path to locate
the crafted phishing files. The last option implies hiring a server and
a domain name for the attack. Since attackers cannot use the same
domain name as the legitimate target (except for DNS spoofing attacks),
they try to deceive users by using typosquatting techniques (Marchal
et al., 2016), or a long deceptive subdomain that mimics the target
URL structure (Oest et al., 2018).

HTTPS protocol has been used as a relevant feature in many
phishing detection methods (Rao & Pais, 2019a; Rao et al., 2020).
The increasing availability of free SSL certificates issued by Certificate
Authorities (CA) like Let’s Encrypt,12 entailed a trend into requesting
an SSL certificate for phishing sites. The number of phishing websites
hosted under this protocol increased from 5% in the final quarter of
2016 to 83% at the beginning of 2021 (Anti-Phishing Working Group,
2021). Li et al. (2019) proved that this feature is no longer effective,
and therefore, we do not include it in our work. The final set of URL
features is described below:

Subdomain level (Chiew et al., 2019; Marchal et al., 2016;
Moghimi & Varjani, 2016; Sahingoz et al., 2019): U1. Attackers use
a long list of subdomains, leaving the first part of the URL as the
target one to deceive users by hiding the original domain name. This
technique has a higher impact on mobile devices since they can only
display the lead part of the URL due to the narrow screen (Goel & Jain,
2018). We count the number of subdomains on the URL to include it
in our feature vector.

Subdomain named ‘com’ (Sahingoz et al., 2019): U2. Phishing
URLs sometimes include ‘com’ as a subdomain to mislead the end of
the domain name and stop the user from reading the rest of the URL.
We include a binary feature set to 1 in case there is a subdomain called
‘com’.

IP address (Jain & Gupta, 2018b; Li et al., 2019; Moghimi &
Varjani, 2016; Rao et al., 2020): U3. In order to use a domain name
on the website, attackers need to buy this service. If not, the website
would only be accessible by introducing the IP address in the navigation

12 https://letsencrypt.org/.

https://letsencrypt.org/
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Fig. 6. URL length distribution in PILWD dataset. In this analysis we have only used
valid samples presented on Table 2.

Table 3
Average digits found on the URLs from the proposed subset D1.

URL part Legitimate Phishing

Subdomain 0.0080 0.52800
Domain 0.0875 0.6073
Path 2.1311 11.1501

bar. If the domain name is an IP, this binary feature is set to 1 and 0
otherwise.

Common Top-Level Domain (TLD): NU4. The APWG (Anti-
Phishing Working Group, 2021) reported a high number of websites
hosted on common TLDs, but after an analysis of the collected dataset,
we could count a high number of phishing samples hosted under un-
common TLDs. We consider the following Generic TLDs (gTLD) ‘com’,
‘org’, ‘net’, ‘edu’ and ‘gob’ and all the Country Code TLDs (ccTLD) as
ordinary. If the target URL TLD is not in the list, this binary feature is
set to 1.

Length (Gupta et al., 2021; Rao et al., 2020; Sahingoz et al., 2019):
McGrath and Gupta (2008) stated that phishing URLs were longer
compared to legitimate ones. In Fig. 6 we depict the distribution of our
filtered dataset URLs in terms of length. Most legitimate index URLs
are distributed between 15 and 40 characters and legitimate login URLs
are notably more distributed from 20 to 80 characters. Phishing URLs
distribution is closer to the legitimate login URLs; hence, this feature
is might not be valuable on the classification task between these two
classes. This analysis supports our hypothesis that detecting phishing
among legitimate login websites is more challenging than detecting
them among legitimate index websites. We counted the characters
within the subdomain (U5.1), the domain (U5.2) and the path (U5.3)
to use them as three different features for our model.

Digits (Gupta et al., 2021; Rao et al., 2020; Sahingoz et al., 2019):
Generally, phishing domain names have more digits than legitimate
ones (Varshney et al., 2017). In Table 3 we provide the analysis of
this premise over our dataset. We found that, in average, phishing
URLs tend to incorporate digits, especially in the path. We counted the
number of digits in the different parts of the URL, subdomain (U6.1),
domain (U6.2) and path (U6.3).

Special characters (Chen et al., 2020; Fahmy & Ghoneim, 2011;
Jain & Gupta, 2018b; Sahingoz et al., 2019): Phishing URLs usually
include abnormal symbols (Verma & Dyer, 2015), some of them with
a specific purpose like ‘@’. This symbol is used to append characters
to the left of the URL which is ignored by the browser parser. Nine
different symbols were picked to identify deceit techniques: ‘-’ (U7.1),
8

Table 4
Different types of links and the average appearances on proposed dataset D1.

Link type Avg.
legitimate

Avg.
phishing

Link example

External 86.83 25.01 ⟨a href = ‘‘otherdomain.com’’⟩⟨∕𝑎⟩
Internal 59.53 3.12 ⟨a href = ‘‘thisdomain.com’’⟩⟨∕a⟩
Same page (#) 4.95 3.49 ⟨a href = ‘‘#’’⟩⟨∕a⟩
Empty 0.57 0.53 ⟨a href = ‘‘’’⟩⟨∕a⟩
Null 3.86 1.84 ⟨a⟩⟨∕a⟩

‘.’ (U7.2), ‘/’ (U7.3), ‘@’ (U7.4), ‘?’ (U7.5), ‘=’ (U7.6), ‘_’ (U7.7), ‘&’
(U7.8) and ‘̃’ (U7.9). These features are set to the times each symbol
appeared on the entire URL.

Random words (Sahingoz et al., 2019): We included the detection
of random domain names (U8.2) as a feature but also the detection of a
randomly formed subdomain (NU8.1) since we observed a high number
of phishing websites on free hosting services, which provide a randomly
named subdomain to the phishers.

4.1.2. HTML features
Common free hosting services offer a low-resource server that in-

cludes limited number of CPU cores, low RAM and disk capacity.
These variables limit the attacker capabilities to store and host complex
websites. For this reason, phishing websites tend to be a single HTML
page with no other content than the login form. Menus and links on
those websites are usually empty to prevent users from leaving the
target page. Moreover, techniques employed on phishing attacks aim
to minimize the effort to build the attack. Since phishers only need the
login form to be successful in the attack, they take a screenshot of the
legitimate website and place the HTML form on top of that image (Rao
& Pais, 2019b), omitting the implementation of the rest of the website.
The complete list of HTML features is shown below:

Links (Gupta et al., 2018; He et al., 2011; Li et al., 2019; Mo-
hammad et al., 2012; Whittaker et al., 2010): Phishing websites try to
imitate a legitimate one, but almost all of them are hosted on a different
domain name. In their way to deceive users, attackers use links from the
original website resources to refine their websites while their sitemap is
very limited so are the number of internal links. Significant legitimate
websites store their resources on cloud services; therefore, the number
of external links will increase. In the same way, these websites count
on an extensive infrastructure and sitemap so the number of internal
links is also expected to be high. Finally, empty links are used by
phishing websites to simulate a wide domain content but preventing
users from leaving the phishing site simulating a malfunction when
they are clicked. These premises are confirmed on Table 4, where
the proportion between types of links in our dataset noticeable. To
differentiate between the types of links, we took the domain name
from the URL and compared it with the ones in the links of the HTML
code. We implemented five legacy features corresponding with the
types of links described in Table 4. We counted the number of external
links (H1.1), internal links (H1.2), same page links (H1.3), empty links
(H1.4) and null links (H1.5).

Body length and tags: Li et al. (2019) used a method to compute
the length of the websites by using the content of style, script, link,
comments and form tags. An extensive sample inspection revealed
that scripts and styles are similar in length between phishing and
legitimate classes. For this reason, we changed the way to measure the
length and implemented two features: First, body length (NH2.1) which
counts the number of characters within the body and second, the body
tags (NH2.2) where we count the number of HTML paired and single
tags inside the body. We analysed the potential of these features on
our dataset, and discovered that the average length of the legitimate
websites on our dataset was 104, 539.41 characters and 42, 243.36 on the
phishing websites, which is a significant difference. This difference is

also noticeable in the average number of tags found in both classes,
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the legitimate websites had 823.23 HTML tags while phishing website
are built with 258.41 HTML tags as average. This analysis confirm that
phishing websites content is, in most cases, effortless in comparison
with the legitimate one.

Base64 resources: NH3. We noticed some phishing samples with
no resource files but they contained images on the HTML. In this case,
the media content was attached with base64 codification. The reason
behind this could be the limited number of files on the webserver. We
define a binary feature that is set to 1 if the HTML have content with
base64 encoding.

4.1.3. Hybrid features
Phishing websites are developed to look legitimate in appearance.

To achieve this, attackers copy the HTML, CSS, JavaScript and images
to incorporate them into their website. However, URLs are unique and
domain names cannot be repeated, generating a naming inconsistency
between the website and the URL in most cases.

Rao and Pais (2019a) used the title, copyright and website de-
scription to identify the brand instead of using TF-IDF technique as
CANTINA+ (Xiang et al., 2011) did. Other works (Marchal et al., 2016;
Rao & Pais, 2019a, 2019b; Xiang & Hong, 2009) aim to recognize
the identity by using copyright/title in their approaches. After the
brand is determined, Xiang and Hong (2009) look for the domain name
corresponding to that brand on the Internet and compare it with the
current phishing domain name. Since our goal is to develop a third-
party independent system, we focused on the top three identifying
elements of a website: The first one is the title, which usually contains
the brand of the targeted company. The second one refers to copyright,
where the brand appears again. Last, but not least, the URL, where
the domain name is usually the brand itself. With these identifiers, we
created three levels of consistency.

The first level corresponds to a complete consistency, where copy-
right and domain name are within the title. We noticed a great number
of legitimate titles like ‘‘login’’ or ‘‘sign-in’’ since login websites are also
included in the dataset. To overcome this issue, we also considered the
copyright and domain name match to be fully consistent.

The second level of consistency is misleading, which is identi-
fied when the attacker use typosquatting techniques to deceive users
(Spaulding et al., 2016). To detect it, we used the Levenshtein distance
(Levenshtein, 1965) with a maximum distance of two between the
brand declared in the copyright and the title or domain name. We
refused the usage of any brand list since it biases the detection for
non-famous companies.

The last level is zero consistency, where all website identifiers
(title, domain and copyright) are mismatched or the copyright mark
is missing in the source code.

Once we have described the levels of consistency, we created the
following list of hybrid features used for classification:

Copyright in the HTML (Marchal et al., 2017, 2016; Xiang & Hong,
2009): Y1. Phishers objective is to spoof the brands to increase users’
confidence. We detect whether a website has the copyright disclaimer
©, or not.

Domain in HTML: NY2 Usually, legitimate websites have their
domain name in the HTML, but phishing ones are unlikely to include
their strange domain name. Users may suspect if they find names with
no relationship with the current brand or company. Instead of using the
raw HTML, we provided a novel approach and removed the comments
in case attackers placed their domain name into the comments as a
detection bypass.

Domain-Copyright: We created three specific features depending
on the relation between the domain and the copyright: First, equal
when they match completely (NY3.1). Second one is when the copy-
right is within the domain (NY3.2), a common practice in phishing
websites. Finally, we detected typosquatting between both names
(NY3.3).
9

Subdomain-Copyright: We used the same distribution as the do-
main but using the subdomain. This way, we created the same levels
of similarity: Equal (NY4.1), within (NY4.2) and typosquatting (NY4.3).
These three features aimed to detect cases where attackers use the
brand name on the subdomain to deceive users, especially on mobile
devices (Goel & Jain, 2018).

Path-Copyright: A deep analysis of the phishing data shows that
ome attackers use the brand name to identify their attacks on the same
ost. We implemented two more features, checking if the copyright
rand match one part of the path (NY5.1) or if it is within any one
f them (NY5.2).
Title-Domain-Copyright: NY6. Rao and Pais (2019a) used the title,

ebsite description and copyright as an identifier. We changed this
eature and checked whether the copyright and domain name were the
ame and if they were also in the title.
Title-Domain (Li et al., 2019): Y7. As not all the websites have

opyright on the HTML, we crafted a feature to compare these two
dentifiers: the title, which usually has the target brand, and the do-
ain, which could be the brand in the legitimate case but not in the
hishing one.
Domain in body (Li et al., 2019): Y8. As the previous domain in

he HTML, this feature only uses the HTML body. This way, metadata
s excluded, which may include information related to the domain.
Subdomain in the title: NY9. We noticed a high number of brands

nd keywords (secure, login, accounts, . . . ) that were in the title and
lso in the subdomain. We checked if any of the subdomains matched
he title of the website.

.1.4. Technology-based features
We introduced novel features based on web technology analysis to

apture relevant information for phishing detection. Phishing websites
ould be similar in appearance to legitimate websites or direct clones
rom the original pages. However, they are created with effortless
echniques and phishing kits (Bijmans et al., 2021) to save time and
evelopment costs (Yang et al., 2021). The usual method implies copy-
ng the HTML code, CSS and resources to pasting them into a raw HTML
ile (Jain & Gupta, 2018a). In the cloning process, the technologies
sed by the native websites is lost since attackers cannot clone server-
ide source code. Then, minimum changes are done to get the page
unning on a simple web server. Given this situation, followed by the
ow server resources mentioned above, we can assume most of the
hishing websites run a simple web server software like Apache or
ginx to provide the necessary files and execute the attack. In other
ords, attackers do not use complex frameworks, web technologies or
atabases due to the time-consuming tasks involved.

With the Wappalyzer report for each website, we could identify the
ost significant technologies that represent both, the phishing category

nd the legitimate one. Additionally, the number of detected technolo-
ies is also registered since it could be an identifier of effort invested
n the website. After a deep analysis of the dataset technologies, we
ame up with the following features:
Number of technologies detected: NT1. Phishing attacks are sim-

le, the fewer technologies or libraries used, the more chances to be a
hishing website.
Specific technologies: Some technologies are more frequently used

n legitimate websites than on phishing ones. To select those tech-
ologies, we introduced the total of 134 detected technologies into
electKBest library from scikit-learn and used the f_classif algorithm to
reate the technologies ranking. Results showed that the most valuable
eatures were Google Analytics (NT2), Google Tag Manager (NT3),
acebook (NT4), PHP (NT5), Apache (NT6), Google Font API (NT7),
Query Migrate (NT8), jQuery (NT9), Cloudflare (NT10) and Bootstrap
NT11).
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Table 5
Total features implemented in this work. Features are represented by an id regarding its novelty and assigned group. ‘‘#’’ stands for the number of a given item, symbol or
character.

Id Name Value Description

U1 Subdomain level Discrete # of subdomains
U2 Subdomain ‘‘com’’ Binary Checks if there is a ‘‘com’’ subdomain
U3 IP address Binary Checks if domain name is an IP
NU4 Common TLD Binary Checks if TLD is in common TLD list
U5.1 Subdomain length Discrete # of characters in the subdomain.
U5.2 Domain length Discrete # of characters in the domain.
U5.3 Path length Discrete # of characters in the path.
U6.1 Subdomain digits Discrete # of digits in the subdomain.
U6.2 Domain digits Discrete # of digits in the domain.
U6.3 Path digits Discrete # of digits in the path.
U7.1 Character ‘‘-’’ Discrete # of ‘‘-’’ in the complete URL
U7.2 Character ‘‘.’’ Discrete # of ‘‘.’’ in the complete URL
U7.3 Character ‘‘/’’ Discrete # of ‘‘/’’ in the complete URL
U7.4 Character ‘‘@’’ Discrete # of ‘‘@’’ in the complete URL
U7.5 Character ‘‘?’’ Discrete # of ‘‘?’’ in the complete URL
U7.6 Character ‘‘=’’ Discrete # of ‘‘=’’ in the complete URL
U7.7 Character ‘‘_’’ Discrete # of ‘‘_’’ in the complete URL
U7.8 Character ‘‘&’’ Discrete # of ‘‘&’’ in the complete URL
U7.9 Character ‘‘∼’’ Discrete # of ‘‘∼’’ in the complete URL
NU8.1 Random subdomain Binary Check if the any of the subdomains is a set of random characters
U8.2 Random domain Binary Checks if the domain is composed by a set of random characters
H1.1 External links Discrete # of links pointing to different domains
H1.2 Internal links Discrete # of links pointing to the actual domain
H1.3 Same page links ‘‘#’’ Discrete # of links referencing the actual page (‘‘#’’)
H1.4 Empty links Discrete # of links with no content on the ‘‘href’’ attribute
H1.5 Null links Discrete # of links with no ‘‘href’’ attribute
NH2.1 Body length Discrete # of characters within the body tags of the HTML code
NH2.2 Body tags Discrete # of paired and single HTML tags inside the body
NH3 Base64 resources Binary Checks if any of the resources is encoded on base64
Y1 Copryright Binary Checks whether the HTML code contains a copyright disclaimer
NY2 Domain in HTML Discrete # of times that the domain appears in the HTML
NY3.1 Domain is equal to copyright Binary Checks if the domain is equal to the stated copyright brand
NY3.2 Copyright is within the domain Binary Checks if the copyright is as it is in the domain
NY3.3 Typosquatting domain-copyright Binary Checks if the Levenshtein distance between the domain and copyright is less or equal to two
NY4.1 Subdomain is equal to copyright Binary Checks if any of the subdomains is equal to the stated copyright brand
NY4.2 Copyright is within a subdomain Binary Checks if the copyright is as it is in any of the subdomains
NY4.3 Typosquatting subdomain-copyright Binary Checks if the Levenshtein distance between any subdomain and the copyright is less or equal to two
NY5.1 Copyright in path words Binary Checks if the copyright is equal to any of the words in the path
NY5.2 Copyright is within the path words Binary Checks if the copyright is in a word into the path
NY6 Title-domain-copyright Binary Checks if the three elements are equal
Y7 Title-domain Binary Checks if the domain is within the website title
Y8 Domain in body Discrete # of times that the domain appeared in the whole HTML code
NY9 Subdomain in title Binary Checks if any of the subdomains is in the website title
NT1 Number of technologies Discrete # of technologies detected in the web server
NT2 Google Analytics Binary Checks if Google Analytics is within the detected analysis
NT3 Google Tag Manager Binary Checks if Google Tag Manager is within the detected analysis
NT4 Facebook Binary Checks if Facebook is within the detected analysis
NT5 PHP Binary Checks if PHP is within the detected analysis
NT6 Apache Binary Checks if Apache is within the detected analysis
NT7 Google Font API Binary Checks if Google Font API is within the detected analysis
NT8 jQuery Migrate Binary Checks if jQuery Migrate is within the detected analysis
NT9 jQuery Binary Checks if jQuery is within the detected analysis
NT10 CloudFlare Binary Checks if CloudFlare is within the detected analysis
NT11 Bootstrap Binary Checks if Bootsrap is within the detected analysis
4.2. Feature extraction and vectorization

Once all features have been defined, we used a Python3 script to
iterate over all valid samples (not banned). Each sample went over
the four developed modules (one per group) and generated a JSON
structure indicating the name of the descriptors as keys and their
correspondent values.

Then, an n-dimensional feature vector is generated for each group,
for instance, 𝑈𝑣 = [𝑈1, 𝑈2,… , 𝑁𝑈8.1], 𝐻𝑣 = [𝐻1.1,𝐻1.2,… ,𝐻3], 𝑌𝑣 =
[𝑌1, 𝑁𝑌2,… , 𝑁𝑌9] and 𝑇𝑣 = [𝑁𝑇1, 𝑁𝑇2,… , 𝑁𝑇11]. Finally, the four
ectors are concatenated to obtain the complete feature vector for
specific sample: 𝐹𝑣 = [𝑈𝑣,𝐻𝑣, 𝑌𝑣, 𝑇𝑣]. After all samples have been

processed, they were arranged into an X matrix with 𝑀𝑥𝑁 dimension,
here 𝑀 corresponds to the number of features and 𝑁 is the number of

total samples of the experiment. An overview of this process is shown
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in Fig. 7.
5. Experimentation and results

The proposed hand-crafted features were evaluated for the phish-
ing detection task. In this section, we describe the environment, the
different sets of samples used in the experiments and the obtained
results.

5.1. Datasets

In order to arrange the samples used for experimentation, we
defined four different data subsets depicted in Table 6.

The real-world scenario for phishing detection algorithms implies
the classification of login web pages, where users have to determine if a
login form is trustworthy or phishing. As seen in Table 2, only 10.70%
of the collected legitimate homepages had a login form, while in the
phishing class, these pages represent 40.80% of the samples.
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Fig. 7. An overview of the extraction and vectorization process.

Table 6
Data subsets used in different experiments. D1 and D2 are used for model training and
testing while D3 and D4 are used only for testing purposes.

Subset Legitimate
samples

Legitimate login
forms (%)

Phishing
samples

Phishing login
forms (%)

D1 66,964 61.93 66,694 40.80
D2 66,964 10.71 66,694 40.80
D3 55,847 74.26 – –
D4 62,729 10.71 – –

The proposed subset, D1, was built to represent this scenario by
using completely filtered and verified phishing samples (66,964) along
with 55,847 legitimate login samples and 11,117 legitimate homepage
samples, that combined, make a total of 66,964 instances for the
legitimate class. In the phishing class, we found login forms asking
for credentials but with no input of type password, therefore, they
were not counted as login pages. Since we cannot review the complete
set of phishing samples manually, we crafted the legitimate class so
the proportion of login forms is above the phishing one. The result is
a dataset where both classes, Legitimate and Phishing, have a similar
amount of login websites, 61.93% the first one and 40.80% the second.

D2 depicts the methodology used in most state-of-the-art papers,
where authors collect only the homepage of the most visited domains
and the phishing websites. It was built using 66,964 filtered and
verified phishing samples and 66,964 legitimate homepage samples,
which have 10.70% of login forms in comparison with the 40.80% of
the phishing one.

Subsets D3 and D4 were created to benchmark the behaviour of
different proposals when facing a different set of legitimate websites.
D3 contains only legitimate login samples, and D4 was built using
legitimate homepage samples only. To arrange fair tests with D4, we
have removed the first 11,117 samples used to build D1. Hence, D1
and D4 do not share any samples. D3 and D4 datasets have no phishing
samples, and they were used only for benchmarking purposes.

5.2. Experimental setup

Experiments are executed on an Intel Core i3 9100F at 3.6 GHz
and 16 GB of DDR4 RAM. We used scikit-learn13 and Python 3 for the
implementation of the different experiments.

We have selected nine classifiers, widely used in the literature
(Das et al., 2020; Dou et al., 2017): Support Vector Machine (SVM),
Logistic Regression (LR), Naïve Bayes (NB), Random Forest (RF), k-
Nearest Neighbour (kNN) and Adaboost (ADA). We also included two
powerful ensemble methods, LightGBM (LGBM) and XGBoost (XGB),
that achieved a great performance in other works (Li et al., 2019).

13 https://scikit-learn.org/stable/.
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We have selected the best parameters for each classifier empirically,
using k-fold cross-validation (CV). The rest of the undefined parameters
are set with the default values in scikit-learn. In the case of SVM
we have used Radial Basis Function (RBF) kernel with parameters
𝐶 = 1 and 𝑔𝑎𝑚𝑚𝑎 = 0.1. For Logistic Regression we obtained the
best results using Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(LBFGS) solver with default parameters. Naïve Bayes obtained its best
results using Bernoulli implementation with the binarize parameter
since most of our features are binary already. Random Forest was tuned
using the number of estimators, where 300 was the optimal value. k-NN
was tested using a different number of neighbours and the best results
were obtained using 𝑘 = 1. For AdaBoost, we found that 50 estimators
obtained the best results for our problem. LightGBM was configured
with 500 leaves and binary objective. Finally, XGBoost obtained its best
performance using 200 estimators.

We scale the features vector using scikit-learn’s StandardScaler over
the complete set of training samples and features, then, we applied the
obtained scaler to the test samples.

For the assessment of phishing detection models, we estimated the
classifier performance using the k-fold cross-validation technique, with
the following parameters: 𝑘 = 10, 𝑠ℎ𝑢𝑓𝑓𝑙𝑒 = 𝑇 𝑟𝑢𝑒 and 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 =
42.

For measuring the impact of the login websites, first, we train
and evaluate the classifier using 70 − 30% training and test split
with 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 42. Then, benchmark datasets, D3 and D4, are
introduced to the generated model to measure the accuracy.

5.3. Performance metrics

We assessed the performance of the phishing classification models
employing accuracy, precision, recall and F-score. We denoted the
phishing class as the positive class and the legitimate class as the
negative one.

The classification accuracy, i.e. the number of correctly classified
samples is taken as the main metric for evaluation purposes due to its
common use in phishing detection works (Rao & Pais, 2019a; Sahingoz
et al., 2019) and the fact that it is reliable on a balanced dataset like
ours. It can be computed as shown in Eq. (1)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(1)

where True Positive (TP) indicates the number of phishing samples
correctly classified whereas True Negative (TN) refers to the number
of legitimate samples correctly identified as legitimate. False Positive
(FP) represents the number of legitimate samples wrongly classified as
phishing. False Negative (FN) denotes the number of phishing samples
improperly classified as legitimate.

Precision is also a relevant metric in this field and it is defined as
the fraction of correctly classified phishing samples over the number of
items classified as phishing, as indicated in Eq. (2).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

Recall refers to the fraction of correctly classified phishing samples
over the total number of phishing instances as indicated in Eq. (3).

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (3)

Finally, the F1 score of a class summarizes the two before-
mentioned metrics as it refers to the harmonic mean of the precision
and recall and it is computed as shown in Eq. (4).

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 (4)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

https://scikit-learn.org/stable/


Expert Systems With Applications 207 (2022) 118010M. Sánchez-Paniagua et al.
Table 7
Performance results for the classification algorithms.

Algorithm Precision Recall F1-score Accuracy

XGBoost 0.978 0.971 0.974 97.42%
LightGBM 0.983 0.976 0.980 97.95%
AdaBoost 0.940 0.935 0.937 93.76%
Random Forest 0.980 0.972 0.976 97.63%
kNN 0.931 0.948 0.940 93.91%
SVM 0.955 0.942 0.948 94.86%
Logistic Regression 0.890 0.901 0.899 89.79%
Naïve Bayes 0.828 0.911 0.868 86.12%

5.4. Assessment of phishing detection models

This experimentation involves the evaluation of eight machine
learning algorithms using the proposed dataset D1, and the complete
set of 54 features displayed on Table 5.

Table 7 shows the performance of each algorithm, where we can
observe that ensemble methods outperformed the rest of the classifiers,
with a significant performance gap between them.

The highest accuracy was 97.95%, achieved by the LightGBM algo-
rithm, which is inline with results obtained by current state-of-the-art
works (Li et al., 2019; Rao et al., 2020; Sahingoz et al., 2019). On the
other hand, Random Forest, which usually brings a consistently high
accuracy among other algorithms in phishing detection tasks (Basit
et al., 2021), outperformed the remaining classifiers with an accuracy
of 97.63%.

Note that the proposed model is the confluence of two new con-
cepts on phishing detection: First, using a high number of legitimate
login websites in our dataset and second, the implementation of new
hand-crafted features plus the website technology analysis. Since the
LightGBM algorithm obtained the best accuracy, we used it to carry
out the rest of the experiments.

In terms of execution time, we split the total execution time in two:
the feature extraction time and the time elapsed in the classification
task. For this test, we used all samples in dataset D1. The proposed
model generated using the LightGBM algorithm was able to classify
one sample in 0.21 ms. on average. Feature extraction time since the
final objective is to incorporate the complete algorithm in real-time
environments. This extraction time is measured once all resources are
loaded in memory, including the URL, the HTML and the JSON file
with the technology analysis, therefore, we have discarded read time
from the disk since the ideal implementation should process the data
on the fly. Average extraction time was 56.43 ms. per sample. It is worth
noting that the average extraction time for a legitimate sample was
81.76 ms. whereas a phishing sample achieved 31.11 ms. average. The
main reason is the usage of regular expressions over extensive HTML
code.

5.5. Impact of login websites on phishing detection

One of the main contributions of this paper is the high number of
legitimate login websites in the proposed dataset that represents a real-
world scenario. To demonstrate the capabilities of our approach, we
assessed two different pipelines presented in Fig. 8. In the first one, we
trained and tested a model with phishing and legitimate homepages (D2
used for the base model), then, the same model was tested again, but
with legitimate login samples (D3 as the second dataset). In the second
pipeline, we trained and tested a new model with the proposed dataset
(D1) which contains phishing and legitimate login samples, then it was
tested again with the legitimate homepages subset (D4).

Both pipelines were executed following these steps: First, we train
and test a base model using the LightGBM algorithm with a 70 − 30%
dataset split. Results from this step are shown in blue on Fig. 8. Once
the model has been exported, we test it again with samples from the
12
Fig. 8. The first pipeline depicts results for training a model with D2 and test it with
D2 (on blue) and with D3 (on purple). The second pipeline shows results of using D1
for training and test (on blue), and testing later the same model with D4 (on purple).

second dataset, obtaining in this way, the performance results shown
in purple on the same Fig. 8.

For the first pipeline, the model learnt using the D2 dataset, which is
the common state-of-the-art approach dataset. Fig. 8 depicts the results
obtained in this experiment, where the performance of the model
trained with D2 was estimated as 98.27% in terms of accuracy. Next,
we tested that model on D3 and results showed that the base model fails
to classify legitimate login samples obtaining only 84.61% accuracy on
this task. It misclassified 18.41% of legitimate login samples (10,273
out of 55,799). Hence, models trained with legitimate homepage sam-
ples are not trustworthy when used on real-world applications due to
the high false-positive rate on their predictions for login websites.

We tested our approach in the second pipeline. We trained a phish-
ing detection model using the D1 dataset with an estimated 97.94%
accuracy. Then, we used this model for the homepage classification
task (D4 dataset) and obtained 95.11% accuracy. This experiment
demonstrates that our model focused on login websites, generalize
better for the phishing detection problem and correctly detects phishing
among any type of legitimate websites.

5.6. Feature relevance

In order to understand the impact of each feature group for detect-
ing phishing, we used the proposed dataset (D1) and evaluated, one by
one and with different combinations, the groups of features described
in Section 4. Additionally, we added the legacy group representing the
state-of-the-art features implemented in this work.

Results, in Fig. 9, show the increased performance of the model
when taking into account more groups of features. The combination
of all sets obtained 97.95% accuracy. The subsets with three groups
had a negligible difference with the complete set, reducing its accuracy
to 97.58% in case of removing the technology set, a 97.51% in case
of removing the hybrid set and 97.40% by excluding the HTML set.
Among the subsets with two groups, UH (URL and HTML groups)
obtained the best performance with 96.80% accuracy. The standalone
performance of the groups had significant differences. HTML group
could reach 93.57% accuracy followed by hybrid (92.97%), URL group
(91.47%) and finally the Tech group (83.63%). Overall results revealed
that the combination of all subsets is necessary to obtain the best per-
formance. Also, subsets where URL and HTML features were combined,
tend to perform better than the rest. Technology-based features showed
a bad standalone performance but significantly improved the detection,
adding the mentioned endurance to bypass techniques.

Finally, the 28 legacy features obtained 97.05% accuracy, conclud-
ing that the novel 27 features enhance the results by 0.90% proving
that they are helpful and provide robustness for the phishing detection
task.
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Fig. 9. Comparison of groups combination: ‘All’ represents the whole set of 54 features, ‘Lega’ denotes the legacy features and then sets are named using the letters of the groups
involved: U stands for URL group, H for HTML, Y for Hybrid and 𝑇 for Technology. For instance, UHY, represents the set composed by URL, HTML and Hybrid features.
5.7. Comparing feature importance

Li et al. (2019) used split feature importance coefficient14 to gener-
ate a descriptor ranking. We used this method with the best ensemble
model in our work, LightGBM. Fig. 10 shows the importance coefficient
for each feature on the proposed model. The novel ‘‘body length’’ and
‘‘number of tags within the body’’ were the most valuable, which is
directly related with the complexity of the websites and their content.
Then, ‘‘external links’’, ‘‘path length’’, and ‘‘domain length’’ closed the
top five and confirmed their use over the years in the phishing detection
scene. The novel ‘‘number of technologies’’ was located within the six
most valuable features, because that phishing pages are built effort-
lessly with no frameworks or additional user experience packages or
libraries. Feature ‘‘domain in HTML’’ also had a high impact on the
classification, this is probably caused by the fact that most phishing
attacks are hosted on free-of-charge servers with fixed domain names
or within compromised domains (Jain & Gupta, 2022b). Therefore, they
cannot impersonate a company while placing another domain name in
the HTML body since it arises suspicion. Novel features have proven to
aggregate resilience to the model when facing phishers’ modifications
oriented to avoid detection or clone attacks. Overall, HTML features
had a higher impact than the rest of the groups, proving that they are
an essential group for phishing detection.

5.8. Comparative evaluation

In Table 8, we compare the performance of our method with recent
works in the literature. Columns URL, Indep and Login represent works
using only URLs, the independence from external services and the
specific use of login pages in the methods. Yang et al. (2021) extended
their dataset with artificial samples generated using the ADASYN algo-
rithm. One of the main problems solved in this work is the absence of
a public standard dataset useable on any methodology. Sahingoz et al.
(2019) published an URL dataset which is a great baseline since most
legitimate URLs include the complete path. This work is the only one
that demonstrates its effectiveness in classifying legitimate login pages
and phishing. Furthermore, we used and released the most complete
and updated dataset in the literature, which allowed us to report the
performance utilizing current phishing attacks. Finally, we believe that
our dataset will allow other researchers to fairly compare their methods
against the same dataset instead of reporting results using personal
datasets.

14 https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.
LGBMClassifier.html.
13
Fig. 10. Comparison of the 12 most important features measured with lightGBM’s
feature importance.

6. Conclusions and future work

This paper addresses the problem of phishing detection with some
contributions to this field: Firstly, we introduce PILWD, a high-quality
offline dataset presenting a new phishing detection paradigm char-
acterized by containing legitimate samples mainly from login pages.
Second, a new group of features based on website technologies im-
proved detection accuracy and enhanced resilience to the detection
system. Third, we proposed additional novel features focused on the
URL and HTML, combined with other state-of-the-art ones. Finally, the
appropriate combination of the evaluated features for describing web
pages combined with the selected LightGBM classifier establishes a new
methodology that allows detecting phishing with a competitive 97.94%
accuracy on very real-case scenarios.

The presented dataset, PILWD, is an extensive and updated phishing
website dataset with 134,000 verified samples and up to 324,000 total
samples for researchers to evaluate their proposals in this field. It
is a more comprehensive benchmark for testing various approaches,
providing researchers with an easy way to compare their work and
solutions against the same dataset. The information about the collected
samples includes URL, HTML, Screenshots, Technology Analysis, files

https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
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Table 8
Comparative evaluation of phishing detection techniques.

Work Dataset year Legitimate samples Phishing samples URL Public dataset Indep Login Accuracy F1-score

Rao and Pais (2019a) 2016 1,407 2119 No No No No 99.31 N/A
Moghimi and Varjani (2016) 2013 686 3066 No No Yes No 98.70 99.0
Ding et al. (2019) 2017 5,883 2776 Yes No Yes No 98.90 99.0
Adebowale et al. (2019) 2015 6,157 6843 No No No No 98.30 98.3
Sahingoz et al. (2019) 2018 36,400 37,175 Yes Yes Yes No 97.98 98.0
Yang et al. (2021) 2018 60,000 5000* No No No No 97.50 97.3
Li et al. (2019) 2009–2017 30,873 19,074 No No Yes No 97.30 N/A
Rao et al. (2020) 2018 85,409 40,668 Yes No Yes No 94.26 95.9
Sadique et al. (2020) 2019 60,000 38,000 No No No No 90.51 N/A
This work 2020 66,964 66,964 No Yes Yes Yes 97.95 98.0
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and other metadata. The availability of this data will also prevent
researchers from the time-consuming task of data collection.

Based on our observations, we introduced a new paradigm on phish-
ing detection because we consider that the datasets to test any solution
should contain a high number of legitimate login pages. Considering
that the principal intention of phishing websites is to retrieve user data
with login or sign-up forms, we determined that they have to be present
in the legitimate class of any phishing dataset. Because of that, our
presented dataset has 61.93% of login forms in legitimate class and
40.80 in the phishing one. This approach can be easily translated to
real-world applications where users can be advised before introducing
their credentials on a login website.

Additionally, technology analysis was proposed as a new group
of features. Legitimate websites are carefully built, using a set of
technologies and frameworks to offer the best functionality possible to
users, while phishing websites are minimal, usually in a hurry and in a
straightforward way. The features from the technology group improve
detection and provide resilience against bypasses since attackers need
to build more complex and resource-consuming websites.

Finally, we collected the most significant features on the state-
of-the-art and proposed a set of novel features. Random subdomain
detection, a new method for body length measure, the identity features,
and the technology group have improved the performance compared to
models where only legacy features were used.

An additional observation is that the proposed set of 54 features is
independent of third-party services like Google Page Rank or WHOIS,
preventing delays or malfunctions caused by those services. Using the
complete set of features combined with the LightGBM algorithm, we
have obtained a high 97.94% accuracy, outperforming some of the
current state-of-the-art works.

Our approach has limitations. Due to the significant number of
samples in the dataset, isolated false positives or negatives are pos-
sible. For that reason, we implemented the filters mentioned in this
work, which can identify most of the compromised cases. Also, the
verification process of the phishing samples is entirely dependent on
PhishTank services and users; therefore, we cannot guarantee the cor-
rect verification of all the phishing samples. Also, it could be another
limitation that we proposed several new hybrid features related to
website identification using copyright, title and domain name. This
approach may affect websites with no trademarks or companies behind
them, even when we did not use any brand list.

For future works, one of the critical tasks for phishing detection is
target recognition. We have used copyright and title to address this
problem. However, brand and logo recognition methods can enhance
typosquatting features to detect phishing or deceptive content that does
not match legitimate domain names. Furthermore, since we retrieve the
images of the websites, logo detection can be developed using PILWD
samples. Finally, other researchers may find external services informa-
tion interesting for their works. Therefore, our goal for future datasets is
to retrieve favicon, SSL, WHOIS and Google Rank information to cover
all approaches on the state-of-the-art, even if they are not suitable for
real-time detection. Thus, an updated dataset could be helpful to keep
up-to-date phishing detection research.
14
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