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Abstract 

It is widely accepted that the relationship between lightning wildfire occurrence and its 

influencing factors vary depending on the spatial scale of analysis, making the development of 

models at the regional scale advisable. In this study we analyse the effects of different 

biophysical variables and lightning characteristics on lightning-caused forest wildfires in 

Castilla y León region (Central Spain). The presence/absence of at least one lightning-caused 

fire in any 4 × 4-km grid cell was used as a dependent variable and vegetation type and 

structure, terrain, climate and lightning characteristics were used as possible covariates. Five 

prediction methods were compared: a generalized linear model (GLM), a random forest model 

(RFM), a generalized additive model (GAM), a generalized additive model that includes a 

spatial trend function (GAMs) and a spatial autoregressive model (AUREG).  

A GAMs with just one covariate, apart from longitude and latitude for each observation 

included as a combined effect, was considered the most appropriate model in terms of both 

predictive ability and simplicity. According to our results, the probability of a forest being 

affected by a lightning-caused fire is positively and non-linearly associated with the percentage 

of coniferous woodlands in the landscape, suggesting that occurrence is more closely associated 

with vegetation type than with topography, climate or lightning characteristics. 

The selected GAMs is intended to inform the Regional Government of Castilla y León (the fire 

and fuel agency in the region) regarding identification of areas at greatest risk so it can design 

long-term forest fuel and fire management strategies. 

Keywords: lightning-caused fires; spatial generalized additive models; lightning fire 

occurrence; spatial effect 
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200-character summary 

A GAMs that included the percentage of coniferous woodlands as the covariate best explained 

and predicted long-term lightning wildfire occurrence in Central Spain. 
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1. INTRODUCTION 

Wildfires have significant effects on life, property and the environment worldwide. Highly 

damaging wildfire events have caused a major loss of human lives and of forested ecosystems 

in Mediterranean Europe in recent decades (Molina-Terrén et al., 2019; Moreira et al., 2011). 

A critical component of wildfire risk is a better understanding of both natural (lightning) and 

human fire ignition sources. Fire risk estimates are therefore crucial to pre-empt and reduce the 

negative impact of wildfires. This requires the development of occurrence likelihood models in 

order to understand and estimate risk. 

Wildfires caused by lightning (lightning-caused wildfires) are a particularly important problem 

in boreal forests, where they represent over 70% of the total burned area (Flanningan & Wotton, 

1991; McGuiney, Shulski, & Wendler, 2005). In recent years in the Mediterranean basin, 

although not the main cause, lightning has become a more frequent cause of wildfires (Vázquez 

& Moreno, 1998). In the 2001-2010 period, for instance, around 25% of wildfires that burned 

more than 3000 ha were caused by lightning (MAGRAMA, 2012). Nevertheless, due to the 

greater significance of people-caused wildfires in Spain and other Mediterranean countries, 

little attention has been paid to the modelling of lightning-caused wildfires. 

Wildfires are a major disruptive agent in the natural environment of Castilla y León in central 

Spain, among the largest self-governed regions in Europe, with a total of 94,213 km2 (nearly 

20% of Spanish territory), of which some 50,000 km2 are forested.  The consequences of 

wildfires in terms of risks to the population and economy have been exacerbated in this region 

in recent decades by important socioeconomic transformations, including land abandonment 

and urban pressures on forested areas (the wildland-urban interface), resulting in an increase in 

wildfire spread and severity and in vulnerability. On average, 8% of the wildfires that occur in 

this region are due to lightning strikes during thunderstorms, although in some areas they have 

comprised more than 50% of the total wildfires in a year (Martínez, Martínez-Vega, & Martín, 
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2004). Additionally, in some years lightning-caused wildfires account for more than 20% of the 

total burned area in the region (MAGRAMA, 2012).  

It is widely accepted that the variables that potentially influence the spatial distribution of 

lightning-caused fires are related to vegetation type and structure, terrain, weather and lightning 

characteristics (Krawchuk, Cumming, Flannigan, & Wein, 2006). In comparison to human-

induced fires in central Spain, lightning-induced fires are less frequent and fire rotation periods 

are therefore usually high; lightning fires also usually affect woodlands more and start under 

different meteorological conditions (Vázquez & Moreno, 1998). 

Lightning-caused fire occurrence models can be classified as short-term or long-term on the 

basis of temporal resolution (Chuvieco, Salas, Carvacho, & Rodríguez-Silva, 1999). Short-term 

wildfire occurrence models are largely dependent on weather conditions, which directly affect 

fuel moisture and lightning activity. Long-term wildfire occurrence models refer to more 

permanent factors associated with fire ignition such as topography, vegetation composition and 

structure, climate and lightning patterns (San Miguel-Ayanz et al., 2003). Identifying areas of 

high lightning-caused fire risk in short time scales (e.g., daily) can assist fire management 

agencies in shifting resources between localities to ensure firefighting needs are met (Chow & 

Regan, 2011). Long-term assessment focuses on investigating the structural factors that affect 

the fire proneness of an area and so helps define prevention strategies, e.g., identifying areas 

where fire detection efforts or fuel treatments need to be intensified or determining the long-

term allocation of firefighting resources (Oliveira, Oehler, San Miguel-Ayanz, Camia, & 

Pereira, 2012; San Miguel-Ayanz et al., 2003). 

Prevention activities in Castilla y León are, inter alia, focused on (i) landscape vigilance from 

lookout towers with the aim of minimizing time to detection of incipient wildfires, (ii) 

management of surface fuels through shrub mastication and prescribed burning, and (iii) 

management of crown fuels through thinning and pruning. Due to financial constraints, the 
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latter two fuel management approaches are not implemented on an extensive scale (area-wide) 

but are strategically focused on certain stands or strips. Long-term identification of areas prone 

to lightning ignition is therefore useful for operational purposes, as it ensures more effectively 

focused prevention actions. Additionally, both state- and regional-level regulations advocate 

for long-term fire risk assessment. Spanish forestry legislation (specifically, Law 43/2003) 

states that each regional ministry of the environment must declare areas of high fire risk as those 

with extra fire frequency or additional severity, and must adopt special fire prevention 

measures, while a main goal of the regional civil protection plan for forest fire emergencies in 

Castilla y León (INFOCAL) is zoning according to long-term fire risk arising from natural and 

human causes.  

To date, parametric regression techniques such as generalized linear modelling (GLM) have 

been widely used to explore critical factors involved in lightning-caused fires and to predict fire 

occurrence (Chuvieco et al., 2010; Nieto, Aguado, García, & Chuvieco, 2012; Pacheco, 

Aguado, & Nieto, 2009; Vecín-Arias, Castedo-Dorado, Ordóñez, & Rodríguez-Pérez, 

2016). Advances in computer-assisted statistical analysis techniques allow other statistical 

methods to be more easily implemented, such as random forest models (RFM) (Arpaci, 

Malowerschnig, Sass, & Vacik, 2014; Guo et al., 2016; Oliveira et al., 2012; Satir, Berberoglu 

& Donmez, 2016; Vecín-Arias et al., 2016), generalized additive models (GAM) (Brillinger, 

Preisler, & Benoit, 2003; Brillinger, Preisler, & Benoit, 2006; Vilar, Woolford, Martell, & 

Martín, 2010; Woolford et al., 2016) and spatial autoregressive models (AUREG) (Beron & 

Vijverberg, 2004; LeSage, 2000; McMillen, 1992; Pace & Barry, 1997). 

Since spatial correlation of observations plays an important role in explaining lightning-caused 

fire occurrence, it is important to define suitable strategies that include these. One way is to 

explicitly include planar coordinates as covariates in the models. Another way – in GAM-based 

methods – is to include a non-parametric spatial trend function with planar coordinates as 
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arguments in the model (Woolford et al., 2011). Alternatively, spatial autoregressive models 

can tackle the issue of spatial correlation by including not only the values of the dependent 

variable for each observation but also for the surrounding area. This is normally accomplished 

by means of spatial weight matrices that contain information on the spatial relationship between 

observations (Martinetti & Geniaux, 2017; Wilhelm & Godinho de Matos, 2013). 

Although GAM-based methods that include a spatial trend function (spatial GAM, abbreviated 

hereinafter as GAMs) have previously been used for the evaluation of wildfire occurrence 

(Brillinger et al., 2003; Brillinger et al., 2006; Vilar et al., 2010; Woolford et al., 2011) and for 

lightning-caused wildfire forecasting (Read, Duff, & Taylor, 2018), this approach has not been 

used to model and predict lightning-caused fires.  

Our aim was to demonstrate the usefulness of GAMs in modelling and predicting long-term 

lighting-caused fire risk at the regional scale in Castilla y León. Theories and models regarding 

the main factors affecting lightning-caused fires reveal that the relative importance of these 

factors can vary according to the studied area (Krawchuck et al., 2006; Little, McKenzie, 

Peterson, & Westerling, 2009), for which reason the development of models at the regional 

scale is advisable (Collins, Price, & Penman, 2015; Nieto et al., 2012; Pachecho et al., 2009; 

Reineking, Weibel, Conedera, & Bugmann, 2010).  

We compared GAMs predictions that included spatial effects with GAM, GLM and RFM 

predictions, which consider longitude and latitude as independent covariates, and with AUREG 

predictions that take into account spatial correlation through spatial weight matrices. 

Alternative methods such as support-vector machines, naïve Bayes classifiers and artificial 

neural network algorithms could also be applied to binary response data. However, our selected 

models are representative of the state-of-the-art in regression for binary responses and so are 

appropriate to the purpose of this research. In reporting our findings, we also describe the 
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practical usefulness of GAMs predictions for fuel and fire management in the Castilla y León 

region. 

2. MATERIAL AND METHODS 

2.1. Study area 

The studied area was Castilla y León, an autonomously governed region of Spain located in the 

centre-north of the Iberian Peninsula (Fig. 1). The region mainly consists of a plateau 

surrounded by several mountain chains (highest peak 2,648 m and mean altitude 830 m). Mean 

annual rainfall, conditioned by the orography, varies between 1,000 mm for the northern 

mountain ranges and 400 mm for the plateau (Nafría et al., 2013). Average annual temperature 

is around 11°C. Forests (including woodland and shrubland) cover over half the region (51%), 

cropland accounts for 31.4% (mainly the central plateau) and the remaining 17.6% is 

pastureland for extensive livestock farming. The predominant woodland species are Quercus 

ilex L. (15.1% of the region), Quercus pyrenaica Willd. (15.0%), Pinus pinaster Aiton (8.6%) 

and Pinus sylvestris L. (7.0%) (Consejería de Medio Ambiente, 2005). 

2.2. Data sources  

Data on lightning, rainfall, land cover, topography and forest fire ignitions were sourced from 

several state bodies in Spain.  

Lightning data was provided by the Spanish Meteorological Agency (AEMET), whose 

lightning detection network (LDN) includes 15 lightning sensors in Spain and 4 in Portugal 

(Fig. 1). These IMPACT (Improved Performance from Combined Technology) sensors, 

equipped with temporal GPS technology, form part of other worldwide LDNs (Pérez-Puebla, 

2004). The LDN detects and locates ground-strike locations of cloud-to-ground lightning 

flashes, but does not provide data on intra-cloud discharges. For the entire Iberian Peninsula, it 
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was reported that the detection efficiency of the LDN (the probability of detection) (Nagh, 

Murphy, Schulz, & Cumminss, 2005) is currently greater than 90% and that the median 

lightning location error is around 0.5 km (Pérez-Puebla, 2004). Lightning flashes are 

characterized in terms of the total number of strikes, strike duration, strike polarity, current peak 

for both positive and negative strikes, location (longitude and latitude) and estimated error 

ellipse.  

Daily rainfall data was obtained from 395 AEMET weather stations and 57 Agricultural 

Technological Institute of Castilla y León (ITACyL) weather stations (a total of 452 stations).  

Detailed information on land cover was obtained from the Spanish digital forestry map of the 

studied area (Ministerio de Medio Ambiente, 2003), in which the minimum plot size is 2.25 ha 

for forested areas and 6.25 ha for other land uses (Robla-González, Vallejo-Bombín, De La 

Cita-Benito, & Lerner-Cuzzi, 2009). Topographic data (altitude, slope and aspect) were 

obtained from a digital terrain model with a resolution size of 200 × 200 m, provided by the 

Spanish National Geographic Institute (IGN). Finally, forest fire data was obtained from the 

Spanish Ministry of Agriculture, Fishing, Food and the Environment (MAPAMA), which 

provides information on ignition point coordinates, the date and time of detection, the cause of 

the ignition and the surface area burned by each fire. The database contains data on all forest 

fires that occurred in Spain, regardless of their final size.   

2.3. Data pre-processing 

The study covered the five months of May to September for the 11 years 2000-2010, during 

which a total of 662 lightning-caused fires with available planar coordinates were reported for 

Castilla y León. Most of the thunderstorms in this region occur between May and September, 

when temperatures foster the development of convection processes (Rivas-Soriano, de Pablo, 

& Tomas, 2005). In consequence, the vast majority of lightning-caused wildfires in Castilla y 

León are recorded during that extended summertime period (Vecín-Arias et al., 2016). 
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Fig. 2 shows the number and distribution of lightning-caused fires across size classes. Most of 

the fires burned less than 1 ha (i.e., they were extinguished almost as soon as they began) and 

fire-burned areas size measured on average between 0.01 ha and 1303.83 ha. 

Using the ArcGIS software (v10.2; ESRI Inc., Redlands, CA, USA) all available lightning, 

rainfall, land cover, topography and forest fire data were georeferenced in a map grid with a 

spatial resolution of 4 × 4 km (yielding 6,253 grid cells). This grid, the finest resolution 

advisable with the currently available data, was mainly limited by interpolated rainfall and 

lightning location error. The distribution of the 662 reported lightning-caused fires within this 

grid is shown in Fig. 3. In the studied period, only one wildfire occurred in 452 cells, whereas 

2 wildfires occurred in 75 cells, 3 wildfires occurred in 16 cells and 4 wildfires occurred in just 

3 cells.  

Fig. 3 also shows the spatial distribution of flash density (flashes km−2 year−1) in Castilla y León 

for the period 2000-2010. A total of 533,173 flashes were considered. The number of 

thunderstorm days (days in which at least one flash was recorded) and dry thunderstorm days 

(thunderstorm days with daily rainfall of 2.5 mm or less) (Álvarez-Lamata, 2005; Rorig & 

Ferguson, 1999) were counted for all the grid cells in the map. To calculate daily rainfall for 

each grid cell, a continuous rainfall map was computed by spatially interpolating daily rainfall 

data from the 452 weather stations using a simple co-kriging methodology, which calculates 

rainfall for each grid cell using a multivariate spatial model, and elevation as a related secondary 

attribute (Carrera-Hernández & Gaskin, 2007; Jarvis & Stuart, 2001). 

Aspect and slope were derived from the digital terrain model using standard algorithms 

(Burrough & McDonnell, 1998). To be able to deal with more homogeneous types of land 

cover, Spanish forestry map information was reclassified in the following 7 groups: coniferous 

(patches dominated by pure coniferous stands), broadleaf (patches dominated by pure broadleaf 
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stands), mixed (patches with a mixture of coniferous and broadleaf trees), shrubland, cropland, 

pastureland and non-combustible areas (urban areas, arid areas, rock formations, wetlands, etc).  

Table I shows the list of variables computed for each 4 × 4-km grid cell.  

2.4. Model fitting 

We compared five different models:  GLM, RFM, GAM, GAMs and AUREG. As mentioned 

above, GAMs refer to a GAM that includes a spatial trend function, and AUREG to a spatial 

probit autoregressive model. As our aim was to demonstrate the usefulness of the GAM-based 

approach to modelling lightning-caused fire occurrence, we will only describe this technique in 

detail.   

A GAM is a non-parametric generalized linear model with a linear predictor involving a sum 

of smooth functions of covariates (Wood, 2006). These smooth functions are used as a link 

function to set up an additive relationship between the mean response and the covariates 

(Guisan, Edwards, & Hastie, 2002; Wood & Augustin, 2002). 

In our study, the binary response variable 𝑌𝑌 was defined as the occurrence of at least one 

lightning-caused fire within each grid cell in the study period; i.e., lightning fire occurrence was 

modelled in binary form (the absence or presence of fires, coded 0 and 1, respectively). A binary 

dependent variable (presence/absence) is justified given that lightning-caused fires are rare 

events in the region: more than one fire occurred in only a third (31.7%) of the cells where 

lightning-fires occurred over the 11-year study period. 

The potential predictors or covariates 𝑋𝑋 = �𝑋𝑋1, … ,𝑋𝑋𝑝𝑝� are those described in Table I. In spatial 

data, the variables (𝑋𝑋,𝑌𝑌) have a spatial location given by 𝑠𝑠 = (𝑠𝑠1, 𝑠𝑠2), where s1 denotes 

longitude and s2 denotes latitude. In our particular case, s1 and s2 are given in projected UTM-

30N coordinates (reference system ETRS89). 
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Since the dependent variable followed a binomial distribution, we used a logistic GAM model 

with a binary response given by: 

( ) ( ) ( )( )
( ) ( ) ( )( )
1 2 1 1

1 2 1 1

,
( 1| , )

1 exp ,
p p

p p

exp g s s f X f X
P Y
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+ + + +
= =
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where 𝛼𝛼 is a constant, 𝑔𝑔(∙) is a smooth function of bivariate spatial effect, and 𝑓𝑓𝑗𝑗(∙) (𝑗𝑗 =

1, … , 𝑝𝑝) are smoothing splines that account for non-linear relationships between the probability 

of a lightning-caused fire occurrence and the explanatory variables 𝑋𝑋𝑗𝑗. Note that identification 

is guaranteed by introducing the constant 𝛼𝛼 into the model, while zero mean is required for the 

spatial effect 𝑔𝑔 and for the partial functions 𝑓𝑓𝑗𝑗(∙)(Hastie & Tibshirani, 1990). 

The model represented by Eq. (1) is referred to as GAMs, which differs from a GAM in that it 

includes planar coordinates together as model inputs through the function g (s1, s2). Both GAM-

based models were fitted with the gam function in the mgcv package from the statistical 

environment R (R Development Core Team, 2016). Using this function, and given a 

sample {𝑠𝑠𝑖𝑖,𝑋𝑋𝑖𝑖,𝑌𝑌𝑖𝑖}𝑖𝑖=1𝑛𝑛 , where n is the sample size, we were able to estimate the components 𝛼𝛼�, 

𝑔𝑔� , 𝑓𝑓𝑗𝑗 of the model in Eq. (1). 

Functions 𝑔𝑔(∙) and 𝑓𝑓𝑗𝑗(∙) were estimated using cubic splines smoothers (Hastie & Tibshirani, 

1986) of the form:  
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with , 1,...,j j kξ =  as the knots, i.e., points where the cubic polynomials join. 

The bivariate term g (s1, s2) in Eq. (1) is approximated using 2D splines that can be described 

in a similar way as in Eq. (2), except that a 16-coefficient cubic polynomial is used with terms 

of the type Xα Yβ, with α = 0,1,..,3  and  β = 0,1,..,3. 
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GLM models were fitted with the glm function from the statistical environment R. For the RFM 

and AUREG models we used the ranger and ProbitSpatial R packages, respectively. 

GLM and GAM models follow a logistic structure similar to that reflected in Eq. (1) for the 

GAMs model. RFM is an assembly of decision trees that follows a different strategy that 

consists of recursively dividing the p-dimensional space into regions according to rules aimed 

at selecting the most informative variables. AUREG follows a spatial autoregressive probit 

model, which is comparable to the logistic model, although the link function is the inverse of 

the standard normal distribution instead of the logistic function. The mathematical expression 

for a spatial autoregressive model is: 

 1 1 ... p PY Y X X Yρ β β ε ρ ε= + + + + = + +W W Xβ   (3) 

where W (𝑛𝑛 × 𝑛𝑛), n – the number of observations – is a weight matrix that captures the spatial 

dependence between neighbouring observations.  W values are zero in the diagonal, and rows 

are normalized weights of the form 𝑤𝑤𝑖𝑖𝑖𝑖 = 1/𝑚𝑚𝑖𝑖 , where 𝑚𝑚𝑖𝑖 is the number of observations 

contiguous to i. Elements in the ith row of W not defined as contiguous to observation i are 0. 

( ), with 1,absρ ρ <  is a scalar parameter that measures the strength of the spatial dependence (

0ρ =  means no spatial dependence). 𝜀𝜀 :𝑁𝑁 (0,𝜎𝜎2) is the error term. 

In the Bayesian approach to autoregressive models, Y in Eq. (3) is replaced by an unobserved 

latent variable Z related to the observable binary dependent variable as follows: 

( 1, if 0; 0, if 0)Y Y Z Y Z= ≥ = < .  The idea is to decompose the posterior distribution of the 

parameters, given the data Y, 𝑝𝑝 �𝑍𝑍, β, ρ 𝑌𝑌�, into a set of conditional distributions for each 

parameter in the model. A Markov chain Monte Carlo (MCMC) scheme is usually used to 

estimate the posterior drawing samples from prior distributions of Z, β and Y (Wilhelm & 

Godinho de Matos, 2013). MCMC assumes that the form of a probability density can be 
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approximated from a large sample using kernel density estimators or histograms (LeSage & 

Pace, 2009). 

2.5.Prediction evaluation 

We used receiver operating characteristic (ROC) curves (Swets & Pickett, 1982) to estimate 

the probability of false positives and false negatives in the predictions made by the five tested 

models. The ROC curve is a plot, for all possible cut-points, of sensitivity (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, the instances 

correctly classified as positive as a percentage of the total number of true positives) versus 

1-specificity (S𝑝𝑝𝑝𝑝𝑝𝑝, the instances correctly classified as negative as a percentage of the total 

number of true negatives). From the ROC curves we calculated the F score statistic in order to 

obtain a threshold (cut-point) that yielded a measure of the effectiveness of the predictions for 

unbalanced data (such as those that concern us here) (Van Rijsbergen, 1979). F score was 

selected because it is less influenced by unbalanced data, which is the case here. The general 

formula of the F score statistic for positive real δ is: 

𝐹𝐹δ = �1 + δ2� ∙
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆

�δ2 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� + 𝑆𝑆𝑆𝑆𝑆𝑆
 (4) 

where Prec (precision) is defined as the ratio between instances correctly classified as positives 

and all the positive classified instances (whether or not correctly classified).  

We used δ =1 and hence, the F1 score was calculated as 𝐹𝐹1 = 2 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙𝑆𝑆𝑆𝑆𝑆𝑆
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑆𝑆𝑆𝑆𝑆𝑆

, i.e., the harmonic 

mean between precision and sensitivity. The larger the F1 score, the better the prediction, taking 

into account both precision and sensitivity. Although we gave the same weight to precision and 

the sensitivity in calculating F1 (we set δ = 1), it would also be possible to assign different 

weights to each just by changing the δ value.  

Finally, using the bootstrapping technique (random sampling with replacement), we estimated 

the sample distributions for the F1 score and plotted these distributions using boxplots. In each 

repetition, 70% of the data (4,377 grids) was used for model fitting and the remaining 30% 
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(1,876 grids) was used to calculate the F1 score. Accordingly, as many models were fitted as 

bootstrap repetitions were implemented. 

 

2.6. Variable selection 

The goal with variable selection was to determine the best subset of 𝑞𝑞 (𝑞𝑞 ≤ 𝑝𝑝) covariates to 

include in the model to ensure the best predictive capacity. A larger number of covariates does 

not necessarily lead to better models for two main reasons. Firstly, the resulting models are 

difficult to interpret, as well as being prone to collinearity and overfitting. Secondly, because 

of the bias-variance trade-off, the inclusion of irrelevant covariates would increase the variance 

of the estimated coefficients, resulting in a loss of predictive ability (higher variability in a 

prediction for any given data point). 

We opted for a two-stage variable selection algorithm to select the best prediction model. The 

best combination of 𝑞𝑞 variables was first selected using a step-by-step procedure and the 

number of covariates to be included in the model was then determined. 

In the first step, given a number 𝑞𝑞(𝑞𝑞 ≤ 𝑝𝑝) of covariates, the objective was to find the 

combination of 𝑞𝑞 variables that provides the maximum F1 score. Let 𝐹𝐹1𝑗𝑗1,…,𝑗𝑗𝑗𝑗(𝑗𝑗1 < 𝑗𝑗2 < ⋯  <

𝑗𝑗𝑞𝑞) be the 𝐹𝐹1 score (computed as explained above), obtained using only 𝑞𝑞 covariates and 

leaving out the remaining variables. We use 𝑗𝑗1, … , 𝑗𝑗𝑞𝑞 as subscripts, instead of 1, … , 𝑞𝑞,  to 

indicate that the order does not have to be consecutive. Based on this metric, the best 𝑞𝑞 

predictors 𝑋𝑋𝑗𝑗1, … ,𝑋𝑋𝑗𝑗𝑗𝑗 could then be selected. The vector of indices �𝑙𝑙1, … , 𝑙𝑙𝑞𝑞�, which indicates 

which covariates are included in each model of q covariates, was obtained by maximizing: 

�𝑙𝑙1, … , 𝑙𝑙𝑞𝑞� = argmax
𝑗𝑗1,..,𝑗𝑗𝑞𝑞

𝐹𝐹1𝑗𝑗1,..,𝑗𝑗𝑞𝑞  (5) 

For simplicity sake, we denote the value of the F1 score obtained for the combination of q 

variables as 𝐹𝐹1(𝑞𝑞) = 𝐹𝐹1𝑙𝑙1,..,𝑙𝑙𝑞𝑞, while, 𝑙𝑙1, … , 𝑙𝑙𝑞𝑞 are the indices of those variables that maximize 
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the F1 score. Once the best combination of 𝑞𝑞 predictors was obtained, the optimal number of 

covariates to be included in the model was selected by setting the value for q that 

maximized 𝐹𝐹1(𝑞𝑞). In order to shorten the process, we did not test all the models for each 

combination of q=1,…,p variables, but limited the study to a maximum of q = 6 (as will be 

seen, fewer variables result in the most appropriate models).  

Finally, the model selected was not that with the maximum F1 score, but the model that, having 

a F1 score statistically comparable to the maximum, has the minimum number of predictors. 

This was done by determining a confidence interval of the type [ ],a ∞  for the difference 

𝐹𝐹1(𝑞𝑞) − 𝐹𝐹1(𝑞𝑞 − 1) by means of bootstrapping. The simplest model (that with the minimum 

value of q) that was statistically comparable to other more complex models (with a greater value 

of q) was that corresponding to the maximum value of q for 𝑎𝑎 > 0.  

In order to evaluate how clustered or dispersed the errors were for the tested methods, the spatial 

correlation of errors (misclassified grid cells) was evaluated by computing the average nearest-

neighbour distance index (ANNDI), which reflects the ratio of the observed mean distance to 

the expected mean distance (average distance between neighbours in a hypothetical random 

distribution). It can be proved that the nearest neighbour distance between observations follows 

a Rayleigh distribution, which is closely related to the normal distribution (Smith, 2016).  It is 

also easy to prove that the expected mean distance is given by 0.5
eD

N
A

= , where N is the 

number of observations and A is the area of the minimum rectangle enclosing all the cells (i.e., 

the denominator represents the point density) (Smith, 2016). If ANNDI is less than or greater 

than 1, then the pattern trends toward clustering or dispersion, respectively. The interval range 

is 0 to 2.14.  
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3. RESULTS AND DISCUSSION 

Table II shows the maximum F1 scores for the different models and predictors (q =1 to 6) and 

the corresponding sensitivity, specificity and CCR (the correct classification rate). For the same 

number of predictors, GAMs outperformed GLM, GAM and RFM (see also Fig. 4, which shows 

the larger F1 scores obtained for the GAMs, with 𝑞𝑞 = 1 to 6 covariates for the test dataset). At 

this point, it must be noted that GAMs starts from a model with s1 and s2 as covariates, so 

strictly speaking, for this specific model, q equals q+2 in Table II. The CCR values obtained 

compare favourably with those for other models in the lightning-caused wildfire occurrence 

literature in Spain (Castedo-Dorado, Rodríguez-Pérez, Marcos-Menéndez, & Álvarez-

Taboada, 2011; Chuvieco et al., 2010; Pacheco et al., 2009; Vecín-Arias et al., 2016). 

According to the F1 scores, the top-performing model was GAMs with five covariates, namely, 

the percentage of coniferous woodlands (%coniferous), the percentage of agricultural crops 

(%crops), the percentage of north-facing aspects (%North), the percentage of mixed forests 

(%mixed), and the percentage of non-combustible areas, i.e., urban, mining, water, waste 

disposal sites, etc. (%other). For the 30 combinations of methods and covariates tested, 

%coniferous and %crops were the most common covariates, being present in 29 and 18 

combinations, respectively.   

Fig. 5 shows the partial dependence plots for the explanatory variables included in the GAMs 

for q = 1 to 5. The size of the confidence intervals is associated with the number of observations 

(note how the width of the confidence intervals increases as the number of observations of the 

covariates decreases). Although, for the same covariate, slight differences can be observed in 

the trends of the partial dependence plots depending on q, a consistent pattern is evident 

regarding each influencing factor across all the models.  

According to Fig. 5, the percentage of coniferous woodlands is positively associated with the 

probability of lightning-caused fires; furthermore, this relationship is non-linear, so a non-
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parametric model is justified. The probability of lightning-caused forest fires also increases 

faster and more precisely for low values of this covariate. Although lightning ignition is not a 

fully understood process, most studies indicate that the object of strikes is generally a tree 

(Larjavaara, Pennanen, & Tuomi, 2005; Mäkelä, Karvinen, Porjo, Mäkelä, & Tuomi, 2009), 

with fire ignition typically occurring on the ground (in litter, duff, mosses, etc) in sheltered sites 

near the tree bole that acts as the conductor of the lightning discharge (Larjavaara et al., 2005; 

Latham & Schlieter, 1989). Duff and litter  favour fire ignition, while understory shrub species 

or fine woody debris favour fire spread (Mäkelä et al., 2009; Latham & Schlieter, 1989). This 

fact could explain why lightning-induced fires affect a greater proportion of woodlands than 

human-induced fires (Vázquez & Moreno, 1998). 

For temperate European countries lightning fires are more likely to occur in coniferous and 

mixed coniferous forests, as reported for Switzerland (Conedera, Cesti, Pezzatti, Zumbrunnen, 

& Spideni, 2006; Pezzatti, Bajocco, Torriani, & Conedera, 2009; Reineking et al., 2010) and 

Austria (Müller et al.,2013; Vacik & Müller, 2017). In contrast, fires caused by lightning tend 

to be underrepresented in broadleaf stands such as those dominated by chestnut, oak or beech 

trees. The greater probability of lightning-caused fires associated with conifer stands has also 

been reported in Spain (Castedo-Dorado et al., 2011; Nieto et al., 2012; Pineda, Montanyà, & 

van der Velde, 2014). According to some authors the thicker litter and duff layer and the higher 

flammability associated with coniferous species compared to broadleaf species are postulated 

to be key causes (Conedera et al., 2006; Flannigan & Wotton, 1991; Latham & Williams, 2001). 

Additionally, an abundance of highly flammable species in the understory of conifer stands of 

Erica sp., Genistella tridentata, Calluna vulgaris, etc. may aid fire propagation after ignition, 

contrary to what usually occurs in broadleaf forests (Bond & Van Wilgen, 1996). 

The moderately positive effect of the percentage of mixed woodlands on lightning fire 

occurrence is probably related to the presence of coniferous species in these stands (Reineking 
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et al., 2010). For mixed temperate forests, it has been reported that lightning discharges tend to 

strike the tallest conifer trees, which act as ground terminals and thus increase the likelihood of 

fire occurrence (Yanoviak et al., 2015). 

The negative effect of the percentage of agricultural crops and non-combustible areas (urban 

areas, arid areas, rock formations, wetlands, etc) would point to a low probability of lightning 

fire ignition and spread in areas with a low percentage of forest and natural cover. This result 

could be expected a priori, given the low flammability and combustibility of this type of land 

cover. In a countrywide study for Spain, the percentage of wildland area at the municipality 

level has been reported as the most important factor to discriminate non-fire-prone from fire-

prone areas (Martínez-Fernández, Chuvieco, & Koutsias, 2012).  

The negative effect of the percentage of north-facing aspects (i.e., less likelihood of fire 

occurrence when the percentage of landscape facing north is high)  also seems intuitively 

comprehensible, as fires occurring on terrain facing suntraps are more likely to spread due to 

higher solar incidence and comparatively drier fuel (Vankat, 1985; Vasconcelos, Silva, Tomé, 

Alvim, & Pereira, 2001). This feature has elsewhere been reported to increase ignition 

likelihood (Vankat, 1985). 

Fig. 6 shows boxplots of F1 scores for each method and number of covariates (q =1 to 6). To 

obtain a quasi-steady maximum F1 score, visually it would seem that only two covariates were 

required for all the methods.  

These results were statistically tested by bootstrapping a confidence interval of the type [ ],a ∞  

for the difference 𝑎𝑎 = 𝐹𝐹1(𝑞𝑞) − 𝐹𝐹1(𝑞𝑞 − 1). The best models for q and q-1 were obtained for 

the same bootstrap samples during training. F1 scores were then calculated using the same 

bootstrap samples from the test dataset. Fig. 7 shows F1 score differences for the best model as 

a solid line, while the lower limit of the confidence interval [ ],a ∞ for the differences is 

represented by a dashed line. The minimum number of statistically significant covariates in 
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each model corresponded to the first value of q before 0a <  (i.e., the value of q after the dashed 

line crossed the red line). Note that GLM, GAM, GAMs and AUREG only needed one covariate 

to obtain an F1 score comparable to that of the other models with 𝑞𝑞 > 1. Conversely, RFM 

required two covariates to obtain the best solution.  

Boxplots of F1 scores for each method according to the number of covariates are depicted in 

Fig. 8. Once again, it can be observed that the best results correspond to the GAMs, irrespective 

of the value of q. 

To analyse the statistical significance of these results, we repeated the procedure used to 

determine the minimum number of covariates. Accordingly, we determined confidence 

intervals [ ],a ∞  for the increment in F1 = 𝐹𝐹1(model1) − 𝐹𝐹1(model2), where model1 has q 

covariates and model2 q-1 covariates. From Fig. 9 it is clear that there was a significant 

increment in F1 scores when the GAMs was compared to the other methods, regardless of the 

number of covariates. Note that the fact that GAMs includes two covariates (planar coordinates) 

more than all the other models for the same value of q does not affect the model choice or 

qualitatively change the interpretation of the results, given that GAMs outperforms the 

remaining models even when it contains two or more additional covariates. 

The GAMs with just one covariate, namely the percentage of coniferous woodlands, was finally 

selected as the most appropriate model for prediction purposes – as the simplest model with an 

F1 score comparable to other models with 𝑞𝑞 > 1. This, the most informative predictor, confirms 

the importance of fuel in the occurrence of lightning-caused fires, as has been documented 

elsewhere (Krawchuk et al., 2006; Mundo, Wiegandc, Kanagarajc, & Kitzbergerd, 2013; 

Vasconcelos et al., 2001).  

The fact that, for the same number of covariates, the GAMs was always superior to the GAM 

confirms that lightning-caused fires depend to some degree on geographic location (Clarke, 

Gibson, Cirulis, Bradstock, & Penman, 2019; González-Olabarría, Mola-Luyego, & Coll, 
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2015). The contour plot of the estimated bivariate spatial effect (Fig. 10) suggests that there is 

a lower risk of fire lightning-caused fire occurrence towards the centre of the region, and a 

higher fire risk at the boundaries, primarily in the south and the east. Thus, the spatial effect 

roughly matches the reported distribution of fires (Fig. 3) and provides additional information 

not recorded by the covariate included in the selected model. The fact that the geographic 

location plays an important role in lightning-induced wildfires suggest that region-specific data 

collection and modelling, as described in this paper, need to be prioritized in future works. 

Fig. 11a depicts the spatial distribution of predicted lightning-caused fires using GAMs 

probability estimates and considering a cut-point of 0.15 (the point on the ROC curve where 

the F1 score is maximum), showing correctly and incorrectly classified fires. For this cut-point, 

the GAMs estimated a higher percentage of false positives than of false negatives (Fig.11c). 

This behaviour, which reflects an overestimation of fire occurrence, is common to most models 

developed to predict lightning-caused fires (Castedo-Dorado et al., 2011; Nieto et al., 2012; 

Pacheco et al., 2009). We consider that this behaviour, reflecting a tendency to err on the side 

of caution in predicting areas where lightning-caused fires are likely to occur, is permissible 

given the purposes of our study (i.e., to ultimately reduce population and economic risk posed 

by wildfires).  

Estimated linear coefficients, their significance values and estimated significance of the 

smoothed terms in the selected GAMs are shown in Table III. All terms were highly statistically 

significant. 

Regarding the spatial distribution of model errors, the ANNDI analysis indicated that 

misclassified grid cells (Fig. 11c) were clustered (ANNDI = 0.785; p < 0.0001). This result 

would suggest that the GAMs does not fully incorporate a local spatial effect associated with 

the 𝑔𝑔(∙) term in Eq. (1). Note that not being able to remove the spatial correlation in the residuals 

of the model may affect estimates of model coefficients and their respective p-values (Table 
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III). Nevertheless, considering that the p-values are very close to zero, it is not expected that 

the spatial correlation will affect the statistical significance of the coefficients. 

4.1. Management implications 

Understanding where wildfires are most likely to occur is critical to determining where 

wildfires pose the greatest risk to people and property. From an operational point of view, a 

better knowledge of the spatial patterns of lightning fire occurrence and their relationships with 

underlying risk factors is necessary to ensuring that prevention efforts are more efficient. 

Long-term lightning-caused fire risk evaluation can inform the zoning of a region according to 

proneness to lightning fires, as required by INFOCAL for the autonomously governed Castilla 

y León region. Operationally, risk assessment can help regional ministry of the environment in 

several ways, as follows: (i) in identifying areas where wildfire detection based on lookout 

towers is not effective, (ii) in making informed decisions regarding preparedness planning and 

fuel management, and (iii) in designing strategically rational firefighting responses.  

The regional government of Castilla y León is currently responsible for a network of 198 

lookout towers in the region (https://medioambiente.jcyl.es), strategically located so as to detect 

human-induced wildfires, more than wildfires of natural origin. Thus, many lightning-fire-

prone areas are not directly visible from the lookout towers, especially in the northwest and 

south of the region (Fig. 12). Better identification of fire prone areas should lead to a 

reconsideration of lookout tower locations or the instigation of ground patrols during the 

wildfire season so as to ensure earlier fire detection (Kucuk, Topaloglu, Altunel, & Cetin, 

2017). 

Fuel management is considered crucial to reducing wildfire spread and severity in 

Mediterranean areas, especially of larger wildfires (Moreira et al., 2011). Fuel management is 

usually implemented through fuel modification and fuel type conversion strategies (Rigolot, 

Fernandes, & Rego, 2009). Our results suggest that fuel modification efforts should 
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strategically focus on coniferous woodlands, given our finding that this kind of forested land is 

primarily associated with lightning-caused fires. As mentioned above, probable reasons for the 

greater likelihood of fire occurrence in conifer forests are forest-floor fuel (the litter and duff 

layer) and the flammability of conifers and the associated understory species.  

Fuel management can be addressed by surface fuel-modification options, including prescribed 

burning, shrub clearing and understory mastication, aimed at reducing lightning-caused fire 

ignition and spread risks. Prescribed burning of pine stands tolerant of low-intensity fire is an 

effective way to reduce the fuel load and so diminish the risk of ignition and spread (Kucuk et 

al., 2017). While shrub clearing and mastication of understory growth do not reduce the 

probability of fire ignition (the litter load is not reduced and mastication actually increases litter 

depth), they do induce changes in fire spread patterns (Fernandes et al. 2013). Crown fuel 

modification options that address the spread of lightning-caused fires include thinning and 

pruning operations.  

Fuel type conversion in wildland areas would involve replacing coniferous stands by a mixture 

of coniferous and broadleaved species, e.g., selective thinning in favour of broadleaved species 

or forest management that promotes natural succession. Nevertheless, according to our results, 

fuel conversion would not be a suitable solution, as a higher likelihood of fire occurrence is 

also associated with a large percentage of mixed forests in the landscape.  

Our results also confirm that forested areas are more fire-prone than agricultural areas, 

suggesting that permanent croplands and pastures located within a more heterogeneous 

landscape would result in fewer fire ignitions, with the farmlands acting as fire breaks that 

enhance resistance to fire spread (Vega-García & Chuvieco, 2009). 

Since the regional ministry of the environment of Castilla y León is directly responsible for 

preventing fires in publicly managed forests – representing 40% (around 20,000 km2) of 

forested surface in the region (Junta de Castilla y León, 2009) – from an operational viewpoint 
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forest managers need to include the reduction of lightning fire risk as an additional objective in 

forest management planning. Fire risk mapping, as proposed in our study, would identify the 

spatial foci for long-term prevention actions, including curtailment of understory biomass load 

and crown fuel load and the promotion of diversified landscapes.  

Suppression (or initial attack) models attempt to model the ability of firefighting resources to 

contain a fire before it goes out of control and before damage is caused to people or property 

(Plucinski, 2013). Risk assessment models can inform the design and development of fire 

management plans and responses to wildfires. By including information on fire-prone locations  

in fire behaviour simulators, fire spread patterns can be predicted in order to plan how 

firefighting resources are deployed with a view to reducing risk and containing spread (Bahro, 

Barber, Sherlock, & Yasuda, 2007; Costa, Castellnou, Larrañaga, Miralles, & Kraus, 2011). 

This approach would be especially important for Castilla y León, given its high wildfire 

occurrence  rate and accounting for 20% of the total surface burned in Spain in the period 2001-

2010 (MAGRAMA, 2012). If fire load is high (e.g., as happened during the 2017 fire season), 

temporal constraints in suppression activities can be improved through effective analysis of fire 

behaviour and optimization of resource deployment, to the point of even leaving lower priority 

fires watched but unattended. 

 

4. CONCLUSIONS 

Using five alternative models, namely GLM, RFM, GAM, AUREG and GAMs, we modelled 

the relationship between lightning-caused fires and a set of potential covariates for a case study 

referring to Castilla y León region in central Spain. Taking into account both predictive ability 

and simplicity, we found that the most suitable model was a GAMs that considered a single 

covariate, namely, percentage of coniferous woodlands in the landscape, along with the planar 

coordinates (whose effects were modelled using a bivariate function). This finding reflected the 
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following results: (i) that lightning fire occurrence is more closely related with vegetation type 

than with topography, climate or lightning characteristics, and (ii) that it was important to take 

account of the location of reported lightning fires through a spatial bivariate function (i.e., not 

as separate covariate). Additionally, in terms of evaluating lightning-caused fire occurrence, 

our study points to the advantages of using GAMs over other statistical techniques whose use 

has predominated in the historical fire risk evaluation literature to date. The model selected is 

intended to better inform and potentially improve wildfire management by identifying areas 

where wildfire detection through lookout towers is not effective and aiding informed decision-

making regarding preparedness planning and fuel management and the design of strategically 

rational firefighting responses. 

Although the results obtained in our case study cannot be considered as directly transferable to 

other cases, what can be generalized to other regional analyses is the described GAMs and 

variable selection methodology. 
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Tables 

Table I. Variables computed for each 4×4-km grid cell in the studied area 
Variable Depiction 
%coniferous % of coniferous woodlands 
%broadleaf % of broadleaf woodlands 
%mixed % of mixed forests 
%shrub % of shrublands  
%crop % of agricultural croplands 
%pasture % of pasturelands 
%other % of non-combustible areas 

altitude mean altitude (m) 
slope mean slope (%) 
%north % with north-facing aspect  
%east % with east-facing aspect 
%south % with south-facing aspect 
%west % with west-facing aspect 
%flat % with flat terrain 

total flashes Averaged annual number of flashes (flashes km-2) 
flashes - Averaged annual number of flashes with negative polarity 

(flashes km-2) 
flashes + Averaged annual number of flashes with positive polarity 

(flashes km-2) 
peak current - Averaged annual mean peak current of flashes with negative 

polarity (kA) 
peak current + Averaged annual mean peak current of flashes with positive 

polarity (kA) 
thunderstorm days Averaged annual number of thunderstorm days 
dry thunderstorm days Averaged annual number of dry thunderstorms days 

 
 



 

 37 

Table II. Prediction performance for the combinations of methods and covariates (q =1 to 6). The covariates included in each combination are 

indicated in grey.  
#covars Model Rank 

within 
model 

%coniferous %crops %shrub %mixed %North %other %pasture altitude s1 s2 F1 
score 

Sens Spec CCR 

q = 1 GLM 28           0.316 0.452 0.861 0.824 

RFM 35           0.234 0.381 0.815 0.776 

GAM 28           0.316 0.452 0.861 0.824 

AUREG 26           0.336 0.524 0.842 0.814 

GAMs 32           0.371 0.466 0.890 0.851 

q = 2 GLM 1           0.346 0.417 0.902 0.858 

RFM 3           0.337 0.446 0.881 0.842 

GAM 28           0.316 0.452 0.861 0.824 

AUREG 1           0.359 0.482 0.881 0.845 

GAMs 23           0.364 0.529 0.864 0.834 

q = 3 GLM 2           0.342 0.406 0.904 0.857 

RFM 2           0.352 0.452 0.889 0.812 

GAM 1           0.343 0.500 0.860 0.828 

AUREG 3           0.335 0.464 0.886 0.849 

GAMs 7           0.372 0.548 0.862 0.834 

q = 4 GLM 4           0.339 0.440 0.886 0.846 

RFM 5           0.334 0.327 0.938 0.883 

GAM 2           0.354 0.559 0.842 0.816 
AUREG 2           0.356 0.512 0.866 0.834 

GAMs 4           0.381 0.536 0.874 0.843 

q = 5 GLM 8           0.325 0.458 0.865 0.829 

RFM 1           0.356 0.577 0.835 0.812 

GAM 8           0.345 0.583 0.822 0.801 

AUREG 8           0.346 0.464 0.879 0.842 
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#covars Model Rank 
within 
model 

%coniferous %crops %shrub %mixed %North %other %pasture altitude s1 s2 F1 
score 

Sens Spec CCR 

GAMs 1           0.406 0.526 0.879 0.843 

q = 6 GLM 1           0.314 0.506 0.830 0.801 

RFM 7           0.333 0.506 0.849 0.818 

GAM 5           0.347 0.506 0.861 0.829 

AUREG 17           0.334 0.440 0.882 0.842 

GAMs 2           0.345 0.578 0.843 0.821 

Note: q is number of predictors in the model; s1 and s2 are planar UTM coordinates; Sens, Spec and CCR are the sensitivity, specificity and correct classification rate 
statistics, respectively. The rank within the model shows the order of F1 scores within the method used in model fitting. GAMs models include a bivariate function of 
planar coordinates s1 and s2 as covariates, so strictly speaking q equals q+2 in this table. AUREG models do not include s1 and s2 planar coordinates, since they implicitly 
collect the relative spatial position of observations by means of a weight matrix. 
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Table III. Estimated linear coefficients and their significance values and estimated significance 
of the smooth terms for the selected GAMs (q = 1; %coniferous). 
Variable Estimated 

parameter 
Standard  
error 

z-value p-value 

Intercept -2.859 0.0845 -33.82 <2 × 10-16 
 Estimated  

degrees of 
freedom 

Estimated  
residual  
degrees of freedom 

chi-square p-value 

Bivariate effect 
(longitude, latitude) 

26.96 28.69 145.1 <2 × 10-16 

%coniferous 6.424 7.551 103.1 <2 × 10-16 
dof: degrees of freedom. 
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Figure captions 

 
Fig. 1.  Location of the study area (Castilla y León) in Spain and of lightning detection network 
sensors in Spain, Portugal and southern France. 

 

 

Fig. 2. Distribution by size class of 662 lightning-caused forest fires with available planar 
coordinates reported for Castilla y León (Spain) in the period 2000-2010. 
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Fig. 3. Spatial distribution in a 4 × 4-km grid of 662 lightning-caused forest fires with available 
planar coordinates reported for Castilla y León (Spain) in the period 2000-2010 superimposed 
on the spatial distribution of flash density.  

 

 

Fig. 4. F1 scores for the 5 tested models according to the number of covariates included (q = 1 
to 6). The results correspond to the test sample. Note that GAMs models include a bivariate 
function for the s1 and s2 planar coordinates so, strictly speaking, q equals q+2 in this figure. 
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Fig. 5. Plots for estimated partial dependence (solid black lines) along with 95% confidence bands (grey areas) for covariates included in the GAMs 
models for q = 1 to 5. The horizontal axis represents the values of the explanatory variable and the vertical axis represents the values of logit= 
�𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑃𝑃

1−𝑃𝑃
��, where 𝑃𝑃 represents the probability of a lightning-caused fire. Plots were generated by running the GAMs models for the entire dataset.  
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Fig. 6. Boxplots showing the distribution of F1 scores for each of the five models according to 
the number of covariates (q = 1 to 6). Note that GAMs models include a bivariate function for 
the s1 and s2 planar coordinates so, strictly speaking, q equals q+2 in this figure. 
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Fig. 7. F1 score differences, F1(q) – F1(q-1), for the five models according to the number of 
covariates q (solid lines) and lower limit of the confidence interval [ ],a ∞ for the differences 
(dashed lines). The horizontal red lines mark the zero value. The level of significance used was 
0.05. Note that GAMs models include a bivariate function for the s1 and s2 planar coordinates 
so, strictly speaking, q equals q+2 in this figure. 
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Fig. 8. Boxplots showing the distribution of F1 scores for the five models fixing the number of 
covariates (q = 1 to 6). Note that GAMs models include a bivariate function for the s1 and s2 
planar coordinates so, strictly speaking, q equals q+2 in this figure. 
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Fig. 9. Increment in F1 score when the GAMs is compared with the GLM, GAM, RFM and 
AUREG methods. The dashed lines represent the lower limit of the confidence interval [ ],a ∞ . 
The level of significance used was 0.05. Note that GAMs models include a bivariate function 
for the s1 and s2 planar coordinates so, strictly speaking, q equals q+2 in this figure. 
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Fig. 10.  Estimated spatial effect in contour form generated by running the selected GAMs 
(q = 1; %coniferous) for the entire dataset. 

 

 

Fig. 11. (a) Predicted spatial distribution of lightning-caused fire occurrence according to the 
selected GAMs (q = 1; %coniferous). (b) Correctly classified grid cells of lightning-caused fire 
occurrence. (c) Incorrectly classified grid cells of lightning-caused fire occurrence. All the 
figures were generated by running the selected GAMs for the entire dataset. 
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Fig. 12. Visibility analysis map of the current lookout tower network superimposed on the predicted 
spatial distribution of lightning-caused fire occurrence according to the selected GAMs (q = 1; 
%coniferous).  
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