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11 Abstract In this work, we identified glucose and glycerol as
12 tacrolimus repressing carbon sources in the important species
13 Streptomyces tsukubaensis. A genome-wide analysis of the
14 transcriptomic response to glucose and glycerol additions
15 was performed using microarray technology. The transcrip-
16 tional time series obtained allowed us to compare the
17 transcriptomic profiling of S. tsukubaensis growing under ta-
18 crolimus producing and non-producing conditions. The anal-
19 ysis revealed important and different metabolic changes after
20 the additions and a lack of transcriptional activation of the fkb
21 cluster. In addition, we detected important differences in the
22 transcriptional response to glucose between S. tsukubaensis
23 and the model species Streptomyces coelicolor. A number of
24 genes encoding key players of morphological and biochemi-
25 cal differentiation were strongly and permanently downregu-
26 lated by the carbon sources. Finally, we identified several
27 genes showing transcriptional profiles highly correlated to that
28 of the tacrolimus biosynthetic pathway regulator FkbN that

29might be potential candidates for the improvement of tacroli-
30mus production.

31Keywords Streptomycestsukubaensis .Tacrolimus .FK506 .

32Carbon regulation . Transcriptomics

33Introduction

34Strains of the gram-positive, soil-dwelling bacterial genus
35Streptomyces stand out for their ability to produce a wide
36range of secondary metabolites with biological activity. In
37fact, more than a half of the antibiotics from microbial origin
38used in clinics are produced by this genus (Hopwood 2007).
39Streptomyces tsukubaensis (Kino et al. 1987a, b) is an impor-
40tant industrial species which produces tacrolimus (or FK506),
41a 23-membered macrolide showing immunosuppressant ac-
42tivity that is widely used in the prevention of graft rejection
43and in the treatment of skin diseases. Despite of its clinical
44relevance and the generation of important benefits for the
45pharmaceutical market, low production levels are achieved
46by industrial strains (Barreiro and Martínez-Castro 2014).
47Improvement of FK506 production has been obtained through
48culture media optimization (Singh and Behera 2009) and ge-
49netic engineering of the strains (Mo et al. 2009, 2013, 2016;
50recently reviewed by Ban et al. 2016). Nevertheless, the iden-
51tification of transcriptional regulators that might be involved
52in the regulation of its biosynthesis is of high interest to
53achieve further improvements.
54The presence of carbon sources in the culture media that are
55rapidly assimilated blocks or reduces the production of sec-
56ondary metabolites and such regulation can take place at the
57enzymatic and/or at the transcriptional level (reviewed in Ruiz
58et al. 2010; Sánchez et al. 2010). This phenomenon resembles
59carbon catabolite repression (CCR; Magasanik 1961), which
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60 prevents the use of alternative carbon sources in the presence
61 of “preferred” ones (usually glucose). As it can be deduced,
62 CCR is an important barrier for the production of bioactive
63 compounds, since preferred carbon sources that would allow a
64 faster growth hamper secondary metabolite production. Thus,
65 avoiding or reducing CCR is an important strategy to improve
66 secondary metabolite production and, for this purpose, under-
67 standing its regulation is highly necessary. Despite of its im-
68 portance, the molecular mechanisms that govern CCR in the
69 genus Streptomyces are still not completely elucidated. A key
70 player in Streptomyces CCR is the glycolytic enzyme glucose
71 kinase (Glk), which is proposed to interact with transcriptional
72 regulators in order to exert its regulatory role (Angell et al.
73 1992). Nevertheless, Glk is not the sole responsible for
74 Streptomyces CCR; other players such as SCO2127 or
75 Rok7b7 are involved (Angell et al. 1992; Gubbens et al.
76 2012, 2017).
77 Since “omic” approaches represent a useful tool to study
78 regulatory networks, the aim of this work was (i) to identify
79 FK506 repressing carbon sources in S. tsukubaensis and (ii) to
80 study their effect on the whole transcriptome and establish a
81 comparison between the transcriptional behavior of this strain
82 under FK506 producing and non-producing conditions. By
83 this mean we aimed to identify key regulators that might be
84 involved in FK506 production and/or in the mechanisms
85 governing CCR. Transcriptomics have been applied recently
86 to the study of Streptomyces coelicolor CCR in a one-point
87 experimental design corresponding to the exponential growth
88 phase (Romero-Rodríguez et al. 2016a, b). In this work, we
89 performed a 10-point transcriptional time series comprising all
90 the growth phases. Such design enables the comparison not
91 only between producing and non-producing conditions but
92 also between primary and secondary metabolism. Here we
93 describe the main transcriptional changes observed after glu-
94 cose and glycerol additions and present new candidates for the
95 improvement of FK506 production and the study of key
96 Streptomyces biology aspects.

97 Materials and methods

98 Bacterial strains and growth conditions

99 S. tsukubaensis NRRL 18488 (Kino et al. 1987a) was grown
100 at 28 °C on ISP4 (Difco™, BD, NJ, USA) medium for spore
101 preparation. For FK506 production studies, 109 spores of
102 S. tsukubaensis were inoculated into 0.5-l flasks containing
103 100 ml of MGm-2.5 media (Martínez-Castro et al. 2013)
104 and incubated at 28 °C and 220 rpm. Carbon sources added
105 to the cultures, such as glycerol, mannitol (both form Prolabo-
106 VWR, Radnor, PA, USA), D-fructose (Merck, Darmstadt,
107 Germany), maltose monohydrate (SAFC-Sigma, Madison,
108 WI, USA), xylose, D-glucose monohydrate (both from

109Sigma-Aldrich, St. Louis, MI, USA), sucrose (NormaPur–
110VWR, Radnor, PA, USA), and lactose monohydrate
111(Rectapur–VWR, Radnor, PA, USA), were dissolved in hot
112Milli-Q water (65 °C) and sterilized at 120 °C for 15 min. The
113final concentrations in the culture media are indicated in the
114corresponding section.
115The FK506-sensitive strain Saccharomyces cerevisiae
116TB23 (Breuder et al. 1994) was cultured in YPD media
117(Lodder 1970) at 28 °C and 250 rpm.

118Growth measurement, FK506, and phosphate
119determination

120For growth measurement and phosphate determination, 2-ml
121culture samples were harvested and centrifuged. The superna-
122tant was collected for inorganic phosphate determination
123using the malachite green assay (Lanzetta et al. 1979). The
124pellet was washed twice with Milli-Q® water and dried at
12580 °C for 48 h for growth determination.
126For FK506 extraction, 1-ml culture samples were mixed
127with an equal volume of methanol (HPLC grade) in 10-ml
128tubes. The mixtures were shaken in a horizontal position for
1291 h at 140 rpm and centrifuged. The supernatants were col-
130lected and FK506 concentration was measured with an
131Agilent HPLC equipped with a Zorbax SB C18 column
132(4.6 × 150 mm, 3.5 μm) following the indications from
133Salehi-Najafabadi et al. (2014). Standards of pure FK506
134(Antibióticos de León SLU, Spain) and ascomycin (Sigma-
135Aldrich, St. Louis, MI, USA) were used as controls.
136During the screening for repressing carbon sources, anti-
137fungal activity in the extracts was detected by bioassay against
138S. cerevisiae TB23 (Breuder et al. 1994) as indicated by
139Ordóñez-Robles et al. (2016).

140RNA extraction and purification, labeling,
141and hybridization

142All the procedures related to the extraction and purification of
143RNA, the synthesis of labeled cDNA, and the conditions used
144for microarray hybridization were performed as previously
145described (Ordóñez-Robles et al. 2016). Samples for RNA
146extraction were taken at 70 (immediately before the addi-
147tions), 70.7, 72, 76, 80, 89, 92, 100, 124, and 148 h.

148Microarray design and data analysis

149The custom microarrays used in this work were manufactured
150by Agilent Technologies (Santa Clara, CA, USA) in the
1518 × 15K format. The expression probes (45- to 60-mer) were
152designed using the online tool eArray from Agilent. In addi-
153tion, tiling probes covering the coding strand of the FK506
154biosynthetic cluster (fkb) were designed using the chipD pro-
155gram (Dufour et al. 2010).
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156 The limma package v3.20 (Smyth 2004) was used for nor-
157 malization of the signal intensities and also for statistical anal-
158 yses following the indications in Ordóñez-Robles et al.
159 (2016). After normalization, we obtained a final Mg value
160 (log2 transcription value), which is an approximate measure
161 of the abundance of the transcripts of a particular gene with
162 respect to its genomic copies (Mehra et al. 2006; Sidders et al.
163 2007). To find differentially expressed genes, limma calculat-
164 ed the Mc values, which represent the log2-fold change be-
165 tween two experimental conditions (i.e., differences between
166 selected Mg values). Limma also provided the adjusted p-
167 values (named pFDR) to control the false discovery rate
168 (Benjamini and Hochberg 1995). The maSigPro software
169 (Conesa et al. 2006), from the Bioconductor 3.2 package,
170 was used to find genes showing different transcription profiles
171 between experimental conditions during the five first time
172 points of the series. In this regression approach, the R2 values
173 obtained indicate the “goodness of fit” and were used to select
174 genes with clear transcriptional trends. To detect transcription-
175 al profiles similar to that of the transcriptional regulator coding
176 gene fkbN, we analyzed Pearson correlation coefficients.

177 Microarray data accession number

178 The microarray data discussed in this work have been depos-
179 ited in NCBI’s Gene Expression Omnibus database (Edgar
180 et al. 2002) and are accessible under the accession number
181 GSE 99752.

182 Quantitative reverse transcription PCR

183 To validate the microarray results by quantitative reverse tran-
184 scription PCR (RT-qPCR), we used the primer pairs listed in
185 Supplementary Table S1 and the procedures indicated by
186 Ordóñez-Robles et al. (2016). cDNA originated from the
187 RNA samples was used to measure transcript levels of
188 pfkA1, pfkA2, pfkA3, amtB, hrdA, gltD, fkbN, glpX, crp, and
189 phoP. For normalizing assays, metF and gyrB genes were
190 chosen since their Mg levels were among the most constant
191 throughout the time series. A high correlation (R2 = 0.78) be-
192 tween microarray-derived and RT-qPCR transcriptional ratios
193 validated the results (see Supplementary Fig. S1).

194 Results

195 Experimental setup

196 Identification of FK506-repressing carbon sources

197 The first goal of this work was to identify carbon sources that
198 repress FK506 production in S. tsukubaensis. For this pur-
199 pose, S. tsukubaensis was grown in defined MGm-2.5

200medium (Martínez-Castro et al. 2013), a production medium
201containing starch as main carbon source, glutamate as carbon
202and nitrogen source and limited in phosphate. This medium
203supports a good and dispersed growth and high yields of
204FK506 production. FK506 biosynthesis is triggered after
205phosphate depletion, which occurs between 80 and 89 h. We
206selected a set of eight carbon sources (glucose, fructose, xy-
207lose, glycerol, mannitol, maltose, lactose, and sucrose) for the
208study, including the most common repressing sources glucose
209and glycerol (for a review on Streptomyces carbon repression,
210see Ruiz et al. 2010). The presence of the carbon sources in the
211growth media from the beginning of the fermentation was
212rejected since growth rate variations might complicate the
213interpretation of the results (Lounès et al. 1996. The accurate
214study of the response to carbon source additions requires all
215cultures to be at the same physiological state before the addi-
216tion. Thus, the carbon sources were added during the first
217growth phase and before the depletion of phosphate (i.e.,
21870 h).
219The repressing effect of a carbon source depends on its
220concentration; for example, glucose at final concentrations
221between 1 and 1.75% has a positive effect on FK506 produc-
222tion in several S. tsukubaensis ZJU01 strains (Chen et al.
2232012). Thus, a high final concentration (2.8% w/v) for all the
224carbon sources tested was selected for this exploratory exper-
225iment. Culture samples for dry weight (from 64 to 161 h) and
226FK506 determination (from 92 to 161 h) were taken. The
227presence of FK506 in the culture supernatants was tested by
228agar diffusion bioassays against S. cerevisiae TB23. The ad-
229dition of these carbon sources did not affect growth (data not
230shown) and only glucose and glycerol inhibited FK506 pro-
231duction (see Supplementary Table S2). Thus, glucose and
232glycerol were selected to perform the transcriptomic analysis.

233Time-series cultures for transcriptomic analyses

234For the transcriptomic analysis, S. tsukubaensis was cultured
235under the same conditions indicated above, adding glucose or
236glycerol as repressing carbon sources at 70 h. A control con-
237dition was included consisting on the addition of maltose,
238since this disaccharide does not repress FK506 production
239and is a natural product of starch metabolism. For each exper-
240imental condition, five replicates were cultured. The final con-
241centrations of glucose and glycerol were established at the
242same molarity (0.22 M; 2% w/v and 4% w/v for glucose and
243glycerol, respectively). The final concentration of maltose was
244established at 0.11M (3%w/v) in order to equalize the number
245of glucose molecules available after maltose incorporation.
246Samples for dry weight, phosphate concentration, and
247FK506 determination were taken between 65 and 235 h from
248the five replicates of each culture condition. Samples for RNA
249extraction were taken at 70 h (immediately before additions),
250and then from 70.7 to 148 h (see “Materials and methods”).
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251 According to their growth curves and the pattern of phos-
252 phate depletion, two cultures from each experimental condi-
253 tion were selected for RNA extraction in order to ensure the
254 highest physiological homogeneity. The growth, phosphate
255 depletion, and FK506 production patterns of the six cultures
256 (two from each experimental condition) are depicted in Fig. 1.
257 In the control condition, FK506 production started after phos-
258 phate depletion (89 h), as expected, since this is the limiting
259 nutrient in this medium. FK506 reached its maximum specific
260 production values at 148 h (see Fig. 1b). Glucose addition
261 blocked FK506 production along the whole time curse of
262 the cultures. The addition of glycerol repressed production at
263 least during the first 161 h of culture, although FK506 was
264 detected at the last sample time (235 h).

265 Immediate response to the repressing carbon sources

266 In order to identify genes that respond quickly to the carbon
267 source additions, a comparison of the Mg transcription values
268 at 70 h (t70h) (i.e., immediately before the addition) with the
269 Mg t70.7h values (i.e., 40 min after the addition) was performed
270 using the limma package. This approach yielded a total of
271 1176 genes as differentially transcribed after the additions
272 (203 of them with 2-fold or greater changes). In addition, a
273 regression approach for the first five time-point values (t70.7h–
274 t80h) of each experimental condition was applied using
275 maSigPro to identify genes affected by the additions that

276might not be detected with the first approach. From this anal-
277ysis, a total of 1315 genes showed statistically significant dif-
278ferences (255 of them with R2 ≥ 0.9). Finally, we focused our
279functional analysis on a set of 361 genes showing the strongest
280differences in any of both approaches (203 and 255 for limma
281and maSigPro, respectively; see Supplementary Fig. S2).
282These genes are listed in Supplementary Table S3. The fact
283that only 63 genes out of 361 showed significant transcrip-
284tional variations 40 min after maltose addition supported the
285choice of this disaccharide as the control addition.

286Effects on carbon source transport

287First, we focused our attention on the genes encoding the
288putative transporters for maltose, glucose, and glycerol even
289if most of them were not filtered in the statistical analysis. The
290maltose ABC transporter genes malEFG were downregulated
291after the three additions, especially after maltose addition
292(Supplementary Fig. S3.1) and, although not included with
293the approaches used, the changes were statistically significant
294t70.7h and t72h for glycerol and maltose conditions, respective-
295ly. In S. coelicolor, glucose downregulates malEFG transcrip-
296tion but, contrary to that observed in S. tsukubaensis, maltose
297induces it (van Wezel et al. 1997a, b). Considering that the
298transcriptional profile of malR, encoding the transcriptional
299regulator of the mal operon, is very similar to that of
300malEFG in S. tsukubaensis (data not shown) we consider that
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Fig. 1 Growth, FK506
production, and phosphate
depletion patterns in the cultures.
a Growth is represented as the
average of the dry weight values
from two replicates (glucose,
glycerol, and maltose
supplemented conditions are
represented with rhomboids,
circles, and squares, respectively).
b FK506 production in each
culture broth. c Phosphate
depletion pattern in each culture.
Note that phosphate is depleted
between 80 and 89 h, since its
concentration fells under 100 μM
in all the replicates. For panels b
and c, the two replicates of
glucose (rhomboids), glycerol
(circles), and maltose (squares)
supplemented cultures are
represented with black and gray
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301 other regulatory mechanisms might be involved in the control
302 of this operon in S. tsukubaensis. Transcription of the operon
303 for glycerol transport and metabolism increased after glycerol
304 addition and was transiently downregulated by glucose
305 (Supplementary Fig. S3.2), which was in accordance with
306 the results reported in S. coelicolor (Smith and Chater 1988).
307 On the contrary, transcription of the unique glucose permease
308 coding gene, glcP, was low throughout the culture and not
309 induced after glucose addition (Supplementary Fig. S3.3),
310 which contrasts with its behavior in S. coelicolor (van Wezel
311 et al. 2005). In S. tsukubaensis, as well as in Streptomyces
312 clavuligerus and Streptomyces avermitilis, only one glcP gene
313 is found. This gene is orthologue to S. coelicolor glcP2, which
314 inactivation does not affect glucose transport in this species
315 (vanWezel et al. 2005). In the upstream region of glcP, we did
316 not detect bacterial sigma 70 promoters using the online tool
317 BPROM (Solovyev and Salamov 2011). This situation resem-
318 bles that of S. clavuligerus, where the weakly expression of
319 glcP accounts for the lack of growth on glucose as the sole
320 carbon source (Pérez-Redondo et al. 2010). Thus, it is possible
321 that transcription of S. tsukubaensis glcP depends on a non-
322 constitutive sigma factor and that under our culture conditions
323 an alternative transporter is responsible for the incorporation
324 of glucose. Indeed, two different glucose transporters have
325 been biochemically reported in Streptomyces lividans
326 (Hurtubise et al. 1995).
327 We detected a high number of genes encoding transport-
328 related functions that were affected by the additions (amino acid
329 and oligopeptide transporters related with differentiation are
330 discussed in the corresponding sections). As it might be expected
331 from the concept of CCR, both additions reduced the mRNA
332 levels of genes encoding transporters for alternative car-
333 bon sources. This response was significant at t70.7h and t72h for
334 glucose and glycerol additions, respectively (Supplementary
335 Fig. S3.4). Among the affected genes, we detected
336 STSU_23336 (homolog to nagE2, encoding the predicted
337 N-acetylglucosamine specific IIC component of the PTS sys-
338 tem), dasA (encoding the chitobiose transporter; Saito et al.
339 2007), and msiK (encoding an ATP-binding protein which is
340 involved in the transport of several carbon sources;Q2 vanWezel
341 et al. 1997b). Transcription of the xylose transport operon
342 xylFGH was also downregulated after the additions
343 (Supplementary Fig. S3.4), which is in contrast to that report-
344 ed in the model strain S. coelicolor (Romero-Rodríguez et al.
345 2016a). This evidences important metabolic differences be-
346 tween Streptomyces strains.
347 Interestingly, glucose addition exerted a positive effect on
348 several genes related to xylose metabolism. Transcription of
349 two xylose isomerase coding genes (xylA and STSU_23777)
350 and other xylose isomerase domain containing genes (i.e.,
351 STSU_04768, which was also transiently upregulated after
352 mal tose addi t ion) were upregula ted by glucose
353 (Supplementary Fig. S3.5). In S. coelicolor xylose transport

354and xylose metabolism, genes are regulated independently
355(Swiatek et al. 2013) and glucose stimulates 10-fold the tran-
356scription of the xylose transporter genes xylFGH (SCO6009-
357SCO6011; Romero-Rodr íguez e t a l . 2016a) . In
358S. tsukubaensis, we observed the opposite behavior for xylose
359transporter genes, which were downregulated after glucose
360addition (see Supplementary Fig. S3.4).
361Closely located to STSU_04768, we found an ABC trans-
362porter operon (STSU_04793-STSU_04803) which was tran-
363scriptionally activated after glucose and maltose additions.
364This operon might encode a ribose transporter and is likely
365to be regulated by the ROK family transcriptional regulator
366STSU_04808, which is encoded upstream and showed a sim-
367ilar transcriptional pattern after glucose and maltose additions
368(Supplementary Fig. S3.6).
369Interestingly, transcription of the xylose isomerase coding
370gene STSU_23777 showed the same transcriptional profile
371than STSU_23771 (encoding a LysR type regulator) and
372STSU_23786 (encoding a MarR family regulator;
373Supplementary Fig. S3.7). The transcription of STSU_23786
374(orthologue to SCO5228) showed one of the highest increases
375detected in mRNA levels after the glucose addition (i.e., 4.7
376log2-fold change).

377Effects on central carbon pathways

378Glucose addition upregulated the transcription of several
379genes involved in the glycolytic pathway such as pfkA3 (cod-
380ing the 6-phosphofructokinase 3), tpiA (coding a triose-
381phosphate isomerase; this gene was not filtered and, thus, is
382not included in Supplementary Table S3), and pgk (coding a
383phosphoglycerate kinase). It also increased the transcription of
384the gluconate kinase coding gene idnK (see Fig. 2 and Q3

385Supplementary Fig. S3.8). This is in agreement to that report-
386ed for the orthologue SCO1679 in S. coelicolor, although we
387did not detect upregulation of genes encoding gluconate de-
388hydrogenases (Romero-Rodríguez et al. 2016a). In agreement
389with these results, we observed a decrease in the mRNA levels
390of genes involved in the gluconeogenic pathway (i.e., the rate
391controlling phosphoenolpyruvate carboxykinase encoded by
392pck, the glyceradehyde-3-phosphate dehydrogenase 2 coding
393gene gap2, and the fructose-1,6-biphosphate aldolase encoded
394by glpX; see Supplementary Fig. S3.9). Glucose upregulated
395transcription of genes involved in the formation of pyruvate
396(pyruvate kinase 2 pyk2; this gene was not filtered and thus, is
397not included in Supplementary Table S3) and oxaloacetate
398(phosphoenolpyruvate carboxylase ppc; Supplementary Fig.
399S3.9) but downregulated some genes involved in the tricar-
400boxylic acid (TCA) cycle (i.e., malate oxidoreductase malS4,
401succinate dehydrogenases sdhB and sdhA, and cytochrome b
402subunit sdhC2; Supplementary Fig. S3.10). These results are
403in contrast with those reported for S. coelicolor by Romero-
404Rodríguez et al. (2016a), who suggested that TCA enzymes
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405 might be regulated by metabolites rather than at the transcrip-
406 tional level.
407 The effect of glycerol addition on carbon central pathways
408 was narrower compared to that of glucose. The responses
409 detected were limited to the downregulation of pgk (encoding
410 the bifunctional phosphoglycerate kinase from glycolysis),
411 and bglA2 (encoding a sugar hydrolase similar to the 6-
412 phospho-β-glucosidase that generates glucose and glucose-
413 6-phospha te ; see Supplementary Fig . S3 .8 and
414 Supplementary Fig. S3.9). Glycerol upregulated transcription
415 of the TCA gene fumC (encoding a fumarase; Supplementary
416 Fig. S3.10). In S. coelicolor, fumC expression depends on
417 SigR, an extracytoplasmic function (ECF) sigma factor re-
418 sponsible for the control of the thiol–disulfide redox balance
419 (Kallifidas et al. 2010). In Escherichia coli, FumC is produced
420 only under low iron availability or when superoxide radicals
421 accumulate, while in Bacillus subtilis the expression is in-
422 duced by fumarate and repressed by glucose addition (Park
423 and Gunsalus 1995; Ohné 1975).
424 Both additions exerted a negative effect on the transcription
425 of genes involved in fatty acid degradation and upregulated
426 transcription of genes involved in the biosynthesis of phospho-
427 lipids or encoding lipases. Glucose and glycerol additions
428 stimulated transcription of genes involved in fatty acid bio-
429 synthesis such as accB, accE, and fabH (Supplementary
430 Fig. S3.11). accB and accE encode an acyl-CoA carboxyl-
431 ase which catalyzes the formation of malonyl-CoA from
432 acetyl-CoA. This enzyme has been reported to be directly in-
433 volved in the production of pigmented antibiotics in the model

434S. coelicolor, sincemutants in accB do not produce actinorhodin
435or undecylprodigiosine (Rodríguez et al. 2001). FabH is a β-
436oxoacil-CoA synthase III, responsible for the initiation of fatty
437acid biosynthesis in S. coelicolor and Streptomyces glaucescens
438(Revill et al. 2001; Han et al. 1998). fabH is part of the operon
439for fatty acid biosynthesis fabD-fabH-acpP-fabF, which is tran-
440scriptionally activated by the regulator FasR (Arabolaza et al.
4412010). This operon shares a very similar transcriptional profile
442with accBE, indicating a common regulation for both operons
443(Supplementary Fig. S3.11). Transcription of fabG3, which is
444involved in fatty acid biosynthesis in S. coelicolor (SCO1346),
445was downregulated after glucose and glycerol additions.
446S. tsukubaensis contains three fabG paralog genes (as
447well as the model species; Singh and Reynolds 2015)
448that showed very different profiles (Supplementary Fig.
449S3.12), indicating different transcriptional regulations.

450Effects on nitrogen assimilation

451Glucose addition stimulated immediately (t70.7h) the transcrip-
452tion of gltB and gltD, which encode the subunits of the L-
453glutamate synthase, while glycerol produced a steady increase
454(Supplementary Fig. S3.13). This result is consistent with
455those observed in S. coelicolor and B. subtilis, where tran-
456scriptions of gltBD and gltAB are induced by glucose
457(Gubbens et al. 2012; Blencke et al. 2003). The gdhD gene
458encodes a NAD-glutamate dehydrogenase that is glucose-
459repressed and it is likely involved in glutamate utilization as
460energy source (Gubbens et al. 2012). In accordance, the

Fig. 2 Schematic representation
of central carbon pathways and
the effect of glucose addition on
involved genes. Genes showing
transcriptional upregulation (↑) or
downregulation (↓) are indicated.
Note that for the step in which
several paralogs are involved,
only those significantly affected
are depicted
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461 transcription of gdhD was downregulated immediately after
462 glucose addition (Supplementary Fig. S3.13). These results
463 suggest that glucose represses glutamate consumption and
464 stimulates its biosynthesis. In agreement with these results,
465 glucose and glycerol downregulated transcription of the glu-
466 tamate ABC transporter coding genes gluABCD
467 (Supplementary Fig. S3.13). Interestingly, this result is in con-
468 trast with that observed in S. coelicolor, in which glucose
469 stimulates transcription of the glutamate transporter
470 (Romero-Rodríguez et al. 2016a).
471 Glutamate synthase participates in the NH4

+ assimilation
472 pathway along with glutamine synthetases. In S. coelicolor,
473 glnA and glnII encode functional glutamine synthetases
474 (Rexer et al. 2006). In S. tsukubaensis, the orthologue genes
475 showed a transcriptional upregulation after glucose addition
476 (Supplementary Fig. S3.14), although they were not filtered
477 with the approaches used. The same transcriptional pattern
478 was detected for amtB, encoding an ammonium transporter
479 (Supplementary Fig. S3.14). Thus, glucose might stimulate
480 the incorporation of NH4

+ from the culture broth, which, in
481 turn, might be previously secreted as a by-product of gluta-
482 mate consumption.
483 Transcription of glnR, encoding the main nitrogen tran-
484 scriptional regulator in Streptomyces (Fink et al. 2002), was
485 permanently upregulated after glucose addition, while glycer-
486 ol produced only a transient activation. On the contrary, tran-
487 scription of glnRII, a second nitrogen transcriptional regulator,
488 was mainly stimulated after glycerol addition (Supplementary
489 Fig. S3.14).

490 Effects on sulfate and phosphate assimilation

491 The three carbon sources, but mainly glycerol, activated the
492 sulfate reduction assimilatory pathway. The cysHCDN oper-
493 on, involved in the transformation of sulfate to sulfite, in-
494 creased its mRNA levels at t70.7h (glycerol addition) or t72h
495 (glucose addition). A similar pattern was shown for the adja-
496 cent genes sirA, which product catalyzes the reduction of sul-
497 fite to sulfide (Fischer et al. 2012), and the STSU_06028-
498 STSU_06043 operon, which encodes a Nit/Tau family trans-
499 port system (Supplementary Fig. S3.15). Nit/Tau family trans-
500 porters are related to the incorporation of nitrates, bicarbonate,
501 taurine, or aliphatic sulfonates. Genes for a second Nit/Tau
502 family transporter (STSU_03564-03574), a hypothetical pro-
503 tein (STSU_03554), a sulfatase (STSU_03559), and a Crp
504 family transcriptional regulator (STSU_03579) showed the
505 same profiles (Supplementary Fig. S3.16). Both transporters
506 (STSU_06028-STSU_06043 and STSU_03564–03574)
507 show homology to the tauABCD system of E. coli, which is
508 involved in the incorporation of sulfonates under sulfur star-
509 vation (van der Ploeg et al. 2001). The transcriptional profiles
510 of the second transporter (STSU_03564-03574) indicate a
511 carbon source-dependent induction, while genes encoding

512the first transporter already showed high transcription values
513before carbon source addition. The effect of carbon sources on
514the transcription of these genes might reflect a stimulation of
515sulfur assimilation by a rich nutritional status.
516In a similar manner, the carbon sources stimulated phos-
517phate transport, since all the additions increased transcription
518of the phosphate transporter encoded by the pstSCAB operon
519(Supplementary Fig. S3.17). The phoRP operon (encoding the
520two-component system that governs the pho regulon; Wanner
5211993) and the divergent phoU showed a similar transcriptional
522pattern, although their transcriptional activation was signifi-
523cant only after glucose and glycerol additions (Supplementary
524Fig. S3.17). Finally, transcription of STSU_16912, which is
525likely to encode a phosphatase and belongs to the
526S. coelicolor pho regulon (SCO3790; Sola-Landa et al.
5272008) showed an equivalent transcriptional pattern, al-
528though the increase was significant only after glucose ad-
529dition (Supplementary Fig. S3.17). The transcriptional in-
530duction of phosphate transporters and scavengers suggests
531an increased need of phosphate for the transport and metab-
532olism of the carbon sources. Moreover, this is a new evi-
533dence of the cross-regulation between carbon and phos-
534phate metabolism, which has been documented before: for
535example, in S. lividans, PstS is accumulated in the media in
536the presence of certain carbon sources (Díaz et al. 2005); in
537S. coelicolor, transcriptions of glpQ1 and glpQ2 (encoding
538glycerophosphodiester phosphodiesterases) are regulated
539not only by phosphate concentration but also by the carbon
540sources present in the medium (Santos-Beneit et al. 2009).

541Effects on amino acid metabolism

542Carbon source additions affected the transcription of amino
543acid metabolism genes differently, some of these changes
544were limited to a transient activation and some were more
545drastic and permanent. Glucose activated the transcription of
546genes involved in aspartate catabolism (i.e., the ask-asd oper-
547on, Supplementary Fig. S3.18) and histidine synthesis (i.e.,
548hisCBHAF; hisD and hisI genes lack valid probes in the mi-
549croarrays; Supplementary Fig. S3.19). Although not filtered
550with our approaches, we observed that tryptophan biosynthet-
551ic genes were slightly upregulated by glucose and glycerol
552(i.e., trpE, trpC, and trpBA; Supplementary Fig. S3.20).
553The biosynthetic pathway of serine, glycine, threonine,
554and methionine is depicted in Fig. 3. Glucose increased at
555t70.7h the mRNA levels of the D-3-phosphoglycerate dehy-
556drogenase coding gene serA (serine biosynthesis), the L-
557threonine 3-dehydrogenase coding gene tdh, and the 2-
558amino-3-ketobutyrate coenzyme A ligase coding gene kbl
559(involved in threonine-glycine interconversion; see
560Supplementary Fig. S3.21). The first step of serine biosyn-
561thesis, catalyzed by the serA, is also the gate to the biosyn-
562thesis of threonine and glycine (see Fig. 3). In addition,
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563 serine is the precursor of the sulfur-containing amino acids
564 cysteine and methionine (Fig. 3).
565 All the carbon sources upregulated the transcription of cys-
566 teine and methionine metabolic genes. The transcription values
567 of cysM (encoding a cysteine synthase that converts acetyl-L-
568 serine and sulfide into cysteine) indicate a constitutive high
569 transcription that is activated at t70.7h and t72h after glycerol
570 and glucose additions, respectively (Supplementary Fig.
571 S3.22). It is worthy to mention that in the S. tsukubaensis ge-
572 nome, we found two cysM orthologues, STSU_31680 and
573 STSU_15012, and the last one showed an fkb-like transcrip-
574 tional profile (Supplementary Fig. S3.22).
575 Glucose and glycerol additions increased the transcription of
576 two putative cysteine dioxygenase coding genes (STSU_22610
577 and STSU_08058; Supplementary Fig. S3.23). Although dis-
578 tantly located, the close similarity of their profiles through all
579 the time series (not shown) indicated a coordinated regulation.
580 Cysteine dioxygenases convert cysteine to L-cysteine sulfinate,
581 which, in mammals, is used for the generation of pyruvate and
582 sulfate (by aspartate aminotransferase activity) or hypotaurine
583 (by cysteine sulfinic acid decarboxylase activity). In bacteria,
584 no cysteine sulfinic acid decarboxylase activity has been report-
585 ed and, thus, it seems unlikely that cysteine sulfinate acts as
586 precursor for taurine formation (Dominy et al. 2006).
587 The S. tsukubaensis genome contains two aspartate amino-
588 transferase coding genes (aspC and STSU_27731). Both of
589 them showed a transcriptional activation at t70.7h after glycerol
590 addition although they were not filtered (Supplementary Fig.
591 S3.24). Thus, glycerol addition might enhance the flux from
592 cysteine to pyruvate and sulfate. Glycerol addition stimulat-
593 ed the formation of L-methionine from L-homoserine and
594 acetyl-CoA (see Fig. 3) through the transcriptional upregu-
595 lation of metH (encoding a 5-methyltetrahydrofolate-
596 homocysteine S-methyltransferase) and STSU_01830-
597 STSU_01835, which is likely to encode the metBX operon
598 (Supplementary Fig. S3.25).

599Glucose and glycerol additions increase transcription
600of stress response genes

601Both glycerol and glucose additions stimulated transcription
602of several genes involved in oxidative stress response at t70.7h
603and t72h, respectively (ahpC, ahpD, and oxyR; Supplementary
604Fig. S3.26a). Genes ahpC, ahpD encode alkyl hydroperoxyde
605reductases and are directly activated by the transcriptional
606regulator OxyR (Hahn et al. 2002). These three genes main-
607tained significantly higher mRNA levels during the FK506
608producing phase after glucose and glycerol additions than in
609the control condition. In fact, mRNA levels decreased after
61089 h in the maltose added cultures (Supplementary Fig.
611S3.26b). Glycerol addition increased specifically the tran-
612scription of several genes involved in sulfide stress response
613at t70.7h such as the regulatory operon sigR-rsrA and the
614thiorredoxin and thiorredoxin reductase coding genes trxA
615and trxB. The thioredoxin coding gene trxC was also upregu-
616lated at t70.7h after glucose addition (Supplementary Fig.
617S3.26). Nevertheless, these changes were transient and the
618mRNA levels of these genes during the FK506 production
619phase were similar in the three experimental conditions (data
620not shown).
621The main source of oxidative stress in the cultures might be
622the activity of the respiratory chain. For example, in E. coli as
623much as 87% of the H2O2 is generated by this mean
624(Gónzalez-Flecha and Demple 1995). Thus, the activation of
625genes involved in oxidative and sulfide stress might reflect an
626increased flux through the respiratory chain. Any of the three
627additions increased the mRNA levels of the NAD+ synthase
628coding gene nadE, which might indicate a situation of low
629NAD+ availability. We also observed a downregulation in
630the transcription of the nuo operon, encoding the NADH de-
631hydrogenase I, which is responsible for the regeneration of
632NAD+ in the respiratory chain. The repression was stronger
633in the case of glycerol addition (Supplementary Fig. S3.27).

Fig. 3 Schematic representation
of the serine, glycine, threonine,
and methionine biosynthetic
pathways and the effect of
glucose addition. Genes showing
transcriptional upregulation are
indicated above the
corresponding arrow
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634 Considering that in E. coli, the nuo operon is repressed in
635 anaerobic conditions, but also under high glycolytic fluxes
636 (Vemuri et al. 2006), these results are in agreement with the
637 increased respiratory activity suggested above.

638 Nucleotide metabolism, transcription, and translation

639 Glucose activated rapidly transcription of genes for de novo
640 biosynthesis of pyrimidines from L-glutamine to UMP
641 (pyrR, pyrBC-STSU_29616-pyrAa-pyrA-pyrD, pyrF;
642 Supplementary Fig. S3.28). Genes for the biosynthesis of
643 purines (operon purNH) were transiently repressed by glu-
644 cose and glycerol at t70.7h, and activated at t72h by glucose
645 (Supp lementa ry F ig . S3 .29) . Meanwhi le , deoD
646 (STSU_12420), which product is involved in the nucleotide
647 salvage pathway, showed just the opposite profile
648 (Supplementary Fig. S3.29). Besides, transcription of ade-
649 nylate kinase gene adk was permanently upregulated after
650 glucose addition (Supplementary Fig. S3.30). The encoded
651 enzyme contributes to the homeostasis of adenine nucleo-
652 tides catalyzing the reversible reaction ADP+ADP ↔
653 ATP+AMP.
654 The effect of glucose was extended to genes related with
655 transcription and translation processes. It stimulated transcrip-
656 tion of rpoA and rpoC at t72h, encoding subunits of the RNA
657 polymerase (Supplementary Fig. S3.31; rpoAwas not filtered
658 in the analysis but showed the same transcriptional profile
659 than rpoC) and up to 35 genes encoding ribosomal proteins
660 (Supplementary Fig. S3.32 and Supplementary Fig. S3.33;
661 note that not all these genes were filtered in the analysis but
662 they share the same profile). In addition, we detected several
663 genes activated by glucose that did not pass the filters used in
664 the analysis such as the translation initiation factor gene infA
665 (Supplementary Fig. S3.34), the pseudouridine tRNA syn-
666 thase truA, and the phenylalanine tRNA ligase pheST operon
667 (Supplementary Fig. S3.34). All the additions activated the
668 transcription of prfB, encoding the peptide chain release factor
669 2 (Supplementary Fig. S3.34).
670 Glucose promoted mRNA turnover to adapt the tran-
671 scriptome to a new metabolic background. For example, the
672 mRNA levels of rns (which encodes the ribonuclease E, a
673 protein likely to be part of a RNA degradosome-like complex
674 in S. coelicolor;Q4 Lee and Cohen 2003) increased after the
675 addition (Supplementary Fig. S3.35). It also stimulated tran-
676 scription of STSU_18582, encoding an ATP-dependent RNA
677 helicase (Supplementary Fig. S3.35).
678 Several heat shock proteins (Hsps) that serve as molecular
679 chaperones or proteases were induced after the additions.
680 Hsps are not only involved in the stress response, they also
681 play crucial roles under normal conditions by assisting in the
682 folding of new polypeptides (Hartl 1996). Thus, the additions
683 might stimulate the formation of new polypeptides.
684 Transcription of the chaperone coding gene groEL, which is

685induced under acidic and heat stress (Kim et al. 2008; de León
686et al. 1997), was significantly downregulated after all the ad-
687ditions (at t70.7h for glucose addition and at t72h for glycerol
688and maltose additions). The mRNA levels of hspR, encoding
689the heat-shock regulatory system regulator, increased after all
690the additions and, as expected, the transcriptional profile of the
691target operon dnaK-grpE-dnaJ-was very similar
692(Supplementary Fig. S3.36; Bucca et al. 2009). In addition,
693the protease coding gene lon, which is a direct target of HspR
694(Bucca et al. 2003), increased its transcription after all the
695additions (Supplementary Fig. S3.36).
696Interestingly, 2 h after glucose addition, transcription of
697pcrA was specifically downregulated. This gene encodes the
698proteasome subunit alpha.We also found a set of genes related
699to the proteasome complex (pcrB -STSU_28817-
700STSU_28822-arcAA) that were specifically downregulated
701by glucose, although they were not filtered with our approach
702(Supplementary Fig. S3.37). It must be noted that a link be-
703tween proteasome and stress-responsive proteins has been
704suggested before since mutant strains show an increased re-
705sistance to certain hydroperoxydes (DeMot et al. 2007). Thus,
706transcriptional downregulation of the proteasome coding
707genes might give an advantage under the oxidative stress sit-
708uation generated by the additions.

709Transcriptomics during the stationary growth phase:
710effects of the carbon sources on antibiotic production
711and morphological differentiation

712Transcriptional patterns of the fkb cluster genes

713The transcriptomic profiles of the fkb cluster under the control
714condition allowed us to identify different transcriptional pat-
715terns (see Fig. 4) which correlate well with the transcriptional
716units proposed by Ordoñez-Robles et al. (2016). Transcription
717of fkbR (encoding a LysR transcriptional regulator) and the all
718subcluster genes allMNPOS was low throughout the temporal
719series, in accordance with that reported before (Ordóñez-
720Robles et al. 2016). The operon tcs6-fkbQ-fkbN, which is tran-
721scribed in a single mRNA from two independent promoters
722(one fkbN-dependent and other fkbN-independent; Ordóñez-
723Robles et al. 2016), increased its transcription preceding
724FK506 production in a two-phase fashion: first from 80 to
72589 h (corresponding to phosphate depletion), and later from
72692 to 100 h. The rest of genes, encoding most of the structural
727genes, showed a transcriptional activation following the in-
728crease in fkbN mRNA levels (i.e., from 92 h), which is in
729agreement with their FkbN dependency (Ordóñez-Robles
730et al. 2016). In view of these results, we can conclude that
731glucose and glycerol exert their effect on FK506 production
732at least at the transcriptional level. Considering that fkbN tran-
733scription is not strongly autoregulated (Ordóñez-Robles et al.
7342016), we consider that a key transcriptional regulator, a
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735 sigma factor or a co-activator molecule, might be absent under
736 our repressing experimental conditions. We cannot exclude
737 the possibility that FkbN might need a post-translational mod-
738 ification for its functioning that does not take place under the
739 repressing conditions.

740 Effects on genes related to morphological and biochemical
741 differentiation

742 The addition of the carbon sources downregulated permanent-
743 ly the transcription of genes involved in biochemical and
744 physiological differentiation. Transcription of the RNA poly-
745 merase sigma factor coding genes hrdA and bldN was down-
746 regulated at t70.7h after glucose and glycerol additions
747 (Supplementary Fig. S3.38a) and the decrease in their tran-
748 scription levels was maintained throughout the cultures
749 (Supplementary Fig. S3.38b). Transcription of hrdA correlates
750 with the formation of aerial mycelia in Streptomyces
751 aureofaciens (Kormanec and Farkasovský 1993) and might
752 control secondary metabolism genes (Strakova et al. 2014).
753 BldN is part of the signaling cascade that leads to morpholog-
754 ical differentiation in the genus Streptomyces and its repres-
755 sion by glucose has been reported previously (Gubbens et al.
756 2012; Romero-Rodríguez et al. 2016a).

757The BldK transporter is considered to be involved in the
758detection of the signal leading to morphological differen-
759tiation in this genus (Nodwell et al. 1996). Transcription of
760the bldK operon was downregulated at t72h after glucose
761and glycerol additions (Supplementary Fig. S3.39a) and
762this response was maintained through the culture
763(Supplementary Fig. S3.39b). A second oligopeptide trans-
764porter operon (STSU_09304-STSU_09324) was negative-
765ly regulated at t70.7h after glucose addition (Supplementary
766Fig. S3.40a and b). This transporter has been shown to be
767related with morphological differentiation in S. coelicolor
768and repressed by glucose (Park et al. 2005; Romero-
769Rodríguez et al. 2016b).
770Glucose addition decreased transcription of wblA, encoding
771a key factor for sporulation in several Streptomyces species
772(Rabyk et al. 2011; Fowler-Goldsworthy et al. 2011). WblA
773downregulates antibiotic production and reduces the response
774to oxidative stress in Streptomyces (Kang et al. 2007; Kim et al.
7752012). We also detected an increase in transcription of obg after
776glucose and glycerol additions (Supplementary Fig. S3.41a and
777b). This gene encodes a membrane-bound GTPase which
778avoids aerial mycelium formation in S. coelicolor (Okamoto
779and Ochi 1998). Obg proteins act as sensor of the energetic
780status of the cell and serve as connectors among different path-
781ways (reviewed by Kint et al. 2014).

b

aFig. 4 Gene organization of the
fkb cluster (a) and transcriptional
patterns detected under the three
experimental conditions (b). In
panel a, the transcriptional units
detected by Ordóñez-Robles et al.
(2016) are indicated in black
frames. In panel b, the average
Mg values of selected genes are
depicted, except for fkbR and
fkbG, which are represented
independently. In the
representation of average Mg

values, error bars have been
omitted to facilitate the
visualization of the results.
Maltose, glucose, and glycerol
conditions are represented in
black, red, and blue lines,
respectively
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782 Crp is a key player of E. coli CCR and a master regulator
783 of antibiotic production in S. coelicolor although it seems to
784 be not involved in Streptomyces CCR (Q5 Gao and Gupta
785 2012). Thus, given its relevance, we searched for
786 S. tsukubaensis genes encoding regulators from the Crp
787 family and identified three genes: crp , eshA , and
788 STSU_03579 (Supplementary Fig. S3.42a and b). crp
789 showed a constitutive transcription while transcription of
790 STSU_03579 was transiently upregulated by glycerol.
791 Glucose and glycerol additions decreased the mRNA levels
792 of eshA, which product regulates antibiotic production in
793 S. coelicolor and Streptomyces griseus (Kawamoto et al.
794 2001; Saito et al. 2006). The two genes located immediately
795 after eshA (STSU_03589 and STSU_03594) showed the
796 same transcriptional pattern (Supplementary Fig. S3.42).
797 In S. coelicolor, their orthologue genes are involved in the
798 biosynthesis of the volatile metabolite methylisoborneol
799 (Wang and Cane 2008).

800 fkbN-like transcriptional profiles

801 Genes showing transcriptional profiles similar to that of fkbN
802 might be involved in FK506 production or precursor supply
803 and thus, theymight be useful candidates for genetic engineer-
804 ing of the strains to strength production of this macrolide. In
805 order to find such candidates, we searched for genes showing
806 a transcriptional profile with a Pearson correlation coefficient
807 equal or higher than 0.9 respect to the transcriptional profile of
808 fkbN. By this means we identified 80 genes that are summa-
809 rized in Supplementary Table S4.
810 Among the genes predicted to encode proteins with a regu-
811 latory role related to morphological differentiation, we identi-
812 fied ramR (Supplementary Fig. S3.43), whose product controls
813 the expression of the ram operon, involved in the transition
814 from vegetative to aerial growth in S. lividans (Keijser et al.
815 2002). Transcription of atrA showed also an fkbN-like profile
816 (see Supplementary Fig. S3.43). AtrA is a TetR transcriptional
817 regulator that activates transcription of the pathway-specific
818 regulators actII-orf4 and strR in S. coelicolor and S. griseus,
819 respectively (Uguru et al. 2005; Vujaklija et al. 1993). It also
820 regulates in a positive manner the daptomycin cluster of
821 Streptomyces roseosporus (Mao et al. 2015).
822 As a second approach, we focused our attention in the
823 transcriptional profiles of the orthologues of well known
824 S. coelicolor secondary metabolism regulators (reviewed by
825 van Wezel and McDowall 2011). The transcriptional patterns
826 of those showing a positive correlation with the transcription
827 of the fkb cluster (see Supplementary Table S5) are depicted in
828 Supplementary Fig. S3.44 and Supplementary Fig. S3.45.
829 Among them, afsR is an interesting candidate for further stud-
830 ies since it has been found to be overexpressed in a
831 S. tsukubaensis FK506-overproducing strain (Du et al. 2014).

832Among the genes encoding biosynthetic functions related
833to the secondary metabolism and showing fkbN-like profiles,
834we identified STSU_07618 and ppt1 (Supplementary Fig.
835S3.46). These genes encode a type II thioesterase and a 4′-
836phosphopantetheynil transferase which transcription has been
837reported to be affected by FkbN inactivation (Ordóñez-Robles
838et al. 2016). In addition, the product of the ppt1 orthologue is
839involved in FK506 production in S. tsukubaensis L19 (Wang
840et al. 2016). We also identified a whiE gene which is related to
841the production of the spore pigment (Davis and Chater 1990).

842Discussion

843In this work we report for the first time that glucose and
844glycerol block FK506 production in S. tsukubaensis. The
845lack of transcriptional activation of the fkb cluster indicates
846that both sugars exert their role at least at the transcriptional
847level. To our knowledge, this is the first report on the
848repressing role of glucose in S. tsukubaensis, since Yoon and
849Choi (1997) reported no differences in FK506 production in
850liquid cultures containing glucose 0.17 M (3% w/v) and
851Martínez-Castro et al. (2013) did not detect carbon repression
852of FK506 biosynthesis on ISP4 liquid media in the presence of
853glucose 0.22 M (2% w/v). Nevertheless, the differences in
854media composition and the presence of glucose from the be-
855ginning of the cultures might account for such different
856results.
857This work represents the first genome-wide study on the
858effects of glycerol as a repressing carbon source in
859Streptomyces. Using a second repressing carbon source en-
860ables us to distinguish between general and specific regulatory
861mechanisms. In fact, we identified common transcriptional
862patterns but also different responses between glucose and
863glycerol experimental conditions and we can conclude that
864the effect of glycerol on central carbon pathways is much
865narrower than that of glucose. Both sources stimulated tran-
866scription of genes involved in DNA replication and transcrip-
867tion and, as expected from the concept of CCR, downregulat-
868ed genes encoding alternative carbon source transporters.
869Several genes related to sulfate and phosphate assimilation
870increased their mRNA levels in response to the additions,
871highlighting the importance of cross-regulation between nu-
872tritional networks. Glucose and glycerol decreased transcrip-
873tion of key genes involved morphological and biochemical
874differentiation throughout the cultures. As it has been sug-
875gested before for glucose (Romero-Rodríguez et al. 2016b),
876preferred carbon sources might block the signaling cascade
877leading to differentiation at very early stages such as the trans-
878port of certain oligopeptides. As in the model species, we iden-
879tified a permanent transcriptional repression of the genes
880encoding the oligopeptide transporters bldK and
881STSU_09304-STSU_09324 (orthologue to SCO5480-
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882 SCO5476). Interestingly, although both operons share a similar
883 transcriptional pattern along the cultures, the response to carbon
884 addition of STSU_09304-STSU_09324 was fastest than that of
885 bldK. The predicted products of the lipoprotein coding genes of
886 both transporters show a 27.8% of identity and a 43.8% of
887 similarity. Thus, we consider this transporter as a new promising
888 candidate for the study of differentiation in Streptomyces.
889 Nevertheless, the lack of transcription of key developmental
890 and fkb genes is likely to be related with the absence of certain
891 transcriptional regulators or sigma factors such as hrdA or bldN.
892 In the case of glucose, several omic studies are available to
893 compare our results. We obtained experimental evidence
894 supporting the different transcriptional regulation of paralog
895 genes encoding the same enzymatic activity such as the pfkA,
896 gdh, and fabG genes. It is worthy to mention the differences
897 detected between S. tsukubaensis and the model species
898 S. coelicolor. For example, glucose increases transcription of
899 the glutamate transporter operon gltABCD in S. coelicolor,
900 since glutamate is preferred over glucose in this species
901 (Romero-Rodríguez et al. 2016a; van Wezel et al. 2005). In
902 S. tsukubaensiswe observed the opposite response, indicating
903 that glucose slows down glutamate consumption and might
904 act as preferred carbon source over glutamate. Similarly, the
905 transcriptional behavior of the xylose transporter genes is op-
906 posed in both species (Gubbens et al. 2012; Romero-
907 Rodríguez et al. 2016a). In addition, contrary to the situation
908 in the model species, there is a lack of glucose-dependent
909 transcriptional activation of the glucose permease coding gene
910 glcP in S. tsukubaensis. This raises the question of how is
911 glucose internalized in this species. These examples reflect
912 the differences between regulatory networks in Streptomyces
913 species and strengthen the utilization of new models to unrav-
914 el Streptomyces biology.
915 This work also highlights the importance of performing
916 time series designs instead of one point designs when ana-
917 lyzing omic data. For example, Romero-Rodríguez et al.
918 (2016b) did not detect differences in the expression of the
919 important transcriptional regulator AtrA (SCO4118) be-
920 tween repressing and non-repressing conditions in the
921 unique sample collected during the exponential growth
922 phase. In our work, we did not detect differences between
923 experimental conditions during the exponential growth
924 phase, but the mRNA levels of the orthologous atrA gene
925 (STSU_07858) were 3.2 times higher in the control than in
926 repressing conditions during the stationary phase (i.e.,
927 100 h). Therefore, relevant information might be lost in
928 one point designs.
929 Finally, the identification of transcriptional regulators
930 showing fkbN-like transcriptional profiles that are involved
931 in antibiotic production in other Streptomyces species (i.e.,
932 atrA or afsR) provide candidates for FK506 yield improve-
933 ment but also for the awakening of secondary metabolite
934 cryptic clusters.
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