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Kinetic mixing between the metric and scalar degrees of freedom is an essential ingredient in
contemporary scalar-tensor theories. This often makes it hard to understand their physical content,
especially when derivative mixing is present, as is the case for Horndeski action. In this work we develop a
method that allows us to write a Ricci-curvature-free scalar field equation, and we discuss some of the
advantages of such a rephrasing in the study of stability issues in the presence of matter, the existence of an
Einstein frame, and the generalization of the disformal screening mechanism. For quartic Horndeski
theories, such a procedure leaves, in general, a residual coupling to the curvature, given by the Weyl tensor.
This gives rise to a binary classification of scalar-tensor theories into stirred theories, in which the curvature
can be substituted, and shaken theories, in which a residual coupling to the curvature remains. Quite
remarkably, we have found that generalized Dirac-Born-Infeld Galileons belong to the first class. Finally,
we discuss kinetic mixing in quintic theories, in which nonlinear mixing terms appear, and in the recently
proposed theories beyond Horndeski that display a novel form of kinetic mixing, in which the field
equation is sourced by derivatives of the energy-momentum tensor.
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I. INTRODUCTION

The evidence for accelerated stages of expansion in our
Universe’s cosmological evolution has been increasing over
the last years. The first of such periods, cosmic inflation,
would have occurred in the very early Universe, giving birth
to a flat, homogeneous, and isotropic space-time, filled with
thermalized radiation and imprinted with nearly scale-
invariant and adiabatic perturbations. The second, late-time
cosmic acceleration, reflects a much lower energy scale and
only unfolds in the low-redshift universe. Support for these
phases of cosmological evolution comes from a number of
complementary and increasingly precise probes that explore
both the late and the early Universe [1–3]. The implications
of cosmic acceleration for fundamental physics will be
further scrutinized with the next generation of experiments,
e.g., the Euclid satellite, the Dark Energy Spectroscopic
Instrument, and the Square Kilometer Array [4–6].
The simplest known mechanism for acceleration, a

cosmological constant, cannot satisfactorily explain cosmic
inflation without the introduction of a mechanism for its
decay and a departure from scale invariance of the initial
perturbations. Since inflation has to end, a more natural
explanation is that it is produced by an additional dynami-
cal degree of freedom, whose energy density eventually
decays into dark matter and standard model particles [7,8].

Concerning the late-time acceleration, the cosmological
constant is able to explain current observations for cosmic
acceleration, but it suffers from many theoretical problems
that make the investigation of alternatives a compelling task
[9–11]. A simple possibility to address the two phases of
cosmic acceleration is the introduction of scalar degree(s)
of freedom. Indeed, scalar fields are compatible with the
symmetries of the cosmological space-time, can easily
produce cosmic acceleration, and occur naturally as limits
of high-energy theories of gravity. The search for models
able to explain cosmic acceleration has triggered consid-
erable interest in alternative gravitational theories (see [12]
for a recent review).
In particular, scalar-tensor (ST) theories of gravity have

existed in the literature since the early 1960s,when alternative
theories were developed in parallel to increasingly precise
tests of gravity in the Solar System [13]. The interactions
present in old-school Jordan-Brans-Dicke (JBD) theories [14]
constitute the first generation of ST theories, which was soon
developed to be a consistent framework for alternatives to
Einstein gravity [15,16]. Recent developments in extra
dimensions and massive gravity have also uncovered new
theoretical frameworks that produce viable modifications of
gravity: The generalization of the interactions found in the
5-dimensional Dvali-Gabadadze-Porrati braneworld model
[17] led to the proposal of Galileon ST field theories [18],
which also arise naturally in the recently proposed de Rham,
Gabadadze, Tolley ghost-free massive gravity [19] and
bigravity [20] in the limit in which gravity decouples (see
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[21,22] for reviews). While the aforementioned theories
describe essentially different infrared physics, they are char-
acterizedby the sameset of derivative interactionsof thescalar
field in the decoupling limit.
The generalization of these interactions to curved space-

time [23] naturally leads to Horndeski’s theory [24], which
was first proposed in the early 1970s. This is the most
general ST action in four dimensions, whose variation
produces second-order equations of motion. It characterizes
the second generation of ST theories and encompasses a
large set of models proposed over the past years. As such,
this theory has attracted considerable attention as a way to
unify ST theories and study their phenomenology as
applied to late-time cosmology [25–27], inflation [28],
and local gravity tests [29]. However, the completeness of
Horndeski’s theory as the master framework encompassing
all viable ST theories has been recently challenged:
Examples of theories beyond Horndeski indicate the
existence of a third generation of healthy ST theories
[30–32]. Given this large number of different models and
the need to check their viability, many attempts have been
made to formulate model-independent observables to test
general properties of ST theories [25,27,33], and also to
assist in the search for connections between apparently
different theories [34].
This work provides a general procedure to investigate the

properties of Horndeski’s theory by using the way the
scalar and the metric degrees of freedom interact as a
starting point. In fact, the aforementioned theories exhibit
different degrees of kinetic interaction between the scalar
and tensor degrees of freedom, a phenomenon known as
kinetic mixing or kinetic braiding [35]. This property
entangles the derivatives of the scalar and tensor field in
the equations of motion, in ways that are unique to each
theory. As we move from the simpler JBD theories further
into theories belonging to the second and third generation,
the kinetic mixing becomes more intricate and new
coupling structures appear. The idea is then to use the
metric equations to remove all instances of the curvature
(which contains the second derivatives of the metric field)
from the scalar field equation of motion. This procedure for

covariant debraiding greatly simplifies the study of the
properties of the scalar degree of freedom.
We first illustrate how this procedure works for JBD ST

theories and for cubic Galileons [35] and, subsequently,
we introduce the debraiding procedure for general quartic
Horndeski theories. This case represents a completely new
situation, since couplings between curvature and scalar
derivatives appear at the level of the action, and we found
several new aspects for this extension that are not present in
simpler cases. In particular, this procedure cannot be
completed in general, due to a coupling between the scalar
field and the Weyl curvature tensor (the traceless part of the
Riemann tensor), which is not algebraically determined by
the metric equations of motion. The debraiding procedure
can also introduce spurious solutions to the equations of
motion. However, we show that it is always possible to select
the physical branch of solutions. We also found that in a
specific subset of quartic theories, Dirac-Born-Infeld (DBI)-
like theories, the debraiding procedure can be performed in
an exact manner, and both the Weyl tensor and the spurious
solutions are automatically eliminated. This result is
expected, as such theories are equivalent to Einstein gravity
via a disformal redefinition of the metric. These two different
behaviors under the debraiding procedure suggest classify-
ing ST theories according to the possibility of removing all
curvature (stirred) or not (shaken).
The unbraided equations provide a new look into the

properties of Horndeski theories: It unambiguously shows
the couplings of the scalar field and sheds light to its
behavior within matter, as schematically shown in Table I.
Using our formalism we show that the DBI-like theories can
present gradient instabilities in a radiation-dominated uni-
verse with a sufficiently high pressure density, posing a
serious challenge for the simplest among such theories. This
instability can be easily avoided in non-DBI-like theories, for
which the richer mixing structure can prevent the gradient
instability. Finally, the unbraided equations allow us to
generalize the disformal screening mechanism for scalar
modifications of gravity [36,37]. This effect, which has been
studied only for DBI-like theories in the Einstein frame,
allows the scalar field to evolve independently of the energy

TABLE I. Three generations of ST theories and some of their theoretical properties. The first line describes how the Ostrogradski
degeneracy [38] is avoided as we move towards more complex ST theories. In the second line are the typical scalar-matter couplings that
appear after the debraiding procedure is carried out. Finally, the third line shows which metric redefinition leaves the action formally
invariant, amounting to a redefinition of the functions that specify the model.

Old school Horndeski Third generation

Examples JBD=fðRÞ Covariant Galileons Covariantized Galileons

Ostrogradski degeneracy No ∂2ϕ in L Second-order equations Implicit constraints
Algebraic Algebraic Derivative

Kinetic mixing T Tμνϕ
;μν, Tμνϕ

;μϕ;ν ∇ðTμνϕ
;μϕ;νÞ;∇T;…

Wμανβϕ
;μνϕ;αϕ;β;…

Formal invariance
Under metric redefinitions CðϕÞgμν CðϕÞgμν þDðϕÞϕ;μϕ;ν DðX;ϕÞϕ;μϕ;ν þ � � �
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density if the scalar’s time evolution is non-negligible and
the energy density of matter is sufficiently large. In this work
we show that this mechanism is present in a broader class of
quartic Horndeski theories, in which it may work under a
more relaxed set of assumptions.
We also show how the mixing structure acquires even

more involved forms beyond quartic Horndeski theories. In
quintic Horndeski theories the field equation has terms that
are nonlinear in the curvature, in the form of the Gauss-
Bonnet scalar. Such nonlinear mixing terms contain the
square of the Weyl tensor and cannot be debraided using our
techniques. Theories beyond Horndeski introduce an even
more subtle form of kinetic mixing, in which the scalar field
is sourced by derivatives of the energy-momentum tensor
(which cannot be replaced using energy-momentum con-
servation in a covariant way).
The paper is organized as follows. In Sec. II we review

the concept of kinetic mixing and covariant debraiding in
old-school and cubic ST theories. This study is extended to
quartic theories in Sec. III, where we identify the mixing
structures, apply the covariant debraiding program, and
comment on the new subtleties that appear. In Sec. IV we
explore the consequences of such mixing, both in the
general case and specializing to the specific case of quartic
DBI Galileon [34]. In particular, we discuss the relation
between the coupling to the Weyl tensor and the existence
of an Einstein frame, the stability of the theory, and the
generalization of the disformal screening mechanism. In
Sec. V we extend some of the discussion to quintic theories
and to theories beyond Horndeski, showing how new
matter-scalar couplings appears in such models. Finally,
in Sec. VI we discuss our results and draw the conclusions.
We will work in four space-time dimensions, use a −þ

þþ convention for the metric, and set the speed of light and
the reduced Planck constant to unity, ℏ ¼ c ¼ 1.
Summation over repeated indices is assumed.

II. KINETIC MIXING: DEFINITION
AND SIMPLE CASES

In the Introduction we pointed out how contemporary ST
theories can show a very complex mixing of their degrees of
freedom in a way that is specific to the theory at hand. In
particular, we have stressed how the couplings between
metric derivatives and the scalar field in the action will lead
to second derivatives of one field acting as source for the
other and to couplings between them, resulting in a very
complex coupled dynamical system. In general, this mixing
will not only complicate the numerical solution of the
equations, but will also obscure their physical interpretation.
One interesting way to simplify the scalar field equations

is what we will call the covariant debraiding procedure.
This basically amounts to identifying the scalar-curvature
couplings that appear in the scalar equation, and using
contractions of the metric equations with the scalar field
derivatives to trade those for terms that depend on the scalar

and matter fields. The outcome of this procedure will be a
scalar equation of motion that depends on the scalar and
matter fields and whose only second derivatives are those of
the scalar field.
There are several reasons for pursuing this idea. First, an

unmixed equation of motion for the scalar field makes clear
the interaction structure of the theory and the couplings
between matter and the scalar field. This allows us to use
the debraided equation to study the stability of a given
theory without the need to also take into account the metric
equations. The kinetic mixing properties of a theory also
determine its phenomenology: For example, kinetic mixing
is necessary for any model to have a variable effective
gravitational constant in cosmological scenarios [27].
Another reason is that this procedure allows for a classi-
fication of different models depending on their matter and
self-interactions. In fact, we will see that these are unique
features of any given model and can help, via field
redefinitions, to distinguish between theories that are not
equivalent. Finally, we notice that this procedure has the
additional advantage of being fully nonlinear and covariant
(not reliant on a specific expansion or choice of back-
ground) and of using the Jordan frame matter stress-energy
tensor, which is covariantly conserved. This is simpler than
rewriting the theory in the Einstein frame, which is in
general not possible and leads to the energy-momentum
being sourced by the scalar explicitly.
In this paper we will mainly work with Horndeski’s

theory [24] in its modern formulation [39], described by the
following action:

SH½gμν;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p X4
i¼2

Li; ð1Þ

where

L2 ¼ G2ðX;ϕÞ; ð2Þ

L3 ¼ G3ðX;ϕÞ□ϕ; ð3Þ

L4 ¼ G4ðX;ϕÞRþ G4;Xðð□ϕÞ2 − ðϕ;μνÞ2Þ; ð4Þ

L5 ¼ G5ðX;ϕÞGμνϕ
;μν

−
1

6
G5;Xðð□ϕÞ3 − 3□ϕðϕ;μνÞ2 þ 2ðϕ;μνÞ3Þ; ð5Þ

are the quadratic, cubic, quartic, and quintic Lagrangians,
respectively.1 Here X ≡ − 1

2
gμνϕ;μϕ;ν, and □ϕ ¼ ϕ;μ

;μ,
ðϕ;μνÞn¼ϕ;αn

α1 � � �ϕ;αn−1
;αn denote contractions of the field’s

second derivatives. As we discussed in the Introduction,
this theory has attracted considerable attention in recent

1These names have historic origin. They refer to the power of
the field in flat-space Galileons, for which G1 ∝ ϕ, G2; G3 ∝ X,
G4; G5 ∝ X2.
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years as a way to unify ST theories and study their
phenomenology and, hence, represents the best framework
for investigating the debraiding procedure.
We will introduce the essential features of kinetic mixing

by presenting results for JBD theories and cubic Galileons
(the simplest of Horndeski’s theories) in which all the basic
features are already present. Quartic Horndeski theories
will be presented separately in Secs. III and IV, while the
novel kinetic mixing features introduced in quintic and
non-Horndeski theories will be briefly discussed in Sec. V.

A. Old-school scalar-tensor theories

Let us start exploring the issue of kinetic mixing in JBD
theories of gravity. Here we focus on a theory described by
a coupling between the field and the Ricci scalar, a
canonical kinetic term, and a potential for the field,2

SJBD ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

p

2
CðϕÞ2Rþ X − VðϕÞ þ Lm

�
:

ð6Þ

The dynamics of the above theory is described by the
metric equation

C2Gμν þ ðgμν□C2 − C2
;μνÞ

¼ 1

M2
p
ðTðmÞ

μν þ ϕ;μϕ;ν þ gμνðX − VÞÞ; ð7Þ

where the energy-momentum tensor is defined as Tμν ¼
−2ffiffiffiffi−gp δð ffiffiffiffi−gp

LmÞ
δgμν , and the scalar field equation

□ϕ − V 0 þ CC0M2
pR ¼ 0: ð8Þ

The kinetic mixing is reflected in the fact that the kinetic
terms of the metric (∼Rμν) and of the field (ϕ;μν ∼∇∇C)
appear in both equations. It is possible to debraid the scalar
field equation by taking the trace of the metric equations
and substituting it in Eq. (8).
The debraided field equation has the following structure:

ð1þ 6M2
PlC

02Þ□ϕ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
renormalized kinetic term

− V 0

þ 4
C;ϕ

C
V − 2X

C;ϕ

C
ð6M2

PlðC02 þ CC;ϕϕÞ þ 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
additional terms

¼ C;ϕ

C
T|ffl{zffl}

matter coupling

; ð9Þ

and contains no second derivatives of the metric. This
simple example already reveals some of the debraiding
features that will occur in more general theories:

1. There is an explicit coupling to matter, leading to an
environment-dependent effective potential. In this
simple case it is proportional to the trace of the
energy-momentum tensor T, as could be anticipated
from the coupling between the Ricci scalar and the
scalar field function C in Eq. (8). Notice that this
coupling is one way, in the sense that a minimally
coupled matter source will still have the matter
stress-energy tensor conserved.

2. The coefficient of the second derivative term gets
renormalized by a function of the field, showing how
kinetic mixing can affect the stability properties of
the scalar field equation. In this case the coefficient
is strictly positive and, hence, no instabilities can be
dynamically generated. However, this will not gen-
erally be true for more complex theories.

3. New terms not involving second derivatives appear
in the equation, coming from the contraction of the
first derivative terms in the metric equations. In
particular, the potential term for the field is modified
and a new term involving first derivatives of the field
appears.

It is worth stressing that matter is minimally coupled and
therefore the energy-momentum tensor is covariantly con-
served, ∇μT

μν
ðmÞ ¼ 0. This would not be true if similar

results were obtained by expressing the theory in the
Einstein frame by a redefinition of the metric.

B. Cubic Horndeski theories

Cubic Horndeski theories (3) are characterized as
G4 ¼ M2

Pl=2, G5 ¼ 0 and generic functions G3 and G2.
As we will see, they contain richer forms of kinetic mixing
in curved space-time. Here we explore their behavior for
the simplest nontrivial example, the cubic Galileon,

SCG ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

p

2
Rþ X þ X

Λ3
□ϕ

�
: ð10Þ

The second derivatives of the field present in the last term
produce a coupling with the affine connection, which in
turn introduces a term involving the curvature in the field
equation,

δS
δϕ

¼ Λ−3ϕ;μRμνϕ;ν þ terms without curvature: ð11Þ

(One can alternatively see the emergence of the Ricci tensor
through the anticommutation of covariant derivatives,
which appear antisymmetrically in the equations of
motion.) Cubic Horndeski theories are known as kinetic
gravity braiding (KGB) [35,42] for this reason.

2This is not the most general formulation of an old-school ST
theory, but such a theory can always be mapped to this form with
suitable field redefinitions [40,41].
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Just as in the JBD case, it is possible to use contractions
of the metric equations to solve for the curvature coupling
in Eq. (11). The only difference is that one has to contract
with both the metric and ϕ;μϕ;ν. The resulting debraided
field equation reads��

1 −
2X2

M2
pΛ6

�
gμν −

4X
M2

pΛ6
ϕ;μϕ;ν

�
ϕ;μν|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

renormalized kinetic term

−
4X2

M2
pΛ3|fflffl{zfflffl}

extra terms

þ 1

Λ3
½ð□ϕÞ2 − ϕ;μνϕ

;μν�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
higher derivative interactions

−
1

M2
pΛ3

ðϕ;μTμνϕ;ν þ TXÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
coupling to matter

¼ 0: ð12Þ

We note the following features:
1. The coupling to matter has two contributions: a

conformal one, proportional to the trace T and
weighted by X, and a disformal one, given by the
contraction of the energy-momentum tensor with
ϕ;μϕ;ν. The disformal part is particularly interesting,
as it indicates that radiation would have nontrivial
effects on the field in this type of theory.

2. The kinetic term is renormalized due to the braiding
by both conformal ∝ gμν as well as disformal
∝ ϕ;μϕ;ν terms. Unlike in the old-school case, the
corrections do not remain positive definite.

3. There appears a Galileon term constructed out of
antisymmetric, nonlinear second derivative contrac-
tions. This term is not renormalized in the unbraided
form of the equations. This type of term is respon-
sible for the Vainshtein screening mechanism in
cubic theories that allows these theories to fit local
gravity tests.

The authors of [35] used the debraided equations to study
causality and stability of KGB theories. In what follows we
extend the same program to quartic Horndeski theories and
discuss the new features and subtleties that appear.

III. KINETIC MIXING IN QUARTIC
HORNDESKI THEORIES

In this section we extend the debraiding formalism
to quartic Horndeski theories defined by the fixing
G5ðϕ; XÞ ¼ 0 and G3ðϕ; XÞ ¼ 0 while leaving the other
two functions arbitrary.3

These theories, defined in Eq. (4), introduce a range of
new kinetic mixing terms which arise in the field equation
via both the cancellation of higher derivatives (due to the
antisymmetric structure, as in cubic theories) and the direct

coupling between the field and the Ricci scalar in the
action, G4ðX;ϕÞR.4 The metric and scalar field equations
are reported in Appendix A, while we focus here on the
mixing terms that appear in the equation of motion with the
following structure:

δL4

δϕ
¼ −2G4;XGαβϕ;αβ þ 2G4;XXϕ

;αϕ;β

×

�
2ϕ;α

;λRλβ þ ϕ;μνRμανβ −□ϕRαβ −
R
2
ϕ;αβ

�
þ G4;ϕR − 2G4;XϕRαβϕ

;αϕ;β

þ terms without curvature: ð13Þ

We note two distinguishing features that did not appear in
lower-order theories. First, there are second derivatives of
the scalar field multiplied by Ricci curvature. Therefore,
using the metric equations will introduce new products of
field derivatives into the equations, which will in general
fail to be linear in the second time derivatives and, hence,
may introduce spurious solutions to the equations of
motion. Second, the derivatives of the field also couple
to the full Riemann tensor. This term can be rewritten in
terms of the Weyl tensor as

Rμναβ ¼ Wμναβ þ gμ½αRβ�ν − gν½βRα�μ −
1

3
Rgμ½αgβ�ν; ð14Þ

where the square brackets stands for antisymmetrization of
the n encompassed indices with weight 1=n!. This is a
necessary step in order to split the Riemann tensor into its
trace part, solvable from the metric equations, and its
traceless part, which cannot be solved for using contrac-
tions of the metric equations. In addition to introducing new
interesting features, both aspects represent an obstruction to
the debraiding process. The spurious solutions are a
technical complication that can be surpassed, as we will
explain in Sec. III A. On the other hand, the Weyl coupling
is not devoid of physical meaning, and its consequences
are explored in Sec. IVA.
In the case under investigation, where G4 ¼ G4ðϕ; XÞ

and G2 ¼ G2ðϕ; XÞ, the field Euler-Lagrange equation can
be written in the following compact form:

Lμνϕ;μν þ V þ Pμναβϕ;μνϕ;αβ þQμναβρσϕ;μνϕ;αβϕ;ρσ ¼ 0;

ð15Þ

with

3The second choice is just for practical use, as it simplifies the
calculations without significantly altering the analysis, but the
first one is more important. In fact, taking G5ðϕ; XÞ ≠ 0 would
introduce significant deviations, as we will discuss later on.

4Note that the dependence of X generates derivatives of
R in the field equation, which cancel exactly with counter
terms stemming from the pure field part [43]. This follows from
the defining property of Horndeski theories, namely, the
absence of higher-than-second derivatives in the Euler-
Lagrange variation.
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Lμν ¼
�
G2;X þG4;XX

�
Gαβϕ

;αϕ;β

��
gμν

−
�
G2;XX −

1

3
G4;XXR

�
ϕ;μϕ;ν − 2ðG4;X þ G4;XXÞGμν

þ 2G4;XXðϕ;αGα
μϕ;ν þ ϕ;αϕ;βWμ

α
ν
βÞ; ð16Þ

Pμναβ ¼ ð3G4;ϕX − 2G4;ϕXXÞðgμνgαβ − gμαgνβÞ
þ 2G4;ϕXXð2ϕ;μϕ;αgνβ − 2ϕ;μϕ;νgαβÞ; ð17Þ

Qμναβρσ ¼ G4;XXðgμνgαβgρσ − 3gμνgαρgβσ þ 2gμσgναgβρÞ
− G4;XXXð2ϕ;μgναgβρϕ;σ− 2ϕ;μgναgρσϕ;βþ ϕ;μϕ;ν

× ðgρσgαβ − gραgσβÞÞ; ð18Þ

V ¼ G2;ϕ − 2XG2;ϕX − 4G4;ϕX ϕ
;α Gαβ ϕ

;β þG4;ϕR; ð19Þ

where the first term is linear in second derivatives, the
second one is a potential term that depends at most on first
derivatives of the field, and the last two terms, despite
being, respectively, quadratic and cubic in derivatives, are
linear in second time derivatives and nonlinear only in
mixed spatial derivatives.
As has been done in the previous cases, we can

eliminate the curvature-field couplings with suitable
contractions of the metric equations with scalar field
derivatives. In this case the structure is more involved
and, hence, we describe it in a schematic way, leaving the
full expressions to Appendix A. The debraided field
equation is

~Lμνϕ;μν þ ~V þQTT þQhTiϕ;βTαβϕ
;α

þ ð ~Pμναβ þ KμναβÞϕ;μνϕ;αβ

þ ðHμναβρσ þ ~QμναβρσÞϕ;μνϕ;αβϕ;ρσ ¼ 0; ð20Þ

with

~Lμν ¼ ðG0 þ GhTiϕ;βTαβϕ
;α þ GTTÞgμν

þ ðS0 þ ShTiϕ;βTαβϕ
;α þ STTÞϕ;μϕ;ν

þ ChTiϕ;σTσ
μϕ;ν þ CTTμν þ CWϕ;αϕ;βWμ

α
ν
β; ð21Þ

~Pμναβ ¼ V4Bðgμνgαβ − gμαgνβÞ
þ V4Dðϕ;μϕ;αgνβ − ϕ;μϕ;νgαβÞ; ð22Þ

Kμναβ ¼ WD2ðϕ;μϕ;νϕ;αϕ;β þ 4X2gμνgαβ þ 4Xϕ;μϕ;νgαβÞ;
ð23Þ

~Qμναβρσ ¼ V5gðgμνgαβgρσ − 3gμνgαρgβσ þ 2gμσgναgβρÞ
− V5Xð2ϕμgναgβρϕ;σ − 2ϕ;μgναgρσϕ;β þ ϕ;μϕ;ν

× ðgρσgαβ − gραgσβÞÞ; ð24Þ

Hμναβρσ ¼ W1ððgμνgαβ − gμαgνβÞðϕ;ρϕ;σ þ 2XgρσÞ
þ 3ðϕ;μϕ;βgνα − gμνϕ;αϕ;β

− Xðgμνgαβ − gμαgνβÞÞÞgρσ
þW2ðϕ;μϕ;βgνα − gμνϕ;αϕ;β

− Xðgμνgαβ − gμαgνβÞÞðϕ;ρϕ;σ þ 2XgρσÞ: ð25Þ

Here the coefficients ~V;Gi;Si; Ci;Vi;Wi;Qi depend on ϕ
and X through G4, G2 and their partial derivatives,
and are fixed once a specific model is chosen. In
Table II we schematically report the coefficient structure
for three models of quartic Horndeski, while the general
expressions can be seen in Appendix A 2.
After the debraiding process some of the terms in the

debraided equation take a form analogous to the unbraided
one but with “renormalized” structure coefficients. Extra
terms that couple matter to the scalar field are also
introduced. In this regard, it is interesting to note that
these coefficients (see Appendix A) have a common
denominator structure

X i ∼ ðG4 − 2XG4;XÞ−nðG4 − XG4;XÞ−m: ð26Þ

In particular, the coefficients can become singular for
certain values of the field. However, the first factor is
inversely proportional to the effective Planck mass, defined
as the coefficient of the second time derivative in the
graviton propagation equation. In homogeneous and iso-
tropic backgrounds, and restricting to quartic theories, this
has been shown to be [27]

TABLE II. Debraided coefficient scheme for three models of quartic Horndeski action. The ticks indicate which of the debraided
coefficients is present for each theory.

2
M2

Pl
G4ðϕ; XÞ GT GhTi ST ShTi CT ChTi QT QhTi CW V4D V4B V5D V5B W1 W2 WD2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X=Λ4

p
[Eq. (37)] 0 0 0 0 ✓ 0 0 0 0 0 0 0 0 0 0 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2AðϕÞX=Λ4
p

[Eq. (33)] 0 0 0 0 ✓ 0 ✓ ✓ 0 ✓ ✓ 0 0 0 0 0
ð1þðX=Λ4ÞnÞ
ð1þðX=Λ4Þ [44] ✓ ✓ ✓ ✓ ✓ ✓ 0 0 ✓ 0 0 ✓ ✓ ✓ ✓ 0
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M2
eff ¼ 2ðG4 − 2XG4;XÞ: ð27Þ

This equation can be covariantized right away, suggesting
its validity on general backgrounds. This dependence is
consistent with the fact that the debraiding procedure
substitutes the curvature terms with the energy-momentum
tensor via the metric equations and, hence, it suppresses the
new terms by a Planck mass factor. Therefore, the singu-
larity of the unbraided equations is related to a physical
singularity, as the coefficient of the graviton kinetic term
vanishes. Moreover, requiring the positivity of the effective
Plank mass also implies that the other factor in the
denominator will never become singular as long as G4 is
positive.
The first term in Eq. (20), as can be seen from Eq. (21), is

linear in second derivatives and is of particular interest as it
contains the couplings between matter fields and second
derivatives of the scalar field. This represents a new type of
contribution with respect to the previous cases and is
important for the stability of these models. As we will
discuss below, depending on the nature and evolution of
matter fields, instabilities may occur for certain theories in
the presence of matter. We point out again the presence of
the Weyl term, indicating that there is still a residual
dependence on the second derivatives of the metric, the
physical meaning of which will be discussed in Sec. IVA.
The Qi terms contain other couplings between the scalar

field and matter that involve at most first derivatives of the
scalar field, while the other terms are nonlinear derivative
interactions responsible, for example, for the Vainshtein
screening mechanism. However, among those, the terms
proportional to Hμναβρσ, Kμναβ can be quadratic in second
time derivatives on nontrivial backgrounds. This depend-
ence may introduce spurious solutions; however, they can
be distinguished from the physical ones (see Sec. III A).

A. Spurious solutions and their avoidance

The covariant debraiding procedure introduces unphys-
ical solutions in the field equation. Contractions of the
metric equations with ϕ;μν and ϕ;μ

;λϕ;ν (necessary to the
covariant debraiding process) lead to the introduction of
quadratic powers of second time derivatives in Eq. (20).
Therefore, two branches exist for the solutions: the physical
one and a spurious mode, which has to be disregarded.5

The debraiding procedure is equivalent to summing the
field equation and the combination

M≡ ðc0gμν þ c1ϕ;μϕ;ν þ c2ϕ;μν þ c3ϕ;μϕ;ναϕ;αÞ
× ðEμν − TμνÞ ¼ 0; ð28Þ

where Eμν ¼ 1ffiffiffiffi−gp δð ffiffiffiffi−gp
L4Þ

δgμν and c0-c3 are chosen to cancel the
braiding terms in the field equation. The problematic ϕ̈2

terms appear in the structure terms Hμναβρσ and Kμναβ in
Eq. (20) as a consequence of the contraction of second
derivatives of the scalar field with the metric equations that
also contain such terms, which lack the antisymmetric
structure required to avoid nonlinear terms. Note that the
coefficient of ϕ̈2 involves contractions of spatial deriva-
tives; hence, solutions on simple geometries (e.g.,
Friedmann-Robertson-Walker) will not display the com-
plications associated with the spurious solutions.
We can use a trick to help us pick up the correct branch

for the solution. Instead of adding M to the field equation,
we can deal instead with

δL
δϕ

þ εM ¼ 0: ð29Þ

The above equation allows us to regard the debraiding
procedure as a continuous deformation of the field equation
depending on a parameter ε: It is now possible to
interpolate between the original field equation ε ¼ 0
(which is linear in second time derivatives) and the
unbraided field equation ε ¼ 1. When a time direction
has been chosen (e.g., through an Arnowitt-Deser-Misner
(ADM) decomposition or an explicit choice of coordi-
nates), one can schematically study the field equation

εϕ̈2 þ Bϕ̈þ C ¼ 0; ð30Þ

where ε has been left explicit only in the term quadratic in
second time derivatives. This form is guaranteed by the fact
that all nonlinearities in second time derivatives are
introduced by the unbraiding terms, and are, therefore,
linear in ε. The existence of real solutions will be
determined by the condition B2 − 4εC > 0.6 In that case
there will be two solutions

ϕ̈ ¼ 1

2ε

�
−B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4εC

p 	
¼ B

2ε
ð1� 1Þ∓C

B
þOðϵÞ;

ð31Þ

where the last equality entails an expansion on ε. We can
identify the unphysical branch as the one associated with
the þ sign, as it is not mapped to a solution of the original
equation when ε → 0. As the physical solution should
depend continuously on ε, the solution associated to the
minus sign is the physical one; the plus sign leads to a
spurious solution that is not originally present.

5A cartoon example of this: If our original equation has the
form fðxÞ ¼ a, taking the square will introduce a spurious
solution for x, corresponding to fðxÞ ¼ −a. We thank J. Beltrán
for helping us clarify the introduction of spurious solutions.

6It is theoretically possible for the debraiding equations to have
no real solution, though the original ones do (if B2 < 4C). In that
case one would need to diagonalize the system of differential
equations in some other way in order to numerically integrate the
dynamics.
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Summarizing, one can choose the physical solution of
the unbraided equations after choosing a time coordinate by
writing the field equation in the form (30), setting ε ¼ 1
and integrating in time ϕ̈ using the solution with the
negative sign.

B. DBI-like Galileons

In this section we will apply the debraiding method
described in the previous section to a specific set of models
for which the debraided equations are greatly simplified.
We will then use these models as a reference when
discussing the applications of the debraiding method.
Quite remarkably, these models are a generalization of
the quartic Dirac-Born-Infeld Galileon [34], in which

G4ðϕ; XÞ ¼
M2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2AðϕÞ X

Λ4

r
; ð32Þ

where Λ is a new mass scale, while G2 is left generic.7

The debraided field equation for this theory has the
remarkably simple form

~Lμν∇μ∇νϕþ ~V þQTT þQhTiϕ;βTαβϕ
;α

þ ~Pμναβ∇μ∇νϕ∇α∇βϕ ¼ 0 ð33Þ

with

~Lμν ¼ G0gμν þ S0ϕ
μϕν þ CTTμν; ð34Þ

~Pμναβ ¼ V4Bðgμνgαβ − gμαgνβÞ þ V4Dðϕμϕαgνβ − ϕμϕνgαβÞ;
ð35Þ

where, again, the exact form of the coefficients can be
found in Appendix A 2 a. Here we note some interesting
features in the debraided field equation. First, the linear
term contains only one coupling between Tμν and the scalar
field second derivative, while two terms couple to the trace
of the energy-momentum tensor and its contraction with
first derivatives of the field (as an effective potential).
Second, it only contains nonlinear derivative interaction
terms of order ð∇∇ϕÞ2: The ð∇∇ϕÞ3 terms characteristic of
quartic theories cancel in the debraiding procedure. Finally,
both the Weyl coupling and the nonlinear second time
derivatives cancel from the equations. Hence, the spurious
solutions analyzed in Sec. III A are absent.8

The reason for this simplicity is that the theory can be
cast in a much simpler form by means of a field

redefinition, as the DBI Galileon is equivalent to
Einstein gravity plus a disformal coupling to matter
[37,46]. Because of this simplicity, DBI Galileons offer
a toy example of kinetic mixing in more complicated
Horndeski theories, while also offering a viable and
interesting alternative to inflation [47] and a mechanism
for present-day acceleration [37,48–50].
If we further restrict the class of models and consider a

constant A in the definition of G4 so that

G4 ¼
M2

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 – 2

X
Λ4

r
; ð36Þ

then the equation takes the even simpler form

~Lμνϕ;μν þ ~V ¼ 0; ð37Þ

where

~Lμν ¼
�
G2;X þ 1

Λ4

G2

1 − 2X=Λ4

�
gμν

−
�
G2;XX −

1

Λ4

G2;X

1 − 2X=Λ4

�
ϕ;μϕ;ν

þ 1

Λ4

1

1 − 2X=Λ4
Tμν; ð38Þ

~V ¼ G2;ϕ − 2XG2;ϕX; ð39Þ

where only the coupling between matter and second
derivatives of the field remains. Notice also that the
nonlinear derivative interaction terms have completely
vanished in this case. Thus, this model does not have a
Vainshtein-like screening mechanism, although it might
possess a DBI-like screening [51]. This model is equivalent
to the simplest disformally coupled theories.

IV. CONSEQUENCES OF KINETIC MIXING

In this section we explore some of the consequences of
kinetic mixing, namely, the coupling to the Weyl tensor, the
stability in the presence of matter, and the possibility of
screening modifications of gravity by kinetic mixing. The
discussion will present results both for general quartic
theories and their simpler DBI-like counterparts.

A. Coupling to the Weyl tensor and existence
of an Einstein frame

One of the most salient features of quartic Horndeski
theories, highlighted by our procedure, is the coupling
between the Weyl tensor and the derivatives of the scalar
field. The specific form of the coupling is

ϕ;αϕ;βWμ
α
ν
βϕ;μν ¼ Eμν ~ϕ;μν; ð40Þ

7We could have added a field-dependent Planck mass, but this
would not modify most of the results.

8DBI theories have other interesting properties. For example,
when regarded as effective theories they only require that the
second and higher derivatives remain small, ϕðnÞ ≪ Λnþ1, while
they allow for arbitrary values of first derivatives [45].

DARIO BETTONI AND MIGUEL ZUMALACÁRREGUI PHYSICAL REVIEW D 91, 104009 (2015)

104009-8



where the right-hand side identifies the electric part of the
Weyl tensor with respect to the constant ϕ hypersurfaces.9

Note that, due to the symmetries of the Riemann tensor, the
above is the only independent contraction that one can form
with derivatives of the scalar. By the traceless property of
the Weyl tensor, it only couples to ~ϕ;αβ ¼ ϕ;αβ −□ϕgαβ
and ~Xμν ¼ ϕ;μϕ;ν þ 2Xgμν.
The Weyl tensor is not determined algebraically from the

metric equations. Instead, it obeys a propagation equation

∇αWμναβ ¼ ∇½μGν�β þ
1

3
gβ½μ∇ν�Gα

α; ð41Þ

and it is, therefore, determined by the other fields through
differential identities. One can generally decompose the
curvature into a trace part (Ricci) and a traceless part (Weyl)
using Eq. (14). In Einstein’s theory, the Ricci curvature
vanishes in the absence of matter. Therefore, the Weyl
tensor fully characterizes vacuum effects such as gravita-
tional waves and tidal forces, both of them sourced by
derivatives of the energy-momentum tensor (as given by
the above propagation equation after substituting Gμν →
8πGTμν). One can formally invert Eq. (41) and write the
Weyl tensor with a nonlocal dependence on the energy-
momentum tensor.
In quartic theories, however, the direct coupling to the

Weyl tensor implies that the scalar field has a new
interaction with space-time curvature. The effects of this
coupling are more difficult to interpret, since in ST theories
nontrivial configurations of the scalar field can also
produce a nonzero Ricci curvature in the absence of matter.
This feature prevents the Weyl tensor from fully character-
izing curvature in the absence of matter, making it harder to
link the coupling (40) to vacuum effects such as tidal forces
or gravity waves. However, in some situations the scalar
field contribution to the metric equations might be sub-
dominant with respect to matter; we can recover the usual
notion of the Weyl tensor describing such effects. In those
cases, at least, the Weyl coupling will affect the way in
which the scalar field is sourced by the gravitational field
produced by distant matter.
Another important consequence of the occurrence of

the Weyl tensor is that it obstructs the debraiding pro-
cedure, as it cannot be obtained through contractions of
the metric equations. This fact can be related to an
important property of these kind of theories that is at
the foundation of our classification into shaken and stirred
theories. The presence of the Weyl tensor in the equations
of motion can be related to the lack of existence of a
(local) field redefinition that renders the kinetic term for
gravity canonical, i.e., of the Einstein-Hilbert form. The
diagram in Fig. 1 shows how field redefinitions in the

action correspond to linear transformation of the equa-
tions of motion, where the transformation matrix is given

by the Jacobian of the field redefinition ∂ ~Φj

∂Ξi [30]. The Weyl
tensor represents an element that cannot be “rotated
away,” therefore indicating that the kinetic term for the
metric (given by L4) cannot be made canonical by a local
field redefinition. Nonlocal redefinitions might be an
exception, as they might “undo” the effects of the
propagation equation for Wμναβ, Eq. (41).
Therefore, the fact that DBI-like theories do not

produce a coupling to the Weyl tensor is fully consistent
with the existence of an Einstein frame for this class of
theories. It is known that only a very special subclass of
Horndeski theories can be related to Einstein gravity via
a local field redefinition. In Ref. [46] this was inves-
tigated using general disformal transformation, showing
that the most general quartic theory that can be mapped
via a special disformal transformation to its Einstein
frame version has to take the very special DBI-like form
in which G4ðϕ; XÞ ¼ AðϕÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2BðϕÞXp
. An argument

as to why more general field redefinitions involving the
scalar field will not accomplish this goal is given in
Appendix B.

B. Stability in the presence of matter

An important application of the debraided field equation is
to study the stability of the theory in the presence of matter.
When considering DBI Galileons, Eq. (33) shows a flaw

of the theory; the kinetic mixing term might become
problematic in the presence of large matter pressure.
More precisely, if the energy-momentum tensor of matter
contains a positive isotropic pressure term Tμν ⊃
pgμν; p > 0, then the speed of sound of the field perturba-
tions can become imaginary. For the simplest case, Eq. (36)
with G2 ¼ X, the evolution equation (37) reads

ðΛ4 − XÞ□ϕþ ϕ;μϕ;νϕ;μν þ Tμνϕ;μν ¼ 0; ð42Þ
where 1 – 2X=Λ4 ≠ 0 as it is related to the effective Planck
mass (27). One finds that the speed of sound squared (given
by the coefficient of the second spatial derivatives) can
become negative, leading to a gradient instability. The
critical value of the pressure above which this happens is
approximately

FIG. 1. Field redefinitions and linear transformations of the
equations of motion.

9This implicitly assumes that ϕ;μ is timelike. We thank I.
Sawicki for pointing out the electric character of the coupling.
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pc ∼maxðΛ4; XÞ; ð43Þ

where the estimate is obtained by looking at the sign of the
ii component of Eq. (42), where it has been assumed that
Λ4 > 0 in order to make the second time derivative
coefficient positive when ρ ¼ T00 is large, in order to
avoid ghosts. The occurrence of such instability is equiv-
alent to the failure of the coefficient of ϕ;μν in Eq. (42) to
have a Lorentzian signature and, hence, of the field
equation to be hyperbolic.
DBI-like theories can therefore develop a gradient

instability if the term proportional to the energy-momentum
tensor dominates (see also [52] for some remarks in this
direction). This problem is particularly acute if we are
interested in theories able to explain cosmic acceleration,
for which Λ needs to be a very low energy scale. In this case
we may spoil the predictions of homogeneous cosmology
at early times, particularly during radiation domination
when p ∼ ρ=3. Therefore, the simplest solution is to raise
the value of Λ to make it higher than the reheating
temperature.10 Another solution is to give Λ a field
dependence [equivalent to the more general DBI-like
theory (33)] so that the critical pressure is always larger
than the cosmological one.11

The last possibility is the reintroduction of nonlinear
derivative self-interactions by modifying the cubic term
such that G3;X ≠ 0, without modifying G4. These terms
would dominate when the spatial derivatives become large,
and may act to stabilize the equation at some finite wave
number, given by the condition

p=Λ4 ∼ k2G3;Xδϕ: ð44Þ

This estimate relies on the scaling of the derivative
self-interactions in a cubic theory, which are
∼G3;Xð∇∇ϕÞ2 ∝ k4. Even if this modification stabilizes
the perturbations, it would introduce large spatial gra-
dients that might spoil the homogeneity and affect
cosmological observables.
Finally, it is possible to avoid the gradient instability by

making a different choice of G4. As it was shown in
Sec. III, theories different from the DBI Galileon have a
richer mixing structure, as given by Eq. (15). The additional
terms present in the general case may balance the ones
leading to the gradient instability. For example, the general
debraided equations for a quartic theory contain a term

GTT□ϕ, for which the spatial and time derivatives have
always the correct relative sign and no gradient instabilities
occur. It is therefore possible to avoid the gradient
instabilities by constructing a theory in which such terms
are sufficiently large. Of course, in order to assess the
viability of these models, a full dynamical analysis is
required, but this goes beyond the scope of the present work
and is left for further studies.

C. Screening scalar forces by kinetic mixing

Alternative theories of gravity typically introduce addi-
tional forces, which may alter the predictions in the local
system and render them incompatible with local gravity
tests (for a review, see Ref. [54]). However, some theories
provide screening mechanisms, which hide the effects of
scalar forces via nonlinear interactions of the field.
Although these mechanisms have been mostly studied
by making these couplings explicit (e.g., working in the
Einstein frame), they can also be identified in a minimally
coupled description [55].
We conclude the discussion of the consequences of

kinetic mixing by noting that the structure of the mixing
terms allows us to generalize the previously proposed
disformal screening mechanism to a more general phe-
nomenon, based on kinetic mixing properties and present in
a larger class of theories. The disformal screening mecha-
nism was introduced in the context of disformally coupled
theories, which are the Einstein-frame version of (and
therefore equivalent to) the DBI-like Galileons that we
considered in Sec. III B. Its action is based on two
observations, see Eq. (33):

1. If the field is static (no time derivatives) and only
disformally coupled (Mp is constant) then the field
decouples from nonrelativistic matter [56].

2. If the field evolves in time and the energy density is
nonrelativistic (only T00 ¼ ρ contributes signifi-
cantly), the field evolution becomes independent
of the energy density (see Refs. [36,37] for details).
This property does not rely on the specific form of
the conformal and the disformal coupling.

The efficiency of this mechanism to reconcile DBI-like
theories with local gravity tests is difficult to investigate in
practice, as it requires simultaneously considering spatial
and time dependence (demanding that the time evolution is
a subdominant effect clearly spoils the existence of a
screened solution [57], although numerical studies seem
to confirm the screening effects [58]). Moreover, pure DBI-
like theories have to face issues related to stability in the
presence of matter with non-negligible pressure, as
described in Sec. IV B, as well as other difficulties for
the fulfillment of laboratory tests [59].
Ultimately, the main requirement for the disformal

screening mechanism is that the coefficients of ϕ;μν depend
on the energy-momentum tensor. The identification terms
containing the matter energy-momentum tensor in the
second derivatives of the scalar in the debraided field

10Raising Λ4 beyond the scale of reheating is not necessary:
Inflation requires a negative pressure and therefore leads to no
gradient instability in Eq. (42). Reference [47] considers an
inflationary scenario in which Λ4 is negative, but so large that the
energy density never flips the sign of the kinetic term.

11The instability might be resolved by self-consistently
accounting for the evolution of matter. However, even if the
dynamics does not lead to singularities, it may cause large
inhomogeneities incompatible with cosmological observations
(see [53] for an example).
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equation (16) indicates that the disformal screening mecha-
nism, or variations thereof, can occur in a much larger class
of quartic Horndeski theories. Among others, those terms
include contributions proportional to

Tμνϕμν; T□ϕ;ϕ;αTαβϕ
;β
□ϕ; Tϕ;αϕ;βϕ;αβ � � � ; ð45Þ

where only the first term is present in DBI-like theories and
the disformal screening mechanism. Therefore, the richer
braiding structure of quartic Horndeski theories has the
potential to soften some of the requirements needed for the
disformal screening and to alleviate some of its problems.
Because of its extended generalities beyond disformally
coupled/DBI-like theories, we propose referring to this
mechanism as screening by kinetic mixing.

V. BEYOND QUARTIC THEORIES

In this section we comment on the issue of kinetic
mixing in more general ST theories. We will not go into the
same level of details as for the quartic, limiting our analysis
to the mixing terms and pointing out the novel structures
that appear.

A. Quintic Horndeski theories: nonlinear mixing

In the case of quintic Horndeski theories we expect terms
quadratic in the curvature to be present in the scalar field
equation. Because of the second-order nature of the theory,
we will only find terms that do not introduce higher
derivatives of degrees of freedom. One example of this
is the Gauss-Bonnet term G ¼ R2 − 4RμνRμν þ RμναβRμναβ,
which would be generated in the field equation as

LGB ⊃ fðϕÞG → f0Gδϕ; ð46Þ

since the above Lagrangian is equivalent to a particular
choice of Horndeski functions with G5;X ≠ 0 [28].
These theories, therefore, produce a new form of

nonlinear mixing. Covariantly debraiding the field equa-
tion will therefore require (at the very least) contractions
of the metric equations with the Riemman and the Ricci
tensor; further contractions, similar to those needed in
Sec. III, will then also be needed. Whether such terms
can be debraided using the techniques introduced in the
previous sections lies beyond the scope of this work, but
at the very least we can anticipate the difficulties we
already encountered for the quartic theories. In particular,
the coupling to the Weyl tensor occurs already at the
level of the action. This is not manifest from the simpler
form shown in Eq. (5), but can be obtained in an
equivalent form obtained by integrating by parts (e.g.,
in Horndeski’s original paper [24], where the dual of the
Riemann tensor appears in the action).

B. Theories beyond Horndeski: derivative mixing

The previous sections have shown how Horndeski
theories feature a form of kinetic mixing that is algebraic
in the energy-momentum tensor. Healthy non-Horndeski
theories [30,31] display a novel form of kinetic mixing, in
which the energy-momentum tensor enters the scalar field
equation through its derivatives. These theories have
received attention recently, including studies in the context
of late-time acceleration [32,60], inflation [61], and local
gravity tests [62–64].
The simplest examples of theories beyond Horndeski are

the ones originally proposed by Bekenstein [65]. These are
ST theories with an Einstein-Hilbert term for gravity, a k-
essence Lagrangian, and a matter Lagrangian constructed
out of a metric that explicitly involves the scalar field,

SB½ḡμν;ϕ;ψ � ¼
Z

d4x

� ffiffiffiffiffiffi
−ḡ

p M2
p

2
R̄½ḡαβ� þ

ffiffiffiffiffiffi
−ḡ

p
G2ðX̄;ϕÞ

þ
ffiffiffiffiffiffi
−~g

p
Lmð~gμν;ψÞ

�
: ð47Þ

The novel ingredient is that the matter Lagrangian is
constructed using a general disformal metric,

~gμν½ḡαβ;ϕ� ¼ CðX̄;ϕÞḡμν þDðX̄;ϕÞϕ;μϕ;ν: ð48Þ

When written in the Jordan frame via a nontrivial inversion
of Eq. (48), these theories have been shown to be
nonequivalent to any Horndeski theory [30,46] unless
C;X;D;X ¼ 0. Indeed, their Euler-Lagrange variation yields
equations with derivatives higher than second order.
This seems to suggest that the theory propagates an extra

degree of freedom. However, it was found that an implicit
constraint exists in the equations of motion for the metric
that allows us to remove all the higher time derivatives from
the equations of motion and cast the dynamical equations in
a second-order form. This procedure uses a contraction of
the metric equations in a manner analogous to the pro-
cedure performed in Sec. III, and, thus, the formulation
using implicit constraints (which is second order) intro-
duces the energy-momentum tensor in the equations of
motion. Here we sketch the basics; the interested reader is
referred to Ref. [30] and Appendix C for further details.12

The novelty of this class of theories is that the terms
introduced with this procedure involve derivatives of the
energy-momentum tensor in the field equation, therefore
providing a new form of kinetic mixing. This can be seen
by considering SB½~gμν;ϕ;ψ �, the Jordan frame version of

12See Ref. [66] for similar remarks in a more general setting
and a generalization of Bekenstein’s program to find the most
general ghost-free theories that are related to Einstein gravity by a
field redefinition. Some of the generalizations proposed there
have also been explored in Ref. [67].
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Eq. (47), in which the equations of motion are obtained for
~gαβ (rather than ḡμν) using the inverse of the matter metric
(48). The inverse relation between the metric has the same
structure, ḡμν½~gαβ;ϕ� ¼ Að ~X;ϕÞ~gμν þ Bð ~X;ϕÞϕ;μϕ;ν, where
A;B can be obtained implicitly given the form of C;D. We
note that it is possible (although cumbersome) to express
the Jordan frame theory in terms of ~gαβ. This is done for two
simple cases in Appendix C.
By using the chain rule and the properties of the Jacobian

of the transformation between the metrics, it is possible
to write the field equation without higher-order field
derivatives as

∇̄αðT K
~ϕ;αÞ − Ḡμν∇̄μðBϕ;νÞ

þ ḠμνðA;ϕgμν þ B;ϕϕ;νϕ;μÞ −
ffiffiffi
~g
ḡ

s
δLϕ

δϕ
¼ 0; ð49Þ

where A; B define the inverse of Eq. (48) and all barred
quantities are meant to be evaluated in terms of ~gμν using
this relation. The kinetic mixing factor is defined as

T K ≡ 1

M2
p

ffiffiffi
~g
ḡ

s
ðA; ~X ~gμν þ B; ~Xϕ;μϕ;νÞð ~Tμν

m þ ~Tμν
G2
Þ

A − A; ~X
~X þ 2B; ~X

~X2
; ð50Þ

where the energy-momentum tensor has the usual defini-
tion in terms of a variational derivative with respect to ~gμν.
This factor enters through the first term in the field
equation (49) and thus introduces a derivative form of
mixing between the matter and the field, even though the
scalar and matter fields are minimally coupled. Of course, it
remains to be proven that the curvature stemming from the
barred Einstein tensor Ḡμν can be traded for algebraic
couplings to matter and the scalar field in an analogous way
as it has been done for the quartic Galileon. In Appendix C
1 it is shown how this can be done for the pure conformal
coupling, thus achieving a second-order fully debraided
equation for a beyond-Horndeski model (see Ref. [68] for
an explicit debraided form in a more general case).
We can think of the Jordan frame version of Bekenstein’s

theories as a simple playground to study the features of
theories beyond Horndeski. In this sense they are analogous
to the simple DBI Galileons discussed in Sec. III B. More
general theories beyond Horndeski will not accept a simple
Einstein frame formulation and will, therefore, not be as
simple to unbraid. We expect that generalizations of
Bekenstein theories will contain a richer mixing structure
reflecting their more diverse phenomenology. Other theo-
ries beyond Horndeski have been proposed by Gleyzes,
Langlois, Piazza, and Vernizzi [31], where it is also shown
that no additional degrees of freedom are introduced and in
which similar findings regarding kinetic mixing have been
reported [31,32]. In particular, the authors found terms

describing the interactions between the scalar and deriv-
atives of the matter energy density on perturbed cosmo-
logical backgrounds. See also Refs. [69,70] for further
work on extensions beyond Horndeski.

VI. CONCLUSIONS AND OUTLOOK

In an era in which the alternatives to Einstein gravity are
getting more and more complex, with an increasing level of
mixing between the various degrees of freedom that build
the theory, it is of fundamental importance to develop
methods that allow the classification and facilitate the study
of different models. This will not only lead to a better
understanding of the physical content of a theory, but also
can shed light on its properties, potential issues, and
observable consequences.
In this work we have considered a method, covariant

debraiding, to study the kinetic mixing between the scalar
and tensor degrees of freedom in general alternative theories
of gravity. Our method consists of using contractions of the
metric equations of motion to remove Ricci curvature terms
in the field equation of motion. This approach relies on the
full equations of motion and, therefore, allows us to draw
conclusions regardless of any approximation scheme, in a
fully nonlinear fashion with the extra advantage of being in
the Jordan frame where the energy-momentum tensor of
matter is covariantly conserved. Hence, the debraiding
procedure provides a useful way to study the properties
of ST theories and their interaction with matter as well as the
stability of the scalar field rather directly.
As an application of the method, we have extended

covariant debraiding for the first time beyond the simplest
examples and applied it to the study of quartic Horndeski
theories in detail. These theories display a new set of
mixing terms, which indicate new forms of coupling of
the scalar field. The novel terms appearing in quartic
Horndeski theories involve the contraction of second
derivatives of the scalar with the curvature; this translates
into contractions of ϕ;μν and Tμν in the debraided equation.
The procedure allows us to study how matter sources the
scalar field despite both being coupled minimally, interact-
ing directly only with the metric.
General quartic theories also feature a coupling to the

curvature that cannot be removed by covariant debraiding.
This term is given by the Weyl tensor, which is not
algebraically determined from the metric equations, con-
tracted with the first and second derivatives of the scalar. It
represents a novel form of interaction between the scalar
field and space-time in the absence of matter. This form of
coupling to the vacuum and the nonlocal nature of the Weyl
tensor, determined by the global distribution of matter,
might have relevant implications for Mach’s principle in ST
theories, to be addressed in a follow-up work. In addition,
the debraided equations generally contain nonlinear deriva-
tive terms without antisymmetric structure. These may
introduce spurious solutions to the equations of motion,
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which can be nonetheless distinguished from the physical
ones and disregarded. However, this problem is absent
in sufficiently simple situations, such as cosmological
backgrounds.
Covariant debraiding singles out a particular subset of

theories for which the debraiding equation neither con-
tains the Weyl coupling, nor leads to spurious solutions.
These theories generalize the quartic DBI Galileon, and
coincide with the maximal set of Horndeski theories that
accept an Einstein frame formulation (i.e., the kinetic
term for the tensor degree of freedom can be written in
the Einstein Hilbert form). This relation to Einstein
gravity is behind the lack of Weyl coupling: As field
redefinitions at the level of the action are equivalent to
linear transformations of the equations of motion, the
occurrence of a term that cannot be “rotated away”
indicates the nonexistence of a transformation to a
nonmixed frame.
Although the equations are far too involved for an

analysis of general quartic theories, interesting conclu-
sions can be easily drawn for the simple DBI-like
models. Using the debraided equations, we show that
quartic DBI Galileons have gradient instabilities in the
presence of matter with sufficiently large pressure. This
would spoil the early Universe predictions unless the
energy scale that suppresses the coupling is very large or
the theory is extended beyond the simplest case. In
particular, a non-DBI quartic theory has a richer mixing
structure, including terms that can stabilize the gradient
instabilities. The debraided form of the equations that we
present here can be used to design models with certain
properties, by choosing the Horndeski functions to
enhance a particular set of terms.
Other features of quartic Horndeski theories are further

clarified using their debraided formulation. One example is
the screening of scalar forces by kinetic mixing. This
mechanism was first investigated for DBI-like theories in
the Einstein frame, and known as the disformal screening
mechanism. Our work implies that this effect is not exclusive
of DBI-like/disformally coupled theories, but, rather, is
ubiquitous in quartic Horndeski theories. Moreover, more
general theories might weaken the assumptions necessary for
the screening mechanism to be effective.
The mixing terms in the equations of motion are

characteristic of each theory and carry the information
about how the scalar degree of freedom interacts with
matter. These terms grow in complexity in quartic theories
(including the Weyl tensor coupling) and beyond, leading
to nonlinear mixing in quintic theories and derivative
mixing in theories beyond Horndeski. The covariant
debraiding procedure also provides a binary classification
of models according to their kinetic mixing properties:
Theories for which the covariant debraiding eliminates all
instances of the curvature are stirred. This includes
old-school theories, cubic, and DBI-like quartic theories

and some simple non-Horndeski theories. More generally,
theories in which some residual curvature remains after
covariant debraiding are shaken, including general quartic
theories (featuring the Weyl tensor), quintic theories, and
general theories beyond Horndeski.
There are other potentially interesting avenues for further

development. Our work has focused only on a very
restricted form of debraiding, one in which locality and
Lorentz invariance are manifest. One can use more general
procedures to debraid the equations, e.g., by choosing a
particular time slicing and solving for the highest time
derivatives. This can be achieved (by explicit choice of
coordinates or by an ADM decomposition), and is indeed
necessary if one aims to numerically solve the general
equations. As a step beyond, one may consider nonlocal
debraiding by formally solving for Weyl tensor in terms of
its propagation equation. These and other developments
might shed light on a number of problems, such as the
initial value formulation of modified gravity theories.
The main lesson to be learned is that gravitational

degrees of freedom become more fundamentally mixed
the further away we go from Einstein’s theory of gravity.
Any departure from the canonical kinetic term for the
metric tensor necessarily introduces at least a scalar degree
of freedom, which can then interact in a variety of ways,
ranging from Brans-Dicke to beyond Horndeski. For both
stirred to shaken theories, this increasing complexity is
reflected on the fundamental Lagrangian and gives impor-
tant hints about its nature and dynamics. The study of
kinetic mixing provides new ways to classify models and
address their properties, valid across generations of ST
theories, and will provide a useful tool in the understanding
of alternative gravities.
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APPENDIX A: QUARTIC HORNDESKI
THEORIES

In this appendix we present the general equations for a
quartic Horndeski action. This kind of action assumes
G3ðϕ; XÞ ¼ 0 ¼ G5ðϕ; XÞ while leaving the other two
functions generic. Wewill first write the equations as derived
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from the variation of the quartic Horndeski action (4), and
then we will present the detailed structure of the coefficients
of the debraided equations that appears in Eq. (20).

1. Equations for quartic theory

In this section we derive both the metric and the scalar
field equations in their explicit form. To simplify the
expressions we will use the following notation for

contractions: ½ϕn� ¼ gμνϕn
μν, hϕni ¼ ϕ;μϕn

μνϕ
;ν, ϕn

μν ¼
ϕ;μα1ϕ

;α1
;α2 � � �ϕ;αn−1

;ν, hRi ¼ ϕ;αϕ;βRαβ (if Fαβ has two

indices), hWi¼ϕ;αϕ;βWαμβνϕ
;μν, and hRϕi ¼ ϕ;αRαλ

ϕ;λβϕ;β.
The variation of the Lagrangians (2) and (4) with respect

to the scalar field gives the following equation for the scalar

field:

G2;ϕ − 2G2;ϕXX þ ðG2;X − 4G4;ϕϕXXÞ□ϕ − ðG2;XX þ 2G4;ϕϕXÞϕ;μϕ;νϕ;μν

þ 2G4;ϕXXð2hϕ2i − 2hϕi½ϕ� − ð½ϕ�2 − ½ϕ2�ÞXÞ þG4;XXð½ϕ�3 − 3½ϕ�½ϕ2� þ 2½ϕ3�Þ
þG4;XXXð−2hϕ3i þ 2hϕ2i½ϕ� − hϕið½ϕ�2 − ½ϕ2�ÞÞ þ 3G4;ϕXð½ϕ�2 − ½ϕ2�Þ
þG4;ϕR − 2G4;XGμνϕ;μν − 2G4;ϕXð2hRi þ RXÞ

þG4;XX

�
−½ϕ�hRi − 2

3
Rðhϕi − ½ϕ�XÞ þ 2hWi − 2hRϕiX þ 2ϕαϕβRβγϕα

γ

�
¼ 0. ðA1Þ

The variation with respect to the metric gives

G4Gαβ −
1

2
TðmÞ
αβ þ

�
−
G2;X

2
−G4;ϕϕ − 2G4;ϕX½ϕ� −

1

2
ð½ϕ�2 − ½ϕ2�Þ − 1

3
G4;XR

�
ϕαϕβ

þ
�
−
1

2
G2 þ G4;ϕ½ϕ� þ

1

2
G4;Xð½ϕ�2 − ½ϕ2� − hRiÞ − 2G4;ϕϕX þ 1

3
RG4;XX

−2G4;ϕXðhϕi þ ½ϕ�XÞ þG4;XXð−hϕi½ϕ� þ hϕ2iÞÞgαβ
þ ϕαβð−G4;ϕ þ G4;XXhϕi −G4;X½ϕ� þ 2G4;ϕXXÞ

þ 2G4;ϕXðϕγϕγβϕα þ ϕγϕγαϕβÞ þ G4;X

�
ϕα

γϕγβ − RαβX þ 1

2
Rβγϕ

γϕα þ
1

2
Rαγϕ

γϕβ þWαμβνϕ
μϕν

�
− G4;XXðϕγϕβ

ηϕγηϕα þ ϕγϕα
ηϕγηϕβ − ϕγðϕγβϕα þ ϕγαϕβÞ½ϕ� þ ϕγϕγαϕβηϕ

ηÞ ¼ 0: ðA2Þ

2. Coefficients in the debraided equations

In this section we report the explicit expressions for the coefficients of debraided equation (20). These coefficients will be
fixed once a particular model is chosen, i.e., once a choice for the form of G4 is made.
The purely field-dependent coefficients of the linear second-order derivative are

G0 ¼
1

3
ðG4 − 2G4;XXÞ−2ðG2;Xð3G2

4 þ 8G2
4;XX

2 − 4G4Xð3G4;X þ G4;XXXÞÞ þG2ð4G4;XXð2G4;X

þ 3G4;XXXÞ −G4ð3G4;X þ 4G4;XXXÞÞ − 3ð4G2
4G4;ϕϕXX þG4ð−3G2

4;ϕ

þ 4G4;ϕG4;ϕXX þ 4XðG4;XG4;ϕϕ þ 5G2
4;ϕXX þ 2G4;XXG4;ϕϕX − 4G4;XG4ϕϕXXÞÞ

þ 8G4;XXðG2
4ϕ þ Xð−G4;XG4;ϕϕ − 4G2

4ϕXX − 2G4;XXG4ϕϕX þ 2G4;XG4;ϕϕXXÞÞÞÞ; ðA3Þ

GT ¼ −
ðG2

4;X þG4G4;XXÞX
3ðG4 − 2G4;XXÞðG4 −G4;XXÞ

; ðA4Þ

GhTi ¼
ðG2

4;X þG4G4;XXÞð−3G4 þ 4G4;XXÞ
6ðG4 − 2G4;XXÞ2ðG4 −G4;XXÞ

; ðA5Þ
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S0 ¼
1

3

�
−3G2;XXðG4 − 2G4;XXÞ2 − 6G4;ϕϕXðG4 − 2G4;XXÞ2 þ 6G4;XG4;ϕϕð−G4 þ 2G4;XXÞ

þ 12G2
4;ϕXXð−4G4 þ 7G4;XXÞ þ G4;Xð−3G2;XG4 þ G2G4;X − 3G2

4;ϕ þ 4G2;XG4;XXÞ
þ G4;ϕXð−24G4G4;ϕ þ 36G4;XG4;ϕXÞ þ G4;XXðG2G4 þ 12G4ϕϕXð−G4 þ 2G4;XXÞ

þ 4G2;XXð−2G4 þ 3G4;XXÞÞ
�
ðG4 − 2G4;XXÞ−2; ðA6Þ

ST ¼ −
G2

4;X þ G4G4;XX

6ðG4 − 2G4;XXÞðG4 −G4;XXÞ
; ðA7Þ

ShTi ¼ −
G3

4;X þ G4G4;XG4;XX

6ðG4 − 2G4;XXÞ2ðG4 − G4;XXÞ
: ðA8Þ

The other kinetic couplings to matter/curvature read

CT ¼ −
G4;X þ G4;XXX
G4 − G4;XX

; ðA9Þ

ChTi ¼
G2

4;X þ G4G4;XX

ðG4 − 2G4;XXÞðG4 −G4;XXÞ
: ðA10Þ

CW ¼ 2ðG2
4;X þ G4G4;XXÞ
G4 −G4;XX

; ðA11Þ

Finally, there will be the generalizations of the (non-
kinetic) conformal and disformal coupling that we observed
in KGB theories,

QT ¼ −
G4;ϕ þ 2G4;XϕX

2ðG4 − 2G4;XXÞ
; ðA12Þ

QhTi ¼ −
4G4G4;Xϕ þ G4;XðG4;ϕ − 6G4;XϕXÞ

2ðG4 − 2G4;XXÞ2
: ðA13Þ

The potential term is

~V ¼ ðG2;ϕðG4 − 2G4;XXÞ2 þ G2ð−2G4G4;ϕ þ G4;XXð5G4;ϕ þ 2G4;ϕXXÞÞ
þ Xð−2G2;ϕXðG4 − 2G4;XXÞ2 − 6G4;ϕϕðG4 − 2G4;XXÞðG4;ϕ þ 2G4;ϕXXÞ
þG2;XðG4G4ϕ − 4G4;XG4;ϕX − 6G4G4;ϕXX þ 8G4;XG4;ϕXX2ÞÞÞðG4 − 2G4;XXÞ−2: ðA14Þ

The coefficients in front of the nonlinear derivatives are

VB4 ¼ ðG3
4ð3G4;ϕX − 2G4;ϕXXXÞ þ G4G4;XXðG4;XXXð−13G4;ϕ þ 30G4;ϕXXÞ

− 4G4;Xð3G4;ϕ − 11G4;ϕXX þ 4G4;ϕXXX2ÞÞ þ G2
4;XX

2ð12G4;XXXðG4;ϕ − 2G4;ϕXXÞ
þ G4;Xð11G4;ϕ − 30G4;ϕXX þ 8G4;ϕXXX2ÞÞ þ G2

4ðG4;XXXð3G4;ϕ − 10G4;ϕXXÞ
þ G4;Xð3G4;ϕ − 21G4;ϕXX þ 10G4;ϕXXX2ÞÞÞðG4 − 2G4;XXÞ−2ðG4 −G4;XXÞ−1; ðA15Þ

V4D ¼ ð4G3
4G4;ϕXX þ G2

4ð3G4;XXG4;ϕ þ 12G4;XG4;ϕX þ 22G4;XXG4;ϕXX − 20G4;XG4;ϕXXXÞ
þ G2

4;XXð48G4;XXG4;ϕXX2 þG4;Xð−5G4;ϕ þ 30G4;ϕXX − 16G4;ϕXXX2ÞÞ
þ G4G4;Xð−G4;XXXð5G4;ϕ þ 66G4;ϕXXÞ þ G4Xð3G4;ϕ − 38G4ϕXX þ 32G4;ϕXXX2ÞÞÞ
× ðG4 − 2G4;XXÞ−2ðG4 −G4;XXÞ−1; ðA16Þ

VB5 ¼
G2

4;X þ G4G4;XX

G4 −G4;XX
; ðA17Þ

VD5 ¼ ð3G3
4ðG4;ϕX − 2G4ϕXXXÞ þG4G4;XXð8G4XXXð−G4;ϕ þ 12G4;ϕXXÞ þG4;Xð−15G4;ϕ þ 82G4;ϕXX − 48G4;ϕXXX2ÞÞ

þ 4G2
4;XX

2ð3G4;XXXðG4;ϕ − 6G4;ϕXXÞ þ G4;Xð4G4;ϕ − 15G4;ϕXX þ 6G4;ϕXXX2ÞÞ
þG2

4ð−32G4;XXG4;ϕXX2 þ 3G4;XðG4;ϕ − 11G4;ϕXX þ 10G4;ϕXXX2ÞÞÞðG4 − 2G4;XXÞ−2ðG4 −G4;XXÞ−1: ðA18Þ
The remaining terms are those we have labeled as “worrying terms,” as they might lead to spurious solutions on certain

backgrounds (see Sec. III A). They read
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W1 ¼
ðG2

4;X þ G4G4;XXÞðG4;X þ 2G4;XXXÞ
3ðG4 − 2G4;XXÞðG4 −G4;XXÞ

; ðA19Þ

W2 ¼
ðG2

4;X þ G4G4;XXÞ2
3ðG4 − 2G4;XXÞ2ðG4 − G4;XXÞ

; ðA20Þ

WD2 ¼ −
ðG2

4;X þG4G4;XXÞð4G4G4;ϕX þG4;XðG4;ϕ − 6G4;ϕXXÞÞ
3ðG4 − 2G4;XXÞ2ðG4 −G4;XXÞ

: ðA21Þ

a. DBI-like quartic theories

We report here the detailed expressions for the DBI-like quartic theories introduced in Sec. III B, as follows:

G0 ¼ G2;X þ ½8G2Λ4ðAðϕÞÞ3DX2 þM2
PlΛ

8D4Xð−13XðA0ðϕÞÞ2 þ 4Λ4D2A00ðϕÞÞ
þ 4ðAðϕÞÞ2ð−5M2

PlX
4ðA0ðϕÞÞ2 þ 2Λ4D2XðG2Λ4Dþ 2M2

PlX
2A00ðϕÞÞÞ

þ 2Λ4AðϕÞD2ð−14M2
PlX

3ðA0ðϕÞÞ2 þ Λ4D2ðG2Λ4Dþ 8M2
PlX

2A00ðϕÞÞÞ�
× ð2Λ8D3ðΛ4D2 þ 2AðϕÞXÞ2Þ−1; ðA22Þ

S0 ¼ −G2;XX þ ½4ðAðϕÞÞ3ð2G2;XΛ8D3X2 − 3M2
PlX

4ðA0ðϕÞÞ2Þ þ 2M2
PlΛ

12D6ð−10XðA0ðϕÞÞ2
þ Λ4D2A00ðϕÞÞ þ 4Λ4ðAðϕÞÞ2D2Xð−13M2

PlX
2ðA0ðϕÞÞ2 þ 2Λ4D2ðG2;XΛ4DþM2

PlXA
00ðϕÞÞÞ

þ Λ8AðϕÞD4ð−59M2
PlX

2ðA0ðϕÞÞ2 þ 2Λ4D2ðG2;XΛ4Dþ 4M2
PlXA

00ðϕÞÞÞ�ð2Λ12D5ðΛ4D2 þ 2AðϕÞXÞ2Þ−1; ðA23Þ

~V ¼ G2;ϕ − 2G2;ϕXX þ ½XA0ðϕÞðΛ4AðϕÞD2Xð−24M2
PlX

3ðA0ðϕÞÞ2 þ Λ4D2ðΛ4Dð7G2 þ 10G2;XXÞ;
− 24M2

PlX
2A00ðϕÞÞÞ þ Λ8D4ð−9M2

PlX
3ðA0ðϕÞÞ2 þ Λ4D2ðΛ4Dð2G2 þ 5G2;XXÞ

− 9M2
PlX

2A00ðϕÞÞÞ þ 2ðAðϕÞÞ2X2ð−6M2
PlX

3ðA0ðϕÞÞ2 þ Λ4D2ðΛ4DðG2 þ 4G2;XXÞ
− 6M2

PlX
2A00ðϕÞÞÞ�ðΛ12D5ðΛ4D2 þ 2AðϕÞXÞ2ÞÞ−1; ðA24Þ

V4D ¼ 2M2
PlAðϕÞA0ðϕÞ
Λ8D3

; ðA25Þ

V4B ¼ −
M2

Plð3Λ4D2 − 2AðϕÞXÞA0ðϕÞ
2Λ8D3

; ðA26Þ

QT ¼ Xð3Λ4D2 þ 2AðϕÞXÞA0ðϕÞ
2Λ8D4 þ 4Λ4AðϕÞD2X

; ðA27Þ

QhTi ¼
ð4Λ8D4 þ 9Λ4AðϕÞD2X þ 6ðAðϕÞÞ2X2ÞA0ðϕÞ

2Λ4ðΛ4D3 þ 2AðϕÞDXÞ2 ;

ðA28Þ

CT ¼ AðϕÞ
Λ4D2

; ðA29Þ

where we have defined

D ¼ ð1 − 2AðϕÞX=Λ4Þ1=2: ðA30Þ

APPENDIX B: EXISTENCE OF AN
EINSTEIN FRAME

In Sec. IVA we discussed how the presence of the Weyl
tensor in the equation of motion for the scalar field can be
related to the lack of a field transformation able to cast the
kinetic term for the metric into its standard Einstein-Hilbert
form. In this appendix we provide additional arguments in
support of this statement. More specifically, we examine the
requirements for a field redefinition to be able to cast a quartic
theory as Einstein-Hilbert plus a coupling to matter. In what
follows we enumerate different possibilities and argue that it
is implausible that they will produce the desired outcome.

1. If we use a scalar field redefinition only, we need
G4ðX;ϕÞ → M2

p=2 ¼ const. However, we can see
already in the old-school case that demanding that
G4ðϕðξÞÞ ¼ const. impliesG4;ϕ

∂ϕ
∂ξ ¼ 0 (by taking the

derivative with regard to the field). This requires either
that G4 is constant or that the Jacobian of the field
transformation is degenerate. It is hard to imagine how
adding X dependence would help with this.
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2. If we use a metric redefinition we note that:
(a) The Riemann tensor transforms as

R̄α
βμν ¼ Rα

βμν þ 2∇½μKα
ν�β þ 2Kα

γ½μKα
ν�β;

ðB1Þ
where Kα

μν ¼ Γ̄α
μν − Γα

μν [30]. Therefore, any
factor that cancels the coefficient of R has to come
from either

ffiffiffiffiffiffi
−ḡ

p
or from ḡβν.

(b) Using X-dependent disformal transforma-
tions can neutralize all the dependences of
G4ðX;ϕÞ, but non-Horndeski terms are gener-
ated in the transformation [46]. These do not
lead to an unhealthy theory (see Appendix C),
but they do not provide a canonical kinetic term
for gravity either. Restricting to ϕ-dependent
disformal transformations prevents the non-
Horndeski terms from appearing; however, then
only DBI-like forms of G4 can be canceled.

(c) If we try to use higher derivatives for the metric
redefinition ḡμνð∂∂ϕ; � � �Þ, then we will intro-
duce these higher derivatives in G4 unless every
dangerous term cancels. This can be seen from
the structure of Eq. (B1): The derivative depend-
ence from ḡαβ and

ffiffiffiffiffiffi
−ḡ

p
will appear inG4, unless

the connection terms produce a coefficient pro-
portional to R that cancels all the field depend-
ences in G4, with the exception of a constant
term, and without introducing other curvature
terms. Moreover, one would in general introduce
higher derivatives via the second term in Eq. (B1)
that also need to cancel.

The above reasoning argues only the implausibility of finding
a local field redefinition that transforms the kinetic term for
quartic theories in a canonical form. It does not constitute a
mathematical proof, but complements the discussion pre-
sented in Sec. IVA. In particular, our discussion does not
apply to nonlocal field redefinitions.

APPENDIX C: BEYOND HORNDESKI:
EXAMPLES

In this appendix we briefly present the simplest theories
beyond Horndeski, the pure conformal and pure disformal
theories with derivative dependences. These theories can be
formulated as Einstein-Hilbert plus a coupling to matter via
a field redefinition. In this sense they are similar to the DBI
Galileons, and they provide toy examples of kinetic mixing
in theories beyond Horndeski.

1. Pure conformal theory

In the relatively simple case of an X-dependent con-
formally coupled theory in the Jordan frame [30]

LC ¼
ffiffiffiffiffiffi−gp

16πG
ðΩ2Rþ 6Ω;αΩ;αÞ þ ffiffiffiffiffiffi

−g
p ðLϕ þ LmÞ; ðC1Þ

one can write the equations of motion as

∇μðϕ;μT KÞ þ
Ω;ϕ

Ω;X
T K −

1

2

δLϕ

δϕ
¼ 0; ðC2Þ

where the kinetic mixing factor for a conformal relation
reads

T K ≡ 8πGΩ;XT
Ω − 2Ω;XX

ðC3Þ

with T ¼ gμνðTϕ
μν þ Tm

μνÞ. The derivative mixing enters (in
the Jordan frame) as a way to remove the higher-order
derivatives of the scalar field in this type of theory.

2. Pure disformal theory

Let us now consider the transformation of the Einstein-
Hilbert Lagrangian under a disformal transformation
depending on field derivatives

ḡμν ¼ gμν þ BðXÞϕ;μϕ;ν; ðC4Þ
whose associated barred connection is characterized by the
following Kα

μν ≡ Γ̄α
μν − Γα

μν tensor [30]:

Kα
μν ¼ ~γ2ϕ;αϕ;μν − ðlogBÞ;X ~γ2ϕ;αϕ;σϕ;σðμϕ;νÞ

þ 1

2
B;Xϕ;μϕ;ν½ϕ;σϕ

;σα − ~γ2ϕ;αhΦi�: ðC5Þ

We will denote ~γ2¼Bγ2¼B=ð1−2BXÞ, hΦi ¼ ϕ;μϕ;μνϕ
;ν,

hΦ2i ¼ ϕ;μϕ;μνϕ
;νσϕ;σ , ½Φ� ¼ □ϕ, ½Φ2� ¼ ϕ;μνϕ

;μν and
hRi ¼ ϕ;μR;μνϕ

;ν. The first term was already present in
the field-dependent disformal transformation, and the last
two terms arise from the derivatives of B. The bulk
contribution to the Einstein-Hilbert action can be computed
using Eq. (38) of [30], yielding

ffiffiffiffiffiffi
−ḡ

p
R̄ ¼ ffiffiffiffiffiffi

−g
p �

1

γ
R − BγhRi − BðBþ B;XXÞγ3

× ðhΦi½Φ� − hΦ2iÞ
�
: ðC6Þ

This simple result is due to the particular tensor structure of
the K tensor, which has the effect that only the first term in
Eq. (C5) contributes to ḡμνKα

γ½αKγ
μ�ν (all other contractions

are proportional to a contraction of ϕ;αϕ;μ with a tensor
antisymmetric on the indices αμ). The addition of a surface
term ∇μðfðXÞðϕ;μ½Φ� − ϕ;μαϕ;αÞÞ to Eq. (C6) gives

ffiffiffiffiffiffi
−ḡ

p
R̄ ¼ ffiffiffiffiffiffi

−g
p �

1

γ
R − ðγBþ fÞhRi þ fð½Φ�2 − ½Φ2�Þ

− ðBðBþ B;XXÞγ3 þ f;XÞðhΦi½Φ� − hΦ2iÞ
�
:

ðC7Þ
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It is not possible to write down the above action in the canonical Horndeski form, as that would require simultaneously
satisfying

1. f ¼ ð1=γÞ;X ¼ −γB − γB;XX, to have the right coefficient of ½Φ�2 − ½Φ2�,
2. f;X ¼ −BðBþ B;XXÞγ3, to kill the last term, and
3. f ¼ −γB, to kill the hRi term.

The last choice gives the simplest form for the action

ffiffiffiffiffiffi
−ḡ

p
R̄ ¼ ffiffiffiffiffiffi

−g
p �

1

γ
R − Bγð½Φ�2 − ½Φ2�Þ − γB;XðhΦi½Φ� − hΦ2iÞ

�
: ðC8Þ

Similar to the conformal theory, the equations of motion for the theory [Eq. (C8)] contain an implicit constraint that
allows one to remove the higher derivatives in the equations of motion. In this case the kinetic mixing factor reads

T D
K ¼ 8πGγ

B;Xϕ;μT
μν
totϕ;ν

1þ 2B;XX2
; ðC9Þ

and also enters the field equation as ∇̄αðT D
Kϕ

;αÞ [30].
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