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Abstract: Water scarcity and quality deterioration, driven by rapid population growth, urbanization,
and intensive industrial and agricultural activities, emphasize the urgency for effective water man-
agement. This study aims to develop a model to comprehensively monitor various water quality
parameters (WQP) and evaluate the feasibility of implementing this model in real-world scenarios,
addressing the limitations of conventional in-situ sampling. Thus, a comprehensive model for moni-
toring WQP was developed using a 38-year dataset of Landsat imagery and in-situ data from the
Water Information System of Europe (WISE), employing Back-Propagated Artificial Neural Networks
(ANN). Correlation analyses revealed strong associations between remote sensing data and various
WQPs, including Total Suspended Solids (TSS), chlorophyll-a (chl-a), Dissolved Oxygen (DO), Total
Nitrogen (TN), and Total Phosphorus (TP). Optimal band combinations for each parameter were
identified, enhancing the accuracy of the WQP estimation. The ANN-based model exhibited very
high accuracy, particularly for chl-a and TSS (R2 > 0.90, NRMSE < 0.79%), surpassing previous studies.
The independent validation showcased accurate classification for TSS and TN, while DO estimation
faced challenges during high variation periods, highlighting the complexity of DO dynamics. The
usability of the developed model was successfully tested in a real-case scenario, proving to be an
operational tool for water management. Future research avenues include exploring additional data
sources for improved model accuracy, potentially enhancing predictions and expanding the model’s
utility in diverse environmental contexts.

Keywords: water quality monitoring; Artificial Neural Network (ANN); artificial intelligence; WISE;
sustainable water management

1. Introduction

Water is vital for the life of humans, animals, plants, and ecosystems. Human
health, food security, economic growth, energy production, and ecosystems are all water-
dependent. Growing population and urbanization, intensive industrial development,
agriculture, increasing demand, and misuse of water have increased water stress, making
water a scarce and expensive resource, especially in undeveloped countries.

This growing issue has been recognized and several policies have been adopted in
order to provide sustainable management and prevent further decreases in water quality
and quantity. The 2030 Agenda for Sustainable Development [1], adopted by United
Nations Member states, within Sustainable Development Goals (SDG) 6 [2] emphasizes
the water-related issue. SDG 6 has eight targets including water quality. In Europe,
the Water Framework Directive (WFD) [3] defines a framework for the protection of the
aquatic environment (rivers, lakes, transitional waters, groundwaters, and coastal waters.).
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The primary aim of WFD is to achieve at least a good status in all water bodies. To
assess the status of the water bodies, monitoring of biological, hydromorphological, and
physicochemical water quality parameters (WQP) as defined within Annex V and Annex
X [4] needs to be conducted.

The WFD implies that rivers with catchment areas greater than 10 km2 and lakes
greater than 0.5 km2 in surface area and all of the water bodies into which priority sub-
stances are discharged need to be included within the water status assessment and mon-
itoring. WQP is traditionally determined by the collection of in-situ samples and then
analyzing them in the laboratory [3]. Although this method provides high accuracy, it
is labor, time, and cost-intensive. Therefore, monitoring all water bodies as defined by
WFD would require major financial investments. Moreover, the conventional methodology
determines the WQP concentration at the sampling point. The water quality within water
bodies is rarely constant due to unpredictable events such as storms, accidental spillages, or
leakages. and it is highly influenced by hydrodynamic characteristics such as flow direction
and discharge. Due to that the monitoring of spatial and temporal variations and trends in
large water bodies by conventional methods is challenging.

To overcome those limits, remote sensing technologies, which have the advantage of
large spatial coverage and high temporal resolution, have been used to identify and monitor
water bodies more effectively and efficiently [5–7]. The remote sensing monitoring of WQP
is based on establishing the correlation between in-situ monitoring data and corresponding
surface reflection. The spectral characteristics of water are functions of the hydrological,
biological, and chemical characteristics of water [8]. Therefore, the amount of radiation at
various wavelengths reflected from the water surface can be used directly or indirectly to
detect WQP.

The clear water reflects light with wavelengths < 600 nm, resulting in high reflectance
in the blue-green while absorbing radiation at the Near-Infra Red (NIR) portion of the spec-
trum and beyond. The increase of chlorophyll-a (chl-a) concentration increases absorption
in Red (R) and strongly absorbs Blue (B) light while the reflection peak is located at the
green (G) part of the spectrum [9]. Water clarity is the function of Total Suspended Solids
(TSS) concentration. TSS is the measure of the weight of inorganic particulates suspended
in the water column and it is responsible for most of the scattering [10]. By influencing the
scattering of light, TSS directly controls the transparency and oxygen content of the water
body [11]. The increased concentration of TSS causes the peak to shift from G toward the R
region and increases water reflectance in the NIR region.

Thus, many studies have used band combinations and spectral indices to develop em-
pirical algorithms for the estimation of optical active WQP and achieved good results [12,13].
Various spectral bands have been used to quantify the chl-a and TSS (Table 1).

Table 1. Remote sensing data used for monitoring of WQP.

Author Platform WQP Spectral Bands Algorithm Accuracy

[14] Landsat 8 chl-a R, G

[15] Landsat 8

chl-a B, G, R, NIR, NIR/R

MLR

R2 = 0.77
TSS G, NIR, NIR/R R2 = 0.78
TN G, R, NIR R2 = 0.55
TP B, G, R, NIR R2 = 0.57

[6] Landsat 5
chl-a NIR, NIR/B

LR
R2 = 0.6

TSS R R2 = 0.67

[16] Ikonos 2
chl-a B, G
TSS G, R

[17] Landsat 8 chl-a B, G, R, NIR, SWIR1, SWIR2
[18] Landsat 5 TSS R/G, NIR, R RF
[19] Landsat 8 TN (B + R)/G, Coastal/NIR, G/NIR MLR R2 = 0.75
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Table 1. Cont.

Author Platform WQP Spectral Bands Algorithm Accuracy

[20] Landsat 5, 7, 8
chl-a B, G, R, NIR, R/B2, NIR/B2

ANN
R2 = 0.89

SS B, G, R, NIR, R2, R/B, B*R, G*R R2 = 0.93

[21] Landsat 8
TN R/(G + NIR)

LR
R2 = 0.71

TP (Coastal + G + R)/NIR R2 = 0.66

[22] Landsat 8
TN R, G/B

ANN
R2 = 0.86

TP G, G/B R2 = 0.64

However, inland waters are seriously affected by human activities, due to optical
properties being complex and highly variable. Therefore, each band is not only sensitive to
one but also to other WQP which can lead to significant uncertainty in the results produced.

In addition, WQPs such as Total Nitrogen (TN), Total Phosphorus (TP), and Dissolved
Oxygen (DO) are important information for understanding water body dynamics. Increased
levels of nutrients can lead to algal blooms and oxygen depletion.

However, since the relationship between surface reflectance and concentration of those
parameters is indirect and non-linear, the estimation of their concentration represents a
great challenge if they are based on traditional empirical algorithms. In recent years, with
the increase in processing power and the development of artificial intelligence, machine
learning (ML) algorithms have been increasingly used for WQP monitoring. The most
common ML models for water quality parameters are Random Forest (RF), Supported
Vector Machine (SVM) and Artificial Neural Network (ANN).

Guo et al. [23] used the Landsat and MODIS reflection and SVM for monitoring of DO
in Lake Huron. Results show good robustness with average R2 = 0.91. Qian et al. [24] tested
Multiple Linear Regression (MLR), SVM, RF and ANN for monitoring of three non-optical
(pH, DO, Electrical Conductivity (EC)) and one optical parameter (Turbidity) at Qingcaosha
Reservoir based on Sentinel 2 images. The results indicated that ANN showed more robust
performance for all WQP (RMSE: 0.33; 0.49; 0.38; 0.26 for pH, DO, EC, and Turbidity,
respectively) compared to traditional ML algorithms. Guo et al. [25] monitored the TP,
TN, and Chemical Oxygen Demand (COD) by using Sentinel 2 imagery and NN, RF, and
SVM algorithms. Their results showed that ML can significantly improve the estimation
accuracy of non-optical parameters with Normalized Root Mean Square Error (NRMSE)
of TP: 16.8%; TN: 29.64% and COD 18.75. Similarly, Ref. [26] tested the performance of
MLR, SVM, and ANN for monitoring of chl-a, DO, Turbidity, blue-green algae (BGA),
and fluorescent dissolved organic matter (fDOM) from Sentinel 2 and Landsat 8 images.
The DNN outperformed the ML algorithms resulting in Root Mean Square Error (RMSE)
of 0.86, 7.56, 1.81, 14.50, and 5.19 for BGA, chl-a, DO, fDOM, and Turbidity, respectively.
Hafeez et al. [20] estimated the concentration of TSS, chl-a and Turbidity with several
ML algorithms including ANN, RF, and SVM by using Landsat (5, 7, 8) imagery. ANN
outperformed RMSE chl-a:1.4; TSS: 2; Turbidity: 3.10) followed by SVM. Leggesse et al. [27]
compared the six ML algorithms integrated with Landsat 8 imagery for the prediction
of three optically active WQP (chl-a, Turbidity and Total Dissolved solids (TDS)). The
results indicated that XGBoost regression performed best for chl-a (RMSE: 9.47) while RF
performed best for the rest of the parameters (RMSE TDS: 12.3; Turbidity: 7.82) while ANN
and SVM provided lower accuracy. Gomez et al. [28] tested the performance of RF, SVM
and ANN on a balanced dataset for the monitoring of chl-a based on Sentinel 2 images.
The results showed that RF performed better compared to others (RMSE: RF 0.82; SVM
1.45; ANN 1.75).

It has been shown that ANN and SVM have provided excellent performance in
monitoring both optically active and non-active WQP [20,26,28,29]. ANN, as a nonlinear
approximation method, is more flexible for WQP monitoring. However, the resulting
accuracy of ML is generally a function of the selected model and the quality and size of
the training data. The development of an ANN model requires large training datasets and
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extensive experience in order to determine the optimal NN architecture. Using too many
layers can result in overfitting, which involves the fitting of noise in training data and lower
generalization to new data [30]. On the other hand, a low number of layers can lead to
underfitting when the model cannot represent the complexity of data adequately. Due to
that, SVM and RF can have a higher generalization ability than ANN. Govedarica et al. [7]
tested the performance of ANN and SVM for monitoring Turbidity, TSS, TN, and TP. The
results showed that SVM outperformed ANN for Landsat 8 data while ANN produced
better results for Sentinel 2 data. The reason for the higher performance of SVM can be
due to being less sensitive to small data samples and mixed pixels [30,31] and it avoids
the occurrence of overtraining and optimization of fewer parameters [32,33]. However, an
increase in the number of training data can make SVM difficult to implement.

On the other hand [27,28] show that RF had better generalization ability and was
less affected by overfitting compared with ANN and SVM. It was noticed that there
was an increase in RF performance with an increase in the number of features used in
the prediction [28] while it can be decreased for small training datasets [34,35]. The RF
algorithm is characterized by the considerable time expenditures for training the trees in
the ensemble when the datasets are large [36]. Compared to SVM, RF can take up to four
times longer to train and optimize [37].

In addition to ML, deep learning algorithms (DL) have been widely applied in remote
sensing image classification. Convolution Neural Networks (CNN) are capable of extracting
intrinsic features and have provided state-of-the-art accuracy. Pu et al. [38] used CNN
to classify the water quality of a lake based on Landsat 8 images. The results showed
that CNN outperformed SVM and RF (OA: CNN 97.12%; SVM 96.89%; RF 86.15%). Cui
et al. [39] used CNN and a combination of Landsat 8 and Sentinel 2 images for monitoring
water transparency reaching an R2 of 0.85. Similarly, Ref. [40] demonstrated chl-a retrieved
from Sentinel-2 images using CNN regression resulting in an R2 of 0.92. Although CNN
has demonstrated increased accuracy and robustness, most of the research that is based
on moderate-resolution satellite images deals with large water bodies such as lakes, and
transitional or coastal waters. This is mostly due to the fact that CNN uses convolution
filters of varying sizes (3 × 3, 5 × 5, or 7 × 7 pixels) to extract meaningful higher-level
abstract features and increase accuracy. However, taking into account spatial resolution and
the width of rivers these patches can represent heterogeneous classes limiting the accuracy
of the model [40].

The main aims of this paper are (a) to develop a comprehensive ANN-based model
for monitoring water body status, and (b) to test the usability of the developed model in
real-case scenarios.

2. Materials and Methods
2.1. Study Area

The study area (Figure 1) for this research focused on water quality monitoring based
on remote sensing data for the main water bodies within the Republic of Serbia. The
Republic of Serbia is located in southeast Europe between 41◦53′N and 46◦11′N latitude
and 18◦51′E and 23◦01′E longitude. The North part represents the Pannonian Plain with
dominant flat terrain while the central and south parts represent hilly regions. Most of the
rivers belong to the Black Sea basin. The longest river is the Danube. In addition to the
Danube, there are three navigable rivers: Sava, Tisa and part of the Great Morava.

On the territory of the Republic of Serbia, there are 498 surface water bodies, 99%
of these are represented by streams and 1% are lakes. According to the classification of
WFD, these streams are classified as rivers (69%), heavily modified water bodies (28%) and
artificial water bodies (3%) [41]. The monitoring program for surface water bodies in the
2017–2019 period includes 137 monitoring stations (123 profiles on streams and 14 locations
on accumulations) located on 121 water bodies. In that period, 76% of the water bodies
were not included in the monitoring program. The assessment of the ecological potential
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was performed on 24% of the water bodies from which 2% had a good, 8% moderate, 9%
poor, and 5% bad ecological status [42].
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2.2. Data

Optical remote sensing monitoring of WQP is based on the correlation between the
in-situ measurement and the corresponding surface reflectance.

In this paper, the in-situ data were provided by the Water Information System of
Europe (WISE). WISE was launched in 2007, as a joint initiative from European Commission
and European Environmental Agency, providing a web portal for water-related information
ranging from inland to marine [43]. WISE represents the formal reporting tool for EU
water legislation enabling the sharing of water-related information at a European level.
The WISE-WFD database contains data reported by EU Member States, Norway and the
United Kingdom according to article 13 of the WFD. The database includes aggregated and
disaggregated information as well as spatial references about ground and surface water
bodies. The disaggregated database represents raw in-situ observed values of WQP [44]
reported on an annual basis. Currently, there are more than 60,000,000 in-situ observations
and more than 70,000 spatial object identifiers. Data were collected in the period from 1984
to 2022. The sampling location for in-situ water quality monitoring, used in this research,
was located along the main inland water bodies (river, lake, and transitional) in Europe
to obtain a range of hydrological and atmospheric conditions across a continental scale
(Figure 1).

Landsat 5, Landsat 7, and Landsat 8 surface reflectance products from 1984 to 2022
over Europe were used. In total, 213,117 images were analyzed to create a long time series
and train the model for WQP monitoring. The date ranges and number of images per
sensor are provided in Table 2.
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Table 2. Time frame and number of images per sensor.

Sensor Start Date End Date Number of Images

Landsat 5 TM 19 March 1984. 29 September 2015. 99,319
Landsat 7 ETM+ 30 June 1999. 31 December 2021. 76,224

Landsat 8 OLI 21 March 2013. 31 December 2021. 37,574

Landsat Surface reflectance imagery is atmospherically corrected, containing six (B,
G, R, NIR, SWIR, SWIR 2) bands processed to orthorectified surface reflectance using
LEDAPS [45]. The Landsat mission is to achieve global coverage once every 16 days with
a spatial resolution of 30 m for the multispectral bands. The Google Earth Engine API
integrated into Google Colab was used as an access point to the images.

The consistency and standardization of Landsat data across its various missions
(Landsat 5, 7 and 8, in this case) is crucial for enabling comparability and consistent anal-
ysis over different time periods using time series and to ensure a seamless multi-sensor
data record where observed satellite changes can be ascribed to surface changes and
not to instrument changes. This consistency is maintained through several factors [46]:
(i) rigorous calibration procedures to ensure that sensor characteristics, such as spectral
response and radiometric accuracy, remain consistent across the different platforms, to
minimize variations between sensors, enabling data continuity [47] (ii) standardized data
processing algorithms employed consistently across different Landsat missions, which
are corrected for atmospheric effects, geometric distortions, and other artifacts, ensuring
that data from different satellites can be combined and compared accurately [48], and
(iii) metadata and data format, which documents sensor characteristics, acquisition pa-
rameters and processing methods. Although the complete normalization of these factors
within the USGS Landsat processing framework remains pending [46], the efforts made to
produce consistent and analysis-ready Landsat data across different missions have made
possible its broad use for water quality assessment and monitoring [49].

2.3. Methodology

Figure 2 summarizes the approach followed in this paper. It consists of three main
steps: preprocessing, processing, and prediction.

Preprocessing: The Sentinel 2 Level 2A satellite images were used to detect water
bodies. Level 2A was atmospherically corrected by using Sentinel 2 Atmospherically Cor-
rection, which is based on [50,51]. The Level 2A images also contain the Scene Classification
Layer (SCL), which provides a pixel classification map with four different classes for clouds
and six different classes for shadows, cloud shadows, vegetation, soil, water, and snow [52].
Visual inspection showed that water pixels are mostly classified as water or dark pixels.
Waterbody masks were created by using the region grow algorithm where water pixels are
used as seeds, and neighboring pixels that were classified as dark pixels and had reflectance
values lower than 800 in the SWIR 2 band were added to the region. Corresponding water
masks were created for each Landsat image used for the prediction of WQP concentration
in 2020 in the study area.

The coordinates of the monitoring station were reprojected from WGS84 to WGS84/UTM
34 N projection to match the Landsat imagery coordinate system. Since WQP monitoring is
based on remote sensing, the monitoring stations located on small inland water bodies and
groundwaters were excluded from the dataset. Additionally, the location of each station
was checked against detected water bodies in order to make sure that the extracted value
represented water reflectance.
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For each point, the values of surface reflectance were extracted from available Landsat
5, Landsat 7, and Landsat 8 Surface Reflectance Level 2A images. The cloud and shadow
masking were performed in order to provide clean water pixels. The resulting table con-
tained the identifier of monitoring stations, the corresponding value of surface reflectance,
and the sensing date. The surface reflectance was filtered by date to match the in-situ
data. The maximum time gap between the in-situ sampling and satellite overpass was
3 days. Final training data contained the surface reflectance of B, G, R, NIR, SWIR1, SWIR 2
band, band ratios NIR/R, G/R, G/B, B/R, R/G, R/B2, NIR/B2, G/SWIR2, spectral indices
NDVI, NDWI and NDTU, as well as B*R, G*R, (B + R + NIR)/G and NIR/(R + SWIR)
and the corresponding concentration of WQP. The Pearson correlation analysis was used
to investigate the association between remote sensing and in-situ data with a correlation
coefficient (r). Based on the correlation the input data set for each WQP was defined. The
data were standardized to fit a normal distribution with a mean value of 0 and standard
deviation of 1 and split into training and test sets (80% and 20%, correspondingly).

Processing: The relationship between the WQP concentration and surface reflectance
was modeled by using ANN. ANNs are pattern-recognition algorithms that consist of
an interconnected group of artificial neurons, and they process information using a con-
nection approach to computation [53] In this study, a fully connected back-propagation
neural network was applied. The network had three layers: input, hidden, and output
(Figure 3). The input layer represents predictor or independent variables (in this case
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radiance measurement of different wavelengths). Hidden layers contain a varying number
of neurons. The number of nodes in the hidden layer depends on the complexity of the
approximated function and sample numbers. If the network is too small, the self-learning
ability and precision of the network will decrease, causing under-fitting. Meanwhile, if the
network is too large, training time will increase, and the generalization capability of the
network will decrease, producing over-fitting [54]. There is no theoretical formula that can
be used for the selection of optimum NN architecture. The architecture was fixed by using
a trial-and-error approach. The output values of the hidden layer were the input values of
the output layer, which also performs the summation and activation functions. The output
of this layer was the target of water quality parameters. To derive the correct output, the
network learned by training on the subsets of in-situ data. In the back-propagated network,
the outputs were then compared with actual values from the training data set, the error was
calculated, and the results were transferred to the output layer. As the data passed through
the network many times, weights were adjusted and errors were reduced (Figure 3).
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Accuracy assessment: The performance of the developed ANN model was evaluated
based on common statistical measures: coefficient of determination (R2) (Equation (1)),
RMSE (Equation (2)), normalized RMSE (NRMSE) (Equation (3)), Mean Square Error (MSE)
(Equation (4)), Mean Absolute Error (MAE) (Equation (5)). A RMSE measures the quality
of the model fit; 0 indicates a perfect fit for the data, while large values are obtained if the
estimated concentration of WQP and true concentration differ substantially. NRMSE is
used to compare results between models with different scales.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(ŷi − y)2 (1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

NRMSE =
RMSE

ymax − ymin
(3)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (4)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

where yi is actual value, ŷi is the predicted value, n sample size, y mean of the n actual
values, ymax is the maximum of n actual values and ymin is the minimal of n actual values.
A model with a high R2 and low RMSE and NRMSE would be suitable for WQP monitoring.
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The R2 factor is essential for the evaluation of the developed prediction model with the
following classification: excellent prediction R2 > 0.9, good prediction 0.82 ≤ R2 < 0.90,
approximate quantitative prediction 0.66 ≤ R2 ≤ 0.81, a prediction that can possibly
distinguish between high and low values 0.50 ≤ R2 ≤ 0.65, and unsuccessful prediction
R2 < 0.5 [55,56].

Prediction: The trained ANN models were used to monitor the WQP concentration
based on Landsat 8 Level 2A images for the year 2020 in the study area. Before making
the prediction, the images needed to be masked using a water mask (created in the prepro-
cessing phase) in order to ensure that all the pixels represent the water and do not contain
surrounding classes. After the prediction of the WQP concentration water quality was
classified into classes based on values presented in Table 3. Those values were defined
to be in line with those as defined by the legal documents in the field for the Republic of
Serbia [57–59].

Table 3. Limit values of WQP concentration for classification of water body status [57–59].

Class/Parameter chl-a DO TSS TN TP

I (High) 0–25 8.5> 0–25 <1 0–0.05
II (Good) 25–50 7–8.5 25- 1–2 0.05–0.30

III
(Moderate) 50–100 5–7 - 2–8 0.30–0.40

IV (Poor) 100–250 4–5 - 8–15 0.40–1
V (Bad) >250 <4 - >15 >1

In order to gain a deeper insight into the performance of the developed models and
assess their practical application, validation was performed. To validate the developed
models in the Republic of Serbia, we compared the satellite-derived results and field mea-
surements for the year 2020 for the Zemun monitoring station in the Danube River (which
was not included in the training data). Since the in-situ sampling was not regular, there
were no matches between the exact dates of satellite-derived results and field sampling,
and therefore, the classical statistical measures (R2, RMSE, NRMSE) were not calculated.

2.4. Implementation

The developed workflow was implemented in the Python programming language.
The workflow consisted of three modules for the creation of training data, prediction, and
monitoring of WQP, and it is fully automated. Manual input is only used for the selection
of optimal NN architecture. The remote sensing data were accessed and preprocessed by
using GEE Python API. The data set and NN architecture were defined for each WQP. The
proposed architecture consisted of input, hidden, and output layers with an activation
function (Table 4). The number of the input neurons was selected to be equal to the selected
input bands that had a strong correlation with WQPs, and the number of output neurons
was selected to be one. The trial-and-error approach was used for the selection of a proper
number of hidden neurons. All of the data sets were split at 80% for training and 20%
for validation. The learning rate and decay rate were determined through grid search
(Learning rate: [0.0001, 0.001, 0.01, 0.1]; Weight decay: [0.000001, 0.00001, 0.0001]). To
avoid overfitting, early stopping was used. Early stopping is a commonly used form
of regularization that interrupts the training process when there is no improvement of
validation loss for a predefined number of epochs. Each time the validation loss improves,
the copy of model parameters is stored. After training the algorithm terminates, and those
parameters are used instead of the last parameters.
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Table 4. Parameters used to train the model for water quality monitoring.

Parameter Dataset
Size

ANN
Architecture Input Epoch Optimizer Loss Min Max

chl-a 3450 9-20-15-20-6-1 B, G, G/B, R/B2, G/SWIR 438 RMSprop MSE 0 45

DO 11,585 128-32-8-1
SWIR2, NDWI, NDTU, GSWIR,

NIR/R, R/G, R/(B + NIR), R-NIR,
B-NIR

684 Adam MSE 0.2 23.8

TSS 11,078 128-32-16-8-1 B, G, R, NDTU, G/SWIR, G/R,
R/G, I2, R-NIR, B*R, G*R 1500 Adam MSE 0.1 260

TN 12,307 128-32-8-1
B, G, NIR, SWIR, B/R, G/SWIR,
G/R, R/G, (NIR + R)/G, (B + R +
NIR)/G, R-NIR, R + NIR, B-NIR

1043 Adam MSE 0.0008 8.96

TP 12,164 128-32-8-1 NIR, G/SWIR, R-NIR 310 Adam MSE 0.0008 3.0

The training of the networks was conducted using the publicly available cloud plat-
form Collaboratory (Google Colab), which is based on Jupyter Notebooks. The parameters
used in the model training are presented in Table 4.

3. Results

The selection of optimal band combination for each WQP was performed (Table 4)
allowing for the development of the high-accuracy model. The back-propagated ANN
algorithms were proven to be very efficient in monitoring and estimating concentrations
of different WQP, for both optically and non-optically active parameters, with highly
acceptable results. In general, very positive results were obtained for all WQP and, as
shown in Figure 4, coefficients of determination (R2) vary between 0.91 and 0.99 at the
validation phase. Since the R2 > 0.9, the developed models provided an excellent prediction
for all WQPs.
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The results of the accuracy assessment are presented in Table 5. As expected, the
highest accuracy and lowest NRMSE were obtained for the optically active WQP, i.e., chl-a
and TSS (0.79% and 0.72%, respectively).

Table 5. Accuracy assessment of WQP monitoring using back-propagated ANN algorithms.

Parameter
Training Validation RMSE NRMSE [%]

MAE MSE MAE MSE

chl-a [µg/L] 0.065 0.023 0.083 0.070 0.34 0.79
DO [mg/L] 0.040 0.008 0.052 0.024 0.35 0.93
TSS [mg/L] 0.951 6.566 1.049 13.749 1.89 0.72
TN [mg/L] 0.084 0.040 0.065 0.020 0.14 1.61
TP [mg/L] 0.015 0.003 0.015 0.0024 0.04 1.38

The results of the independent validation of the developed model are presented in
Table 6, which showed that the models developed for TSS and TN provided accurate
classification for all months, while DO reached the lowest values (the water body status
matched only in 37.5% of the cases).

Table 6. Comparison between estimated and measured concentrations of TSS, DO, TN for the
Zemun monitoring station in 2020 where M—results of in-situ measurement, P—results of prediction,
(C)—water body status based on Table 3. The data for January, February, November and December
have been omitted since there were no RS data collected for that period. I–IV are water body
status classes.

Month Date
TSS DO TN TP

M (C) P (C) M (C) P (C) M (C) P (C) M (C) P (C)

March
8 4.4 (I) 7.5 (II) 1.9 (II) 0.051 (II)

18 6 (I) 11.4 (I) 1.5 (II) 0.111 (II)

April 15 17 (I) 10.8 (I) 1.5 (II) 0.057 (II)
25 17.6 (I) 15 (I) 1.6 (II) 0.046 (I)

May 11 18.8 (I) 14.6 (I) 1.8 (II) 0.038 (I)
20 9 (I) 9.6 (I) 1.1 (II) 0.031 (I)

June

3 15.8 (I) 8.6 (I) 1.9 (II) 0.092 (II)
12 18.9 (I) 8.9 (I) 1.1 (II) 0.290 (II)
17 20 (I) 7.7 (II) 1 (II) 0.246 (II)
19 21 (I) 12 (I) 1.3 (II) 0.300 (II)
28 17.9 (I) 13.8 (I) 1.1 (II) 0.310 (III)

July
14 5.6 (I) 7.9 (II) 1.8 (II) 0.320 (III)
15 4 (I) 6.5 (III) 1.5 (II) 0.235 (II)
31 3.57 (I) 9.8 (I) 1.9 (II) 0.279 (II)

August
15 17.5 (I) 7.3 (II) 1.9 (II) 0.450 (IV)
19 7 (I) 6.2 (III) 1.5 (II) 0.456 (IV)
22 11.8 (I) 9.5 (I) 1.6 (II) 0.500 (IV)

September 9 14.4 (I) 13.2 (I) 1.6 (II) 0.076 (II)
16 8 (I) 7.7 (II) 1.2 (II) 0.18 (II)

October
3 15.1 (I) 16.9 (I) 1.9 (II) 0.064 (II)

21 16 (I) 9.5 (I) 1.4 (II) 0.166 (II)
25 15.5 (I) 15.1 (I) 1.4 (II) 0.054 (II)

4. Discussion
4.1. Proposed Model for WQP Monitoring

Aquatic environments have been impacted by various pressures that affect their status
and increase water stress. To move towards a more sustainable use of water resources, an



Remote Sens. 2024, 16, 68 12 of 18

appropriate water quality monitoring program needs to be established. In this study, a
38-year long time-series of Landsat and in-situ data were used for the monitoring of WQP
based on back-propagated ANN.

As expected, the results of the correlation analysis showed that the highest correlation
between remote sensing data and WQP was obtained for TSS. TSS had a significant positive
correlation with visible bands and G*R, B*R, and R + NIR while a negative correlation was
noticed for G/SWIR. The strong correlation between TSS and visible bands and G*B and
B*R was also reported in [20] since higher concentrations of TSS increase water leaving
radiance across the whole visible spectrum. Additionally, Refs. [10,60], and others have
demonstrated that the R band is suitable for monitoring TSS. Similarly, the highest positive
correlation was obtained between chl-a and the green band and the G/B ratio, while the
G/SWIR ratio showed a strong negative correlation. The high correlation between chl-
a and G bands is consistent with previous studies since water with an increased chl-a
concentration reflects a high amount of G radiation [9,61]. DO had a positive correlation
with SWIR2, NIR/R and R-NIR while a significant negative correlation was noticed for
G/SWIR, R/(B + NIR), and NDWI. The TN and TP had a positive correlation with G, NIR
and the R + NIR and NIR band, respectively, while a negative correlation was noticed
between TN and NDWI and G/SWIR for TP. The highest correlation between TN and TP
and NIR and G band was also reported by [25,62].

According to the results, the highest accuracy (R2, NRMSE [%]) was obtained for chl-a
and TSS (Table 5). This is expected since those are optically active water parameters. For
chl-a, the accuracy attained in this paper (R2: 0.99, NRMSE: 0.79%) was higher than the ones
reported in previous studies. Barraza-Moraga et al. [62] achieved an NRMSE of 3.6% (R2:
0.97, RMSE: 2.58) using Sentinel 2 images to develop an MLE model for chl-a monitoring,
while [63] used UAV images and MLR resulting in a R2 of 0.91 and RMSE of 0.07. Along
the same lines, Ref. [64] used UAV images to build a CNN model and obtained an R2 of
0.79 (RMSE: 8.76), while [65] used Sentinel 2 images and Ada boost regression resulting in
a R2 of 0.90 (RMSE: 1.48). Hafeez et al. [20] used ANN achieving an NRMSE of 5.1% (R2:
0.87, RMSE: 1.4) while [66] reached an R2 of 0.88 using CNN and Sentinel 2 and Geo-Fan 2.

Also, the model developed for monitoring the TSS achieved a high accuracy (R2: 0.99,
RMSE: 1.89, NRMSE: 0.72%), larger than the values reported by [65] using Sentinel-2 and
RF (R2: 0.6, RMSE: 2.97), and more accurate than the models developed by [20] and [17]
using Landsat images and NN, which yielded an R2 of 0.89 (RMSE: 2, NRMSE: 6.2%) and a
R2 of 0.93 (RMSE: 0.99, NRMSE: 2.2%), respectively.

Similar results were also obtained for DO, TN and TP (Table 5), with higher accuracies
than the ones obtained by [20] to monitor TN using Landsat 8 and a stepwise regression
function (R2: 0.61), The same author, when using the RF algorithm, increased the accuracy
of R2 to 0.88 [64] and of R2 to 0.94 when using NN [25]. Refs. [22,67] used NN, reaching
accuracies of R2 of 0.95 and 0.86, respectively. Lower accuracies were achieved by [22] by
using NN to model TN (R2: 0.64, RMSE: 0.04), similar to [56], who used partial least square
regression on Landsat 8 and Sentinel 2 data achieving an R2 of 0.63 and 0.77, respectively.

For DO, the accuracies obtained in this study were also higher than the ones obtained
by [17,24,68] using NN, or [65], who obtained an R2 of 0.74 by using an Ada boost regression
and Sentinel 2 images.

The results in Table 5 showed that NN, as a nonlinear approximation method, provided
more accurate results for WQP monitoring. However, the training of NN models requires a
large training dataset, otherwise, they may lead to overfitting or underfitting, which greatly
limits the extraction of general rules and the generalization ability of the model [69]. Taking
into account that most of the previously analyzed papers used small training data sets,
such as 125 [22], 60 [25], 155 [64], and 92 [66] samples, it was expected that the proposed
method would have a higher accuracy. In addition, the selection of optimal input data as
well as the usage of the large time series covering a wide variety of conditions and an early
stopping function [70] to avoid overfitting probably had an impact on the increase in the
model accuracy.
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Regarding the independent validation of the developed model which is shown in
(Table 6), although there is no exact coincidence between the date of measurement and
estimated concentration, the lowest accuracy was obtained for DO since the water body
status matched only in 37.5% of the cases. This can be explained by the high variation
of the DO concentration especially in summer months. The results show that the DO
concentration can decrease from class I to III within one day [71]. The waterbody status
for TP was accurately classified at 75%. However, it was noticed that the developed model
tended to overestimate TP during increased concentration. The models developed for TSS
and TN provided an accurate classification for all the months. It should be taken into
account that the exclusion of monitoring stations located on small inland water bodies
and groundwater due to remote sensing-based monitoring limitations might limit the
comprehensive coverage of water quality assessments. This exclusion could introduce
potential biases in the model’s training dataset, affecting its adaptability to diverse water
body sizes and types.

4.2. Usability of the Developed Model in a Real-Case Scenario: Dobrodol Water Reservoir

The developed models and satellite imagery pixel values for larger water bodies in
the Republic of Serbia were used to estimate the WQP concentration., since for water
management, the classification of water status is necessary. Based on the estimated WQP
concentrations and water quality standards for surface water classify each water-quality
parameter into five classes indicating water status from “Excellent” to “Bad”.

The change in water body status during 2020 for the Dobrodol water reservoir is
presented in Figure 5. It shows that areas close to shorelines with point and diffuse
pollution arising from human activity have relatively poor water quality compared to the
deeper areas. Generally, the water status of the Dobrodol water body during 2020 could be
classified as good, mostly due to the higher concentration of TN. This was expected due to
nutrient-rich agriculture discharging from the surrounding land [69]. The visual inspection
shows that the chl-a concentration was the highest at the banks and that it decreased when
you moved toward the center of the water reservoir, which is in line with either the physical
process of sedimentation or algae encroachment [70]. The higher concentration of chl-a
was noted during summer. The increase in the growth of algae accelerated the escape of
oxygen from the water column, which resulted in an increase of chl-a and a reduction in
DO content and the ecological health and balance in the aquatic environment [71,72].
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5. Conclusions

The study successfully established a robust water quality monitoring program using a
38-year time series of Landsat and in-situ data, coupled with a back-propagated Artificial
Neural Network (ANN) model. This model demonstrated high accuracy in monitoring



Remote Sens. 2024, 16, 68 15 of 18

various water quality parameters (WQP), showcasing its potential for sustainable water
resource management.

The correlation analysis revealed strong associations between remote sensing data and
specific WQPs, such as Total Suspended Solids (TSS), chlorophyll-a (chl-a), Dissolved Oxy-
gen (DO), Total Nitrogen (TN), and Total Phosphorus (TP). Optimal band combinations for
each parameter were identified, providing valuable insights into the spectral relationships
aiding accurate WQP estimation.

The ANN-based model exhibited exceptional accuracy, particularly for optically active
parameters like chl-a and TSS, surpassing results from previous studies that used different
remote sensing techniques. This underscores the superiority of the developed model in
achieving high precision in WQP estimations, surpassing various existing methods and
algorithms.

The study highlighted the efficacy of Neural Networks as a nonlinear approximation
method for WQP monitoring. It outperformed other techniques but emphasized the
necessity for substantial training datasets to avoid overfitting or underfitting. Optimal
input data selection and the use of extensive time series data contributed significantly to
model accuracy enhancement.

The independent validation of the developed model revealed a strong ability to classify
WQP concentrations accurately. Notably, while the models for TSS and TN provided
consistent and accurate classifications, DO estimation faced challenges, especially during
high variation periods. This underscores the complexity of DO dynamics in water bodies,
particularly during seasonal shifts.

Regarding further research, exploring the integration of additional data sources, such
as high-resolution imagery or meteorological data, could further refine the model’s accuracy.
Incorporating these data could potentially improve predictions by capturing more intricate
environmental parameters that contribute to water quality dynamics. This would contribute
to advancing the understanding of the model’s robustness and applicability in different
environmental contexts, potentially improving its performance and expanding its utility
for broader water quality monitoring and management objectives. Aligning when the
sampling data are obtained with satellite overpasses would also be recommended in order
to increase the accuracy of the models.

Addressing these weaknesses could potentially strengthen the paper’s findings by
providing a more comprehensive assessment of the model’s performance in real scenarios
and expanding its applicability across various water body sizes and types.
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