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Abstract: Although shrublands, savannas and grasslands account for 37% of the world’s 

terrestrial area, not many studies have analysed the role of these ecosystems in the global 

carbon cycle at a regional scale. The MODIS Gross Primary Production (GPP) product is used 

here to help bridge this gap. In this study, the agreement between the MODIS GPP product 

(GPPm) and the GPP Eddy Covariance tower data (GPPec) was tested for six different sites in 

temperate and dry climatic regions (three grasslands, two shrublands and one evergreen forest). 

Results of this study show that for the non-forest sites in water-limited areas, GPPm is well 

correlated with GPPec at annual scales (r2 = 0.77, n = 12; SEE = 149.26 g C·m−2·year−1), 

although it tends to overestimate GPP and it is less accurate in the sites with permanent 

water restrictions. The use of biome-specific models based on precipitation measurements 

at a finer spatial resolution than the Data Assimilation Office (DAO) values can increase 

the accuracy of these estimations. The seasonal dynamics and the beginning and end of the 

growing season were well captured by GPPm for the sites where (i) the productivity was 

low throughout the year or (ii) the changes in the flux trend were abrupt, usually due to the 

restrictions in water availability. The agreement between GPPec and GPPm in non-forested 
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sites was lower on a weekly basis than at an annual scale (0.44 ≤ r2 ≤ 0.49), but these 

results were improved by including meteorological data at a finer spatial scale, and soil 

water content and temperature measurements in the model developed to predict GPPec  

(0.52 ≤ r2 ≤ 0.65).  
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1. Introduction 

Although shrublands, savannas and grasslands account for 37% of the world’s terrestrial area, many 

studies have been conducted to estimate how forests contribute to the global carbon cycle [1–8], but 

not many monitor the implications of grasslands/shrublands on the carbon cycle at a large scale [9,10]. 

Monitoring these non-forested ecosystems in dry areas is important since they are very sensitive to 

changes in water availability [11] and because they have been suggested as potential candidate areas 

for major carbon storage efforts [12]. Some of these areas were recorded as carbon sinks, while during 

years of drought the same areas were carbon sources [13], so long-term measurements at the regional 

scale are essential for examining the seasonal and inter-annual variability of C fluxes [14]. 

The net ecosystem exchange (NEE) is the CO2 exchange between the atmosphere and the whole 

terrestrial ecosystem [15] and it can be decomposed into two terms: gross primary production (GPP) 

and total ecosystem respiration (Re) [16]. While NEE is directly measurable using Eddy covariance 

(EC) flux towers [17], it is not possible to obtain direct, integrated observations of either GPP or Re, 

because these processes represent a multitude of responses by a combination of autotrophic and 

heterotrophic organisms [15]. However, the GPP estimates from EC towers (GPPec) only represent 

fluxes at the tower footprint scale (between one hundred metres and several kilometres) [18], and 

therefore, the estimation of GPP at regional scale can only be made by using ecosystem models (e.g., 

[19,20] and/or remotely sensed data (e.g., [2,21–23]). 

Although in the past satellite sensors such as the Advanced Very High Resolution Radiometer 

(AVHRR) aboard the NOAA satellite and the VEGETATION (VGT) sensor aboard the SPOT satellite 

have been used to estimate carbon fluxes [24–26], the most frequently used remote sensing data source to 

monitor the C cycle at regional or global scale is the Moderate Resolution Imaging Spectroradiometer 

(MODIS) (e.g., [18,21,22,27]). MODIS estimates of GPP (GPPm) are derived from the MOD17 algorithm, 

which uses input data from three sources: the eight class 1 km MODIS land cover classification [27], the 

global scale meteorology obtained from NASA’s Data Assimilation Office GEOS-4 global climate  

model [28], and the fAPAR (fraction of Absorbed Photosynthetically Active Radiation). 

The utility and applicability of GPPm is linked to its validation, which is challenging because of 

scaling issues and also the logistical constraints of measuring NPP in the field [16]. Site specific 

studies such as [2,29–31] as well as the two most comprehensive validation projects (the Bigfoot [6] 

and the AmeriFlux [8,13]) focused on the inter-annual variation of GPPm in forested biomes in non-water 

deficient areas [13,16,18]. The lack of research focused on GPPm in grasslands was partially filled by [32], 

which analysed the agreement with GPPec on an eight-day interval on five grasslands in three dry and two 

continental areas. They found that GPPm agreed well with tower data for three sites (r > 0.80), but did not 
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capture the seasonal dynamics for the two other sites, and they recommended to extend this work to 

other grassland ecoregions and ecosystems. Therefore, there is a deficit of studies where GPPm is 

validated at an annual and at an intra-annual scale on non-forested biomes in water limited areas, since 

the previous similar works [32] only considered the performance of GPP in one biome (grasslands) and 

at one temporal scale (weekly). There is also a need for operational methods that can increase the 

accuracy of the GPPm estimations in these biomes, such as identifying the variables which can reduce 

the uncertainty in the prediction models. The aim of this work is to cover that gap.  

The specific research objectives are to: (i) determine the suitability of the MODIS GPP product to 

estimate annual GPP and temporal dynamics of the carbon fluxes at eight-day intervals, (ii) determine 

the variables which improve the correlation between GPPm and GPPec for shrublands and grasslands 

in water deficient areas using EC carbon flux tower data.  

2. Materials and Methods 

2.1. Study Area 

Six sites (three grasslands, two shrublands and one evergreen forest) located in temperate and dry 

climatic regions were selected to carry out this work, corresponding to the location of six EC carbon 

flux towers (Figure 1, Table 1). The time series of available data for these sites were long and the 

quality of the corresponding MODIS data was flagged as high in the image quality reports.  

Four of these sites (USAUD, USFPe, USVAR, USSO4) are located in water deficient areas (according 

to the Köppen-Geiger classification system: Bsh, Bsk, Csa, [33]). One site (USKS2) is located in a non-

water deficient area, in order to compare the results between water limited and non-water limited sites. In 

addition, one extra site (USME3) was located in an evergreen needle leaf forested area in a 

Mediterranean climatic region (water deficient during summer). This last site was selected to compare 

the results obtained for the grasslands/shrublands sites with a forested site.  

Table 1. Characteristics of the data set. Notes: ID (Fluxnet site code), Elev. (elevation in 

metres above sea level), IGBP (MODIS International Geosphere-Biosphere Programme 

(IGBP) classification): GRA: grasslands, CSH: Closed Shrublands, ENF: Evergreen 

Needleleaf Forest, CLIM (climatic classification according to Köppen-Geiger classification 

system [33]: Bsh: Hot semi-arid, Bsk: Cold semi-arid, Csa: Mediterranean, Csb: Cool-summer 

Mediterranean, Cfa: humid subtropical), EC data (data available from the EC Tower), EC 

used data (data used from the EC Tower). 

Site Name ID Latitude (º) Longitude (º) Elev. (m) IGBP CLIM EC Data EC Data Used 

Audubon USAUD 31.59 −110.51 1469.0 GRA Bsh 2002–2005 2003, 2004, 2005 

Fort Peck USFPe 48.30 −105.10 634.0 GRA Bsk 2000–2006 2004, 2005, 2006 

Vaira Ranch-Ione USVAR 38.41 −120.95 129.0 GRA Csa 2001–2006 2004, 2005, 2006 

Kennedy Space 

Center (scrub oak) 
USKS2 28.60 −80.67 3.0 CSH Cfa 2000–2006 2005, 2006 

Sky Oaks-new stand USSO4 33.38 −116.64 1429.0 CSH Csa 2004–2006 2004, 2005, 2006 

Metolius-second 

young aged pine 
USME3 44.31 −121.60 1005.0 ENF Csb 2004–2005 2004, 2005 
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Figure 1. Location of the six sites used in this study: USAUD, USFPe, USVAR, USSO4, 

USKS2 and USME3. 

2.2. Data and Data Processing 

2.2.1. EC Flux Tower Data 

The CO2 eddy flux tower site data used in this study were accessible through the AmeriFlux network 

[34], which consists of over 150 sites making micrometeorological, meteorological and biological 

measurements in different biomes of North and South America [17]. In this study, we used EC flux 

tower data with Level 4 (L4) processing, (since it provided GPPec values compiled for half hourly and 

weekly (eight-day) intervals for each site. These data also included meteorological and soil data 

measured at the tower. A more extensive description of these variables and processing levels can be 

checked on the Ameriflux website [34].  

GPPec data were provided as original GPP (GPP_or) and/or standardised GPP (GPP_st). GPP_st 

was derived from standardised NEE and it was used in all cases for this work, unless it was not 

available (i.e., USFPe, USAUD), since it allowed for a more accurate comparison across sites [19]. 

Since gaps in NEE acquisition are unavoidable, artificial neural network (ANN) gap-filled GPP data 

were used, as recommended by [15,18,35]. However, this is not a critical decision as long as the same 

method was chosen for all sites.  

While examining the eight-day L4 flux tower data, it was observed that some of the GPP values 

were negative, especially for the water-limited sites (i.e., USAUD and USVAR). Negative GPP data 

can be the result of flaws in the standardised partitioning of the net CO2 (NEE) when the true GPP 

values are close to zero [30] and it is more likely to happen in water deficient areas [15] (i.e., 
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USVAR). Therefore, the half-hourly L4 data were reviewed, since the NEE partitioning was 

performed at that time interval. The separation of NEE into GPP and Re is a complex and controversial 

task [36,37], which has been the objective of other comprehensive studies [15] and is not the goal of this 

work. As expected, the half-hourly data contained negative GPP values as well (especially during night 

time periods), which led to negative aggregated eight-day GPP data or GPP values that were lower 

than the actual ones. Thomas, et al. [6] and Wolf, et al. [38] also reported negative night time GPP 

values and noted that both negative GPP values and non-zero GPP values at night are impossible in the 

majority of plants, and therefore, the values were interpreted as errors and were made to be zero. We 

followed this methodology and we made the negative half-hourly GPP values zero. However, when the L4 

eight-day data showed GPP values smaller than  

−1 g C·day−1, those periods were excluded from the analysis (for both the weekly and the half-hourly 

data) because those values were too negative to be corrected to 0, and therefore, showed an anomaly in 

the data. This was the case for USAUD and USFPe, for which 18.8% and 27.2% of the original data 

were not considered for the analysis, respectively. 

2.2.2. MODIS-GPP Data (GPPm) 

The MODIS-GPP data used in this study were available from the Oak Ridge National Laboratory 

Distributed Active Archive Center [39]. Two different versions of the GPPm data were available: the 

standard product NASA MOD17 Collection 5 (Coll. 5) (available from 2000 to present) and Numerical 

Terradynamics Simulation Group (NTSG) MOD17 Collection 5.1 (Coll. 5.1) (available from 2000 to 

2006). The NTSG recommends the use of NTSG MOD17 Coll. 5.1 data when it is available [40]. 

Hence, for all six sites and all years, the MOD17 Coll. 5.1 GPP data was used.  

The data consisted of a 49 pixel subset of the corresponding eight-day GPPm composite centred 

over each flux tower location. Pixel 25 of the subset corresponded with the closest pixel to the tower, 

but in many cases it was not available for the eight-day period due to quality issues (e.g., cloud 

contamination, dead detectors, geometry issues, etc.) limiting the amount of GPPm data available for 

the study. Thus, we decided to use the average GPPm value of the 49 pixel subset, as long as the pixel 

met the quality requirements and corresponded to the same land cover as the tower site; otherwise they 

were rejected on a pixel by pixel basis and afterward the GPP values from the remaining pixels were 

averaged. A t-test showed that there were no significant differences (p < 0.05) between the average of 

the 49 pixel subset and the GPP value of pixel 25 (for each site and year).  

2.3. Analytical Methods  

2.3.1. Regression and Agreement Analyses (Annual Basis) 

GPPec data were aggregated into annual values (g C·m−2·year−1), as well as the eight-day MODIS 

GPP data (GPPm) (g C·m−2·year−1). All the variables in the annual dataset (GPPec, GPPm and 

precipitation (mm·year−1)) were tested for normality using the Kolmorogov-Smirnov test (α = 0.05). A 

linear regression was adjusted when data were normal, and the r2 coefficient of adjustment and the 

standard error of the estimates (SEE) were calculated. In addition to the relationship between GPPec and 

GPPm, the relationships between the latter variables and precipitation were tested, in order to see if the 
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results were similar to those obtained in previous works regarding non-forested [9] and forested sites [6]. 

Moreover, the relative error term was calculated for each site and year as in Equation (1): 

(%) ( ) 100E GPPm GPPec GPPec    (1) 

Where E (%) = relative error term, GPPm = MODIS GPP data; GPPec = EC tower data GPP. 

A similar procedure was followed by [13] and [22] in order to validate the MODIS GPP product on 

an annual basis. SPSS Statistics for Windows, Version 20.0 was used to conduct all the statistical 

analyses in this work. 

2.3.2. Regression and Agreement Analyses (Temporal Dynamics)  

The analyses for the eight-day interval data used the half-hourly GPPec aggregated to eight-day 

periods (g C·m−2·day−1) and the GPPm eight-day period data (g C·m−2·day−1). All the variables in the 

eight-day period dataset were tested for normality by tower and year, tower, and biome type using the 

Kolmorogov-Smirnov test (α = 0.05).  

The relationship between the MODIS estimated eight-day GPP (GPPm) with EC-derived eight-day 

GPP (GPPec) was explored by linear regression for the sites which met the normality assumption. Model 1 

was adjusted by ordinary least squares (OLS) linear regression between GPPec and GPPm per tower 

and per year. Model 2 was adjusted by OLS linear regression per tower (GPPec vs. GPPm), without 

separating the data by year. A similar procedure was followed by [2,13,18,29,32] for the validation of 

MODIS-GPP on an eight-day period basis. In order to determine which other variables (besides 

GPPm) help to explain the temporal dynamics of C, Model 3 was adjusted by stepwise linear 

regression per tower, with GPPec as the dependent variable and GPPm and the following variables 

measured at the EC tower as independent variables: air temperature (Ta) (ºC), soil temperature (Ts) 

(ºC), global radiation (Rg) (W·m−2),vapour pressure deficit (VDP) (hPa), soil water content (SWC) (% 

volume). The collinearity between the variables in the final model was tested before choosing the 

definitive model, so models with non-collinear predictors were preferred. For each regression, the r2 

coefficient of adjustment and the SEE were calculated. 

When the data were not normally distributed, the relationship between GPPm and GPPec was 

explored by calculating the Spearman rho coefficient of correlation (), which is more robust than 

linear regression when the assumption of normality is not met [41]. In order to compare these results to 

the results obtained by linear regression (r2), 2 were included in the tables (Model 1 and Model 2). For 

Model 3, the correlation () between GPPec and each variable was examined, pointing out the variable 

that was most correlated with GPPec. The SEE could not be calculated in those cases. 

3. Results and Discussion 

3.1. Suitability of the MODIS GPP Product to Estimate Annual GPP in Shrublands and Grasslands in 

Water Deficient Areas.  

Table 2 shows the values of GPPec, GPPm and precipitation aggregated on an annual basis for each 

site and year. It also shows the relative error in % (E) for the estimation of GPP by using GPPm. 
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Table 2. Annual values registered for each site. GPPec (g C·m−2·year−1): GPP derived from 

the EC tower, GPPm (g C·m−2·year−1): GPP obtained from the MODIS imagery, E (%): 

GPP relative error, Precip (mm): precipitation. 

Tower Year GPPec GPPm E (%) Precip 

USAUD 

2003 113.1 223.5 97.6 272.0 

2004 125.1 214.8 71.6 191.2 

2005 362.9 252.1 −30.5 305.6 

USFP 

2004 380.2 329.4 −13.4 268.0 

2005 381.2 177.8 −53.4 219.2 

2006 149.1 146.2 −1.9 238.4 

USVAR 

2004 635.1 875.7 37.9 399.2 

2005 1084.8 914.5 −15.7 721.6 

2006 745.7 766.9 2.8 698.4 

USKS2 
2005 1950.8 1997.1 2.4 1022.4 

2006 1438.4 1679.2 16.7 814.4 

USSO4 

2004 227.2 431.7 90.0 410.4 

2005 498.1 626.3 25.7 668.8 

2006 173.5 314.4 81.2 184.0 

USME3 
2004 985.9 1005.1 1.9 365.8 

2005 683.6 944.5 38.2 592.0 

All the variables in the annual dataset were normal according to the Kolmorogov-Smirnov test  

(α = 0.05), so the agreement between GPPec and GPPm was reported as the r2 coefficient of adjustment 

and the SEE (Table 3). The results show that GPPm is highly correlated with GPPec for grassland and 

shrubland areas on an annual basis (r2 = 0.94, SEE = 142.57), which agrees with the findings of [13] for 

three sites (r = 0.86) and [18] in an across-biome validation where 10 out of the 42 sites were in non-

forested areas (r2 = 0.84, n = 42). The better agreement obtained in our study might be due to the fact 

that grasslands/shrublands have been analysed separately from other biomes and they constituted a 

more homogeneous group. The results obtained when adding the forested site to the model support this 

argument (r2 = 0.93, SEE: 142.57). On the other hand, when we only considered grasslands/shrublands 

in water-limited sites, the degree of agreement was lower (r2 = 0.77, SEE: 143.36).  

The results showed that GPPm tended to overestimate annual GPP in non-forested areas (Table 2, 

Figure 2). For the two sites located in shrublands (USSO4 and USKS2) water limitation might have 

played a role, since the overestimation was much larger for the site located in a water-limited area 

(USSO4) compared to non-water limited areas. This overestimation by GPPm could be attributed to the 

fact that the DAO meteorology used by the MOD17 algorithm underestimates local VPD in many water-

limited sites during the summer, and therefore photosynthesis is not sufficiently constrained when 

calculating GPPm for dry periods in North America [13,42]. This result agrees with [13], who found a 

similar overestimation of 67% for an open shrubland site in a dry area. However, [19] found that 

MODIS slightly underestimated GPP in two shrublands in water deficient areas. Some authors have 

suggested that these limitations in dry regions can be overcome with the inclusion of the variable SWC 

in the MOD17 algorithm [43]. 
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Figure 2. Relationship between EC-derived annual GPP with MODIS annual estimated 

GPP. The dashed line is the linear best fit for dataset 1 (n = 12) and the solid line is  

the 1:1 reference. 

Since the grasslands were located in water-limited areas and taking into account the limitation of the 

MOD17 algorithm in underestimating water stress, we expected the annual GPP to be overestimated [13] 

in these sites. However, the results showed that GPP was underestimated in these three sites in 2005 

(Table 2). The reason for these underestimations might be related to the fact that 2005 was categorized 

as “extremely moist” and “moderately moist” between April and December for the areas where those 

sites were located [44]. For USAUD and USVAR, the underestimation happened in both cases when 

there was more precipitation in comparison to the other two years. For the remaining years, GPP was 

overestimated in those two sites. In addition, the overestimation was larger in the site located in the dry 

area (Bsh) than for the site located in the temperate area (Csa). An inverse relationship was found 

between the magnitude of the overestimation of the GPP and the precipitation for these two sites (Table 

2). The underestimation of annual GPP in USFPe in 2004 can be explained by the fact that, although 

there was not more annual precipitation than in the other years, most of it fell during the summer 

months (data not shown) and therefore the local VDP was not underestimated. These results agree with 

the previous explanations about the effect of VDP estimations in the MOD17 algorithm and 

corroborate the hypothesis that GPPm is overestimated in non-forested biomes where soil water is 

severely limiting during the growing season. 

Though water content or water potential of topsoil horizons are the most desirable predictors in GPP 

modelling [9], such data is hard to summarise on a yearly basis and it is also not available for all the 

towers, making precipitation a more adequate variable to be considered. The existence of a strong 

correlation between annual GPP (GPPec and GPPm) and precipitation in water-limited grasslands and 

in shrublands (Table 3 and Figure 3a,b) agrees with the results obtained by [9]. It shows the ability of 

GPPec and GPPm to capture the relationship between photosynthetic activity and one limiting factor 

like precipitation, and it makes possible the use of this variable to improve the estimation of GPPec in 

non-forested biomes on an annual basis. The general predictive model which included the forested site 
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was less accurate than the model developed for non-forested sites. Thus, we recommend the use of 

specific models based on data from those biomes and to use meteorological data at a finer spatial 

resolution than interpolated DAO data. 

Table 3. Relationship between EC-derived annual GPP (GPPec) (g C·m−2·year−1), MODIS 

annual estimated GPP (GPPm) (g C·m−2·year−1) and precipitation (Precip) (mm).  

Note: Dataset 1: grasslands and shrublands located in water limited sites (n = 12), Dataset 2: 

all sites located in grasslands/shrublands (n = 14), Dataset 3: all sites located in forested areas 

and grasslands/shrublands (n = 16), r2: coefficient of determination, SEE: Standard Error of the 

Estimate (g C·m−2·year−1). All the regressions were significant at the 95% confidence level. 

Variable Y Variable X Dataset r2 SEE 

GPPec GPPm 

1 0.77 149.26 

2 0.94 143.36 

3 0.93 142.57 

GPPec Precip 

1 0.68 175.11 

2 0.83 233.86 

3 0.75 267.41 

GPPm Precip 

1 0.71 159.51 

2 0.83 249.28 

3 0.77 272.02 

Figure 3. Relationship between precipitation and (a) EC-derived annual GPP, (b) MODIS 

estimated annual GPP. The dashed line is the linear best fit for dataset 1 (n = 12). 

3.2. Suitability of the MODIS GPP Product to Estimate Temporal Dynamics of the Carbon Fluxes at 

Eight-Day Intervals. 

The MODIS GPP algorithm is considered to be able to capture seasonal dynamics in photosynthetic 

production [13]. However, the eight-day interval plots showed that the temporal dynamics of C in the  

non-forested water-limited sites were not as well captured by MOD17 (Figure 4a–c) as for the 

shrubland located in a non-water deficient area (Figure 4d). The delay in capturing the end of the 

(a) (b) 
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growing season might have been due to the incapability of the algorithm to accurately reflect the 

influence of low soil water content, which led to an overestimation of GPP. In all cases, the results 

showed that capturing the magnitude of the changes and the peak of the photosynthetic activity in the 

non-forested sites (regardless of the soil water availability) is still an issue, as [13] and [32] have 

found. Along the same lines, the largest discrepancies between GPPm and GPPec in the water-limited 

sites were found during periods when the photosynthetic activity was the lowest, with an 

overestimation for all cases except for USFPe (2005). This overestimation for sites with low 

productivity during the fall has been reported previously by [13]. The exception of USFPe was 

probably related to the unusual precipitation events which happened during those periods [44] as 

discussed in the previous section. 

The results of the quantitative analysis of the agreement between GPPec and GPPm at eight-day 

intervals are showed in Table 4. All the variables in the annual dataset were normal (α = 0.05), except for 

the sites USAUD (all years) and USVAR (all years), where the GPPec was not normally distributed. 

Hence, for those sites the square of the Spearman rho coefficient of correlation () was included in the 

tables as a measure of agreement between GPPec and GPPm instead of the r2 (Table 4). The values 

estimated by Model 3 were plotted for each tower and year (Figure 4), so that they could be compared to 

GPPec and GPPm. 

The highest agreement between GPPec and GPPm per year and tower (Model 1) was obtained for 

the forested site (USME3) (r2 = 0.78, SEE = 0.85, n = 45), while in the non-forested sites the agreement 

was lower than 65%. Analogous results were obtained for Model 2 (r2 = 0.69, SEE = 0.92, n = 89) and 

Model 3. Regardless of the temporal water restrictions at the forest site during the summer, the reduced 

seasonal variation made it easier to model the C cycle using GPPm. At the water-limited non-forested 

sites, the average agreement between GPPec and GPPm was lower than at the site without water 

restrictions. The performance of Model 1 also varied the most amongst the years in the water-limited 

non-forested sites. These differences between years had an impact on the accuracy of the model that 

took into account tower data over a number of years (Model 2), which were generally less accurate 

than the model that used tower data for each year separately (Model 1). None of the models for the 

sites located in grasslands or shrublands were able to explain more than 50% of the variance of the 

GPPec eight-day data using the GPPm eight-days as input. 

As for the annual GPP, one reason for the discrepancies between the eight-day GPPec and GPPm 

might be related to the large scale of the meteorological data used by MOD17 [2,13] and the 

underestimation of the local VPD in the water deficient areas. The use of more accurate meteorological 

data (e.g., tower data) can solve this problem in some cases, but in grasslands it can lead to an 

underestimation of GPPm [13]. Another source of disagreement between the eight-day GPPm and 

GPPec is that tower based GPP represents a small, unfixed footprint that changes in size and shape as 

function of wind speed, wind direction, surface roughness, and atmospheric stability [32] and this 

variability in GPPec has a larger impact when analysing temporal dynamics than when annual GPP is 

considered, since for the latter these differences can be balanced over the whole year. Finally, the 

partitioning of the NEE into GPP and Re is another source of uncertainty which might have a larger 

impact on the accuracy of the seasonal dynamics than on the annual values, since it is usually modelled 

for a small temporal window (e.g., 10-day) [36,37], which might provide more accurate results for one 
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part of the year and less for others. In addition, partitioning of the NEE is more complex in non-

forested ecosystems located in dry areas where growth is limited by water [45]. 

 

 

Figure 4. Cont. 
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Figure 4. Temporal trace of the eight-day observed EC-derived GPP and the percentage 

difference between the observed and the GPP predicted by the MODIS product (MOD17 

values and estimations by Model 3 for different sites: (a) USAUD (2004–2005), (b) USFPe 

(2004–2005), (c) USVAR (2005–2006), (d) USKS2 (2005–2006), (e) USSO4 (2004–2005), 

(f) USME3 (2004, 2005). GPP measured as kg C·m−2·day−1. Horizontal axis represents  

eight-day periods. The characteristics of Model 3 for each site are shown in Table 4. 
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Table 4. Relationship between MODIS estimated eight-day GPP (GPPm) with EC-derived 

8-day GPP. Model 1 was adjusted per tower and per year. Model 2 was adjusted per tower. 

Model 3 was adjusted per tower with EC-GPP as the dependent variable and GPPm and 

other tower variables as independent variables. For USAUD and USVAR (not normally 

distributed) the Spearman rho coefficient of correlation () was calculated instead (#2).  

Notes: coefficient of determination (r2) (in bold: r2 > 0.5, all are significant at the 95% 

confidence level), # indicates that 2 has been calculated instead of r2, standard error of the 

estimate (SEE) (g C·m−2·day−1), n: number of cases, Var: predictor variables in the model, 

Rg: global radiation (W·m−2), SWC: soil water content (% volume), Ta: air temperature 

(ºC), Ts: soil temperature (ºC). 

Tower 
Model 1 Model 2 Model 3 

Year r2/ #2 SEE r2/ #2 (n) SEE r2/ #2 SEE Var 

USAUD 

2003 0.58 # - 
0.03 # 

(96) 
- 0.18 #  Ts 2004 0.29 # - 

2005 0.18 # - 

USFPe 

2004 0.32 0.73 
0.44 

(62) 
0.89 0.52 0.83 GPPm, SWC 2005 0.50 0.81 

2006 0.57 0.49 

USVAR 

2004 0.02 # - 
0.13 # 

(136) 
- 0.60 #  SWC 2005 0.37 # - 

2006 0.14 # - 

USKS2 
2005 0.54 0.89 0.49 

(82) 
0.88 0.65 0.75 Ts, Rg 

2006 0.51 0.81 

USSO4 

2004 0.39 0.38 
0.46 

(104) 
0.51 0.50 0.50 GPPm, Rg 2005 0.46 0.57 

2006 0.36 0.39 

USME3 
2004 0.78 0.85 0.69 

(89) 
0.92 0.75 0.83 GPPm, Ta 

2005 0.65 0.84 

3.3. Conditions/Variables Which May Affect the Suitability of the MODIS GPP Product for Estimating 

C Temporal Dynamics in Shrublands and Grasslands in Water Deficient Areas 

The temporal dynamics of the C fluxes at eight-day intervals were improved for most sites by 

adding accurate information regarding soil temperature, radiation and/or water availability to the 

GPPm data, as Model 3 showed (Table 4, Figure 4a–f). Their inclusion in the models agrees with the 

fact that radiation, temperature and water have been reported by several authors as the most important 

factors influencing ecosystem productivity and respiration (e.g., [9,46]). 

The use of global radiation and soil temperature in the model for the non-water-limited shrubland 

lowered the GPP overestimation for the season with very high productivity and realistically captured 

the onset of the season (Figure 4e). The absence of water availability in the model suggests that in this 

site GPP is not constrained by the amount of water available, since the critical minimum value is never 

reached, as found by [47] in grasslands in humid areas. The fact that soil temperature was better related 

to GPP than air temperature in this site agrees with the findings of [8] for a forested site, and it might 

have been related to a more developed radical system in comparison to a grassland area (where air 
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temperature has a more important role [3]). For the forested site, the addition of variables related to 

water availability did not improve the GPP estimations, probably due to the fact that the C cycles did 

not have large variations (Figure 4f) due to water constraints. 

The models that characterised the temporal dynamics of the GPP in grasslands and shrublands 

located in water-limited areas were not able to explain more than 60% of the variance of the data (see 

Model 3 in Table 4). Although it was not possible to find a linear relationship to model GPPec for 

USVAR and USAUD, since the data were not normally distributed, GPPec showed a stronger 

correlation with SWC than with GPPm for USVAR, highlighting the importance of water availability 

to obtain accurate estimations of GPP. Along the same lines, the inclusion of SWC in addition to 

GPPm in the model adjusted for USFPe helped correct the overestimation of GPPm during the most 

water-limited period, overcoming the limitations of the MOD17 algorithm due to the underestimation 

of VDP [13,43], and corrected the underestimation of GPPm during the beginning of the growing 

season, when VPD was probably overestimated. The poor performance of the model adjusted for 

USSO4 during the summer period of 2004 might have been due to the fact that water availability was 

not included as a predictor (probability of F to enter SWC in the model 0.05), and therefore the 

overestimation of GPPm could not be corrected. These results showed that soil water availability and its 

inclusion in the MOD17 algorithm is a critical factor in the estimation and monitoring of photosynthetic 

activity in non-forested water-limited sites, as reported by [13,16,32,48]. 

4. Conclusions 

In non-forested sites in water-limited areas, the MODIS GPP product is well correlated with the 

GPP EC tower estimations when averaged at an annual level, although it tends to overestimate. 

However, the existence of occasional and large precipitation events during the growing season led to 

infrequent underestimations. Since there is a correlation between precipitation and GPPec in these 

sites, the use of precipitation data at a finer spatial resolution than DAO data can improve the accuracy 

in the estimations of annual GPP. However, the development of a general model based on precipitation 

would require a larger sample of water limited sites. 

The seasonal dynamics and the beginning and end of the growing season were not well captured by 

GPPm in the sites where (i) the productivity was low throughout the year or (ii) the changes in the flux 

trend were abrupt, usually due to the restrictions in water availability. In the grasslands and shrublands 

located in water limited sites, water stress is the primary limiting factor that controls photosynthesis and 

therefore GPP; hence, soil water stress should be added to the MOD17 algorithm calculations for these 

dry areas. Using the existing weekly GPPm data, the GPP estimations can be improved in non-forested 

sites in water-limited areas by including in the model meteorological data at a finer spatial scale as 

well as soil water content and temperature measurements.  
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