ABC?: AN ARCHITECTURE FOR INTELLIGENT
AUTONOMOUS SYSTEMS

Vicente Matellan Daniel Borrajo

e-mail: {umo, dborrajo}@ia.uc3m. es
Fox: + 34 1624 94 30
Departamento de Informdtica
Universidad Carlos III de Madrid
C/ Butarque 15. 28911 Leganés. (Espaiia)

Abstract: This paper presents an architecture for the control of autonomous systerns,
that allows cooperation among them. This paper focuses on the description of the
upper layers of the model. The control structure is based on a general purpose multi-
agent architecture based on a two levels approach. One level is composed of reactive
skills capable of achieving simple actions by their own. The other one is an agenda
used as an opportunistic planning mechanism to compound, activate and coordinate
the basic skills. This agenda handles actions both from the internal goals of the robot

or from other robots.

Keywords: Robots, Agents, Co-operation, Architecture, Fuzzy.

1. INTRODUCTION

The field of intelligent autonomous robotic sys-
tems has strongly emerged after several years
from the first attempts, such as the Shakey
robot (Nilsson, 1984). These first systems used a
classical Al view of planning and problem solving,
which had, among other problems, the reasoning
and acting on highly dynamic environments on
real time. Then, research efforts as the one by
Brooks (Brooks, 1986) focused the behavior of
autonomous systems on using pre-defined “ad-
hoc” behaviors (Connell, 1990). These architec-
tures have shown to be very effective on some
domains and on specific tasks. However, more
flexibility is strongly needed when designing a gen-
eral architecture that requires high-level reasoning
working with symbolic information and high-level
goals. This is the case of most real-world problems
that an autonomous intelligent system faces.

This paper presents a multi-agent architecture,
named ABC? (Agenda Based Cooperation for
Agent’s Behaviors Coordination), based on pre-

defined skills that each agent composes in an op-
portunistic way to achieve an intelligent behav-
ior. An agenda has been used to keep a list of
pending actions, where each action can require
(or not) pre-defined simpler actions. Actions can
be inserted into the agenda by other actions, by
events from the environment or by requests re-
ceived from other robots. Similarly, actions can
be accomplished as a result of the execution of
other actions, by another robot actions or simply
by changes in the world. For the definition of the
skills, different types of controllers can be used,
such as fuzzy controllers (Matelldn et al., 1995b),
mathematical calculus (Brooks, 1986), or learned
behaviors (Stone and Veloso, 1995). In the case of
ABC? previously developed software for building
fuzzy behaviors will be used.

This general architecture supports the coopera-
tion of heterogenous and autonomous systems.

This work has been influenced by different DAI
(Distributed Artificial Intelligence) works (Bond
and Gasser, 1988), particularly by the Coopera
architecture (Sommaruga and Catenazzi, 1996)

and, in general, AI techniques, such as high-level
agenda-based planning (Currie and Tate, 1991).
This contribution extends this kind of systems in
two aspects. First, these ideas will be applied to
cope both with dynamic environments and with
a real world environment (in the sense of a sen-
sors and actuators approach). Second, controllers
will be able to be designed using any reasoning
paradigm. In particular, fuzzy logic (Zadeh, 1973)
has been used, both to define basic controllers,
and to write the heuristics that will control the
agents.

In the next section, the architecture is presented
in more depth, discussing the skills that are used.
Section 3 describes an example of the execution
of the whole system, specially the role of the
agenda in the control of the robot actions. In the
last section some conclusions and future work are
presented.

2. DESCRIPTION OF THE ARCHITECTURE

An intelligent system, in particular an intelligent
autonomous robot, will be defined as a knowledge
structure defined by a set of statical and dynamic
attributes. Among the static ones there is the
name of the agent (IV), the list of its skills (.5), the
knowledge about its team-mates names and skills,
called yellow-pages (Y'), the current state of the
world, defined using a language (L), and the set
of heuristic rules that governs the behavior of the
agent (H). So, an agent (A) can be represented
as the tuple: A =< N, S,Y,L,H >. In the same
way, the team of agents can be represented as
< N,S,Y,L,H >*, given that a team is made
up of at least one agent.

Among the dynamic information that defines the
current situation of an agent there is the agenda
(Ag) that contains the acts currently under con-
sideration, the queues of messages (Q)) received
or pending to be sent, and the information (I)
about the current state of the world, defined using
the language L. So, an agent in a given moment
is defined by < A,A4,,1,Q >, and the situation
of the whole team as < A, A,,I,Q >T. This
architecture is graphically shown in Figure 1. Its
different parts are:

Skills Set of simple and reactive controllers.
These controllers implement pre-defined behav-
iors that an individual system can accomplish.
They can be implemented using any type of
decision-making mechanism. In particular, for
the example described in Section 3, fuzzy con-
trollers (Zimmermann, 1990) have been used.
The main reason for this election was the possi-
bility of using previously developed and tested
fuzzy reasoning libraries.

s I N
FTTTm~o 20 sensors !
' Communications ¢
N . Other Robots > ~
Rl
[___Z_ < Actuaors T~
~__-- \ '-—;.\ ,,,,, v
Agenda
Act-1 LA XX]
Act-2
Control

Process

Parse_Sensors
Evaluate_Agenda
Perform_Action

Info-1: <value>

Info-2: <value>
(XXX]

Yellow Pages

Robot-1: Skill-1-1
Skill-1-2
Robot-2: Skill-2-1

Fuzzy Rule1
Fuzzy Rule 2
(AKX]

(XXX]

Fig. 1. Architecture of the Robots.

The design of the behaviors has been done
heuristically. This means that the rules have
been chosen by hand. However, many “auto-
matic” methods for designing this type of robot
behaviors can be found in the literature, rang-
ing from the mathematical methods (Steels,
1990) to neural networks (Maes and Brooks,
1990) or genetic algorithms (Koza, 1991). For
instance, good results have been obtained in
previous works using the last method (Matelldn
et al., 1995a). However, most of these methods
have been designed to learn in well-defined envi-
ronments, with few dynamic objects, and they
are highly time consuming.

Yellow Pages Knowledge that an agent has
about the other agents that form its team. This
information basically consists of a table made
by the name of its team mates, and the name
of the skills they can accomplish. These skills
will be used in the same way as its own skills.

A gkill can be considered as an abstraction of
an action that will be accessible to other team-
mates. In fact, this means that the robot has
meta-knowledge about itself (through its skills
definition) and its team-mates (using the yellow
pages).

Information Classical reactive behaviors com-
pute the outputs for the actuators of an agent
directly from the raw numerical data perceived
by its sensors. In other environments, like for
instance the RoboCup simulator (Kitano et
al., 1995), the inputs are not numerical data
obtained from the sensors, but a mixture of
linguistic and numerical information. In order
to be able to handle this information, a reduced

high-level language is used. It allows the agent
to define the inputs of the skills and to keep
significant information about the current state
of the world. So, the skills use this language to
represent the information of the robot inputs.

Communication One of the distinctive capabil-
ities of agents is their ability to communicate
with other agents. In order to be able to handle
the intrinsic complexity of the communication
(protocols, queues, etc.) the agents are given a
specialized entity to cope with it.

The Agenda The Agenda is a dynamic struc-
ture that contains items named acts, based
on the Speech Acts theories (Cohen and Per-
rault, 1986). These acts represent the potential
actions that the robot is considering at a mo-
ment. Four types of acts have been considered:

e D0 <skill>, that represent potential skills
that the robot can perform by itself. In
the next section, the fundamentals of these
behaviors are presented.

e REQUEST <agent, skill>, to ask another
agent to perform a particular action.

e REQUESTED <skill,agent>,to indicate that
the action in the argument of the act has
been requested by another robot in order
to be performed by this one.

e SUPPLY_INFO <agent, info>,to point out
that some information has to be sent to
another robot.

e INFORMED <info, agent>,to get a piece of
information sent by other robot.

Heuristics Heuristics decide at any time what
act to select from the agenda. Fuzzy rules have
been used in the current implementation, al-
though other types of heuristic representations
are being considered. The input variables of
these rules are, among others: the priority of the
skill associated to an act; the time that an act
has been in the agenda; the number of acts that
require an act to be evaluated; the information
from the environment; and the type of agent.

The output is the weight of each act in the

agenda. Once the acts have been weighted, the
eligible act to be executed is the one with the
highest weight. These heuristics can also be
used to purge the agenda of undesired acts.

3. SYSTEM EXECUTION

The definition of a particular skill (as shown
on Figure 2) consists first on the design and
implementation of the controller that performs
the desired action (this is represented as the
function Ezecute in the figure). Then, a condition
for triggering the controller (named Ready in the
figure) is established in order to know if the
controller can be executed. In the case of the skill
being evaluated but not being able to execute its

associated controller (the Ready function returns
a FALSE value), the skill provides a list of skills
that can make it “executable”. This list has been
named Needs in the figure. The remaining slot is
the Priority assigned to the behavior. This value
can be used in the heuristic rules to select acts
from the agenda.

-7 Push_Box
’ - * Needs Get Aligned
— N Get_Partner
N ® Priority
T T R
AS \ * Ready()
: LIRS (Aligned) & (Partner_Aligned)
et o . B \\ . Execute()
Lok for Box ;- © | setspexd(10,10)

Skill: Push_Box
Time: 1
Called: 1

Expanded: True

Do ! DO
Get_Aligned 3 Get_Partner | Push_Box e
2 1Fase! 21 Fase |1 1 True|.”

>o0zZzmor>

Fig. 2. Relations among the skills and the agenda
in a simple two robotic agents domain.

Let us consider an example where two robots
have to push a box at the same time from the
same side. In order to simplify the problem, two
points where the robots have to align to make an
adequate pushing have been defined. These points
correspond with two lights placed inside the box
to push in the real environment of Figure 3.

A skill makes the robot push when it is aligned
(Push_Box). Another forces it to be aligned
(Get_Aligned). A third skill looks for the align-
ment point (Look_for_Box), and a fourth one asks
the other robot for aligning (Get_Partner). Once
the skills of the robots have been designed (in this
example only the four skills that appear in the
top-left tree of Figure 2 have been considered), the
heuristics have to be defined. Let us suppose that
a simple heuristic is settle up: “Select from the
agenda the act whose Priority value is the highest
from the ones that are Ready” . Let us also suppose
that the information that the robot has about the
world is the raw data received by its sensors and
the information about whether its teammate is
aligned or not.

In order to achieve the task of having the robots
push the box, they should be initialized. This is
performed by inserting the act [DO: Push_Box]
into the agenda. The components of an act (as
shown in Figure 2) are: the type of the act (DO,
REQUESTED, etc.); the name of the associated skill;
the counters Called, that indicate the number of

Fig. 3. The real environment.

acts that require it, and Time that keeps the time
when the act was inserted into the agenda; the
switch Expanded, that indicates if the needs of
the associated skill have been added to the agenda
or not; and the function Evaluate, that indicates
what has to be done when the act is selected (for
example, execute its associated skill if the type of
the act is DO).

The way the control cycle works is as follows:
first, the applicable acts are selected. This is
achieved by consulting the Ready function of
the skill associated to each DO act. If the act
is not applicable, then the Expanded switch is
checked. If it has not been expanded, its needs

are inserted into the agenda as [DO: <need>]
acts. This is the situation reflected in Figure 2
where the act [DO: Push_Box] was not applicable
and it has been expanded by inserting the acts
[DO: Get_Aligned] and [DO: Get_Partner] into
the agenda.

The addition of needs checks if that act had been
previously added to the agenda by other acts. If
the act already was in the agenda, the counter
Called of the act is increased; otherwise, a new
act is added to the agenda. On the other hand,
if the act is applicable and had been expanded,
the counter Called is decreased. At the same
time that the applicable acts are selected, the acts
whose Called counter is equal to zero (no other
act requires them) are removed from the agenda.
Once the applicable acts have been selected, the
domain heuristics are applied to select the one
that will be evaluated.

Another way acts can be inserted into the agenda,
apart from their insertion as needs of other acts, is
directly by the Execute() function of a skill. For
instance, the execution of the skill Get_Partner
may result in the insertion in the agenda of an act
such as [REQUEST: RobotB, Get_Aligned]. The
information of the skills of other robots is in the
Yellow Pages. The evaluation of this act would
result in sending this request to the other robot.

The treatment of the other types of acts is sim-
ilar. Only the Evaluate() method (see Figure
1) of these acts is different. For instance, if the
act [REQUESTED: Get_Aligned, RobotA] is eval-
uated by the RobotB, it would produce® the
insertion of the act [DO:Get_Aligned] in its
agenda. In a similar way, the evaluation of the
skill Get_Aligned would cause the insertion of a
[SUPPLY_INFO: RobotA, Aligned] act into the
agenda. The evaluation of this one will generate
an act [INFORMED: Aligned, RobotB] into the
agenda of the first robot, and its evaluation in
toggling the predicate Partner_Aligned.

4. CONCLUSIONS AND FURTHER WORKS

In this paper the ABC? architecture has been
presented. Its fundamentals have been explained
and also the theoretical principles that have influ-
enced it. Then, an example of operation has been
presented in order to show how the system works.

The practical experiments have shown that this
architecture is well suited to domains where there
is no need of great flexibility in the accomplish-
ment of the skills, that is, environments where

L Or not, if the heuristics of the second robot decide, for
example, that acts containing requests from RobotA are
discarded.

opportunistic planning can be used. Besides, it al-
lows an intuitive method to deal with cooperation
among agents by letting agents define their own
skills, and the rest of the group having knowledge
of them.

Currently, ABC? is being used on the robo-
soccer (Matelldn and Borrajo, 1997) domain in or-
der to test its abilities when facing highly dynamic
environments. This experiment will let us probe
whether ABC? is flexible and general enough to
face different problems or not.

5. REFERENCES

Bond, Alan H. and Les Gasser (1988). Readings
in Distributed Artificial Intelligence. Morgan
Kaufmann.

Brooks, Rodney A. (1986). A roboust layered con-
trol system for a mobile robot. IEEE Journal
of Robotics and Automation RA-2(1), 14-23.

Cohen, Philip R. and C. Raymond Perrault
(1986). Elements of a plan-based theory
of speech acts.. Cognitive Science RA-
2(3), 177-212.

Connell, Jonathan H. (1990). Minimalist Mobile
Robotics: A Colony-style Architecture fo a
Mobile Robot. Academic Press. Cambridge,
MA. Latas de Coca-Cola.

Currie, Ken and Austin Tate (1991). O-Plan: the
open planning architecture. Artificial Intelli-
gence 52(1), 49-86.

Kitano, Hiroaki, Minoru Asada, Yasuo Kuniyoshi,
Itsuki Noda and Eiichi. Osawa (1995).
Robocup: The robot world cup initiative. In:
Proceedings of the IJCAI-95 Workshop on
Entertainment and Al/Life. pp. 19-24.

Koza, John R. (1991). Evolving emergent wall fol-
lowing robotic behavior using the genetic pro-
gramming paradigm. In: Toward a practice of
autonomus systems. Proceedings of the First
European Conference on Artificial Life (F.J.
Varela and P. Bourgine, Eds.). MIT Press and
Bradford Books. Cambridge, MA. pp. 110—
119.

Maes, Pat and Rodney Brooks (1990). Learning
to coordinate behaviors. In: Proccedings of
the Eighth National Conference on Arfificial
Intelligence. Morgan Kaufmann. San Mateo,
CA. pp. 796-802.

Matelldn, Vicente and Daniel Borrajo (1997).
An agenda-based multi-agent architecture.
In: Proceedings of the First International
Workshop on RoboCup in conjunction with
RoboCup-97 at IJCAI-97 (Hiroaki Kitano,
Ed.). Nagoya (Japan).

Matellan, Vicente, José M. Molina, Javier Sanz
and Camino Fernindez (1995a). Learning
fuzzy reactive behaviours for autonomous
robots. In: Proceedings of the 4rd FEuropean

Workshop on Learning Robots. Karlsruhe,
Germany.

Matelldn, Vicente, José Manuel Molina and
Camino Fernandez (1995b). Fusion of fuzzy
behaviors for autonomous robots. In: Proceed-
ings of the Third International Symposium on
Intelligent Robotic Systems. Pisa, Italia.

Nilsson, Nils J. (1984). Shakey the robot. Techni-
cal report. SRI A.I.

Sommaruga, Lorenzo and Nadia Catenazzi
(1996). From practice to theory in design-
ing autonomous agents. In: First Australian
Workshop on Distributed Artificial Intelli-
gence. Vol. LNAI-1087 of Lectures Notes in
Artificial Intelligence. pp. 130-143. Springer-
Verlag.

Steels, Luc (1990). Exploiting analogical repre-
sentations. In: Designing autonomous agents:
theory and practice from biology to engineer-
ing and back (P. Maes, Ed.). pp. 71-88. MIT
Press and Bradford Books. Cambridge, MA.

Stone, Peter and Manuela M. Veloso (1995). Beat-
ing a defender in robotic soccer: Memory-
based learning of a continuous function. Tech-
nical Report CMU-CS-95-222. Computer Sci-
ence Department, Carnegie Mellon Univer-
sity.

Zadeh, Lotfi A. (1973). Outline of a new approach
to the analysis of complex systems and deci-
sion processes. Transactions on Systems, Man
and Cybernetics.

Zimmermann, Hans-Jurgen (1990). Fuzzy Sets.
Theory and its Application. Kluwer Academic
Publishers. Boston, MA (USA).

