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ABSTRACT
Accurate taxonomic resolution in light microscopy analyses of microalgae is essential
to achieve high quality, comparable results in both floristic analyses and biomonitoring
studies. A number of closely related diatom taxa have been detected to date co-occurring
within benthic diatom assemblages, sharingmanymorphological, morphometrical and
ecological characteristics. In this contribution, we analysed the hypothesis that, where
a large sample size (number of individuals) is available, common morphometrical
parameters (valve length, width and stria density) are sufficient to achieve a correct
identification to the species level. We focused on some common diatom taxa belonging
to the genus Gomphonema. More than 400 valves and frustules were photographed
in valve view and measured using Fiji software. Several statistical tools (mixture and
discriminant analysis, k-means clustering, classification trees, etc.) were explored to
test whether mere morphometry, independently of other valve features, leads to correct
identifications, when compared to identificationsmade by experts. In view of the results
obtained, morphometry-based determination in diatom taxonomy is discouraged.

Subjects Bioinformatics, Ecology, Marine Biology, Taxonomy, Freshwater Biology
Keywords Taxonomy, Biometry, Automated identification, Classification, Multivariate statistics

INTRODUCTION
Diatoms are unicellular algae inhabiting many different aquatic and terrestrial
environments worldwide. To date, ∼105 different species have been described (Mann
& Droop, 1996), with particular ecological preferences, so that there is a clear relationship
between diatom communities and the environmental characteristics of their habitats. The
reliability of diatom-based biomonitoring methods has long been established, but diatom
analyses are also useful in palaeoecology, biotechnology or forensic applications (Stoermer
& Smol, 2001). However, the main obstacle limiting their use lies in the difficulty of their
taxonomic identification, since diagnoses at specific or subspecific levels are often required.
This implies important investments in optical equipment and expert training. Currently,
the identification and routine counting of diatoms is performed under light/phase contrast
optical microscopy, but several tools are being proposed to automate the identification
process by means of image analyses (Buf & Bayer, 2002; Kloster, Kauer & Beszteri, 2014) or
DNA metabacoding (e.g., Vasselon et al., 2017).

Diatom cell size (length [L], width [W], L/W ratio) and other morphometric parameters
(e.g stria density [S]) are commonly used in taxonomic keys aiding identification,
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together with shape features and ultrastructural characteristics. Despite the fact that basic
morphometric insights are of fundamental importance to diatom taxonomy (Beszteri, Ács &
Medlin, 2005), the use of quantitative approaches in diatom identification is relatively rare
(Beszteri, 2005) and taxa identification is mostly based on cell shape, which is considered to
be stable on a large scale (Mou & Stoermer, 1992). Due to their reproductive cycle, there is a
tendency within each species to decrease in cell size after several generations so that natural
populations exhibit broad and often skewed size distributions, since they are made up of
several age classes (Spaulding et al., 2012). This cyclical change in size can vary also between
populations (Pappas & Stoermer, 2003) and is often accompanied by an allometric change
in the L/W ratio (Schmid, 1994). Some studies suggest also a dependence of morphometric
parameters on habitat features (Cortese & Gersonde, 2007).

Diatom taxa are often arranged in groups of morphologically similar forms that share
numerous features and with overlapping morphometric ranges (Potapova & Hamilton,
2007). A number of ‘‘species complexes’’ have been reported with a high level of
diversity (Ajani et al., 2013). These complexes may occur in sympatry (Kulichová &
Fialová, 2016), so that several taxa can be found in a single diatom community. The
resolution of morphologically similar taxa is especially difficult for microscopy analyses,
and misidentifications can lead to inaccurate environmental inferences. In this paper, we
explore the possibility of disentangling one of these groups (species related toGomphonema
gracile Ehr. (Reichardt, 2015) andG. parvulum (Kütz.) Kütz.) by unsupervised classification
of individuals based only on their morphometric parameters. We tested a number
of classification algorithms and compared their result with identifications made by
experts under light microscopy (LM). Our hypothesis is that, provided large training
sets are available, morphometric parameters would suffice for unsupervised classification,
overriding the need for examining other morphological features.

MATERIALS & METHODS
Field and laboratory routines
A sample of epiphytic diatoms was collected from the surface of reed stems in Lake
Villadangos (southeast León, northwest Spain, UTM 30T 272100 4711400) during July
2000. This an anthropic wetland located near Villadangos (León), and has a mean depth
of 0.4 m, is 9.4 ha in and has 1.2 km perimeter, characterized by the presence of eutrophic
waters. A detailed description of the wetland is available in Conty (2007). The sample
was processed and analysed under light microscopy (LM) following standard protocols
(CEN, 2003; CEN, 2004). Large populations of Gomphonema taxa dominated the diatom
community, with 25 different species that were identified using amicroscope (Leica DMRB,
DIC 1,000×) according to usual reference works (Hofmann, Werum & Lange-Bertalot,
2011). All Gomphonema individuals lying in valve view (N = 523) were enumerated and
photographed (Canon EOS400). Only five species attained large (N ≥ 45) populations
(namely G. gracile, G. auritum A.Braun, G. jadwigiae Lange-Bert. and E.Reichardt,
G. acidoclinatum Lange-Bert. and E.Reichardt and G. parvulum, Fig. 1), which were
considered in subsequent analyses (N = 410). Morphometric parameters (length, width,
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Figure 1 Gomphonema species analyzed in the study. (A–C) G. jadwigiae. (D–F) G. gracile. (G–I)
G. acidoclinatum. (J–L) G. parvulum. (M–O) G. auritum. Scale bar= 10 µm.

Full-size DOI: 10.7717/peerj.4159/fig-1
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length-width ratio and stria density, hereafter L, W, L/W and S respectively) were measured
in each individual using Fiji software (Schindelin et al., 2012).N = 45 is the smallest sample
size that represents the normal range (90%) of any population following a continuous
distribution, with a 0.95 confidence. Original data are publicly available at FigShare (DOI:
10.6084/m9.figshare.4728406).

Statistical analyses
Ten different numerical tools were tested and compared in this study. These algorithms
were selected from among other many analogous methods proposed in the body of
literature because (a) they are commonly available in statistical software applications, and
(b) they have already been used in similar analyses.
1. Mixture analysis (MA): a maximum-likelihood distribution-based approach to test
whether a variable distribution fits better in a mixture of (a priori defined) n normal
overlapping distributions. The best-fit model can be chosen based on AIC values.
Computations use the EM algorithm (Dempster, Laird & Rubin, 1977).
2. Canonical variates analysis (CVA): a discriminant analysis that evaluates quantitatively
the distinctiveness of pre-classified groups of objects, estimating the spatial directions that
maximize the differences between these groups. The output is a multivariate ordination
plot that provides a linear combination of the classification variables having the highest
possible multiple correlation with the selected groups. Computational details are available
in Hammer, Harper & Ryan (2001).
3. Chi-squared automatic interaction detector (CHAID): a sophisticated segmentation
modelling method for analysing large quantities of categorical data (Kass, 1980). It consists
of a multivariate criterion-based algorithm that divides the test population into a number
of distinct groups based on the categories of the most significant attribute. It uses the
Chi-square test to determine the best next split at each step.
4. Random forests (RF): a nonparametric ensemble classification method that predicts
classes based on the partition of input variables from multiple decision trees. The most
reliable predictor is based on the decrease of classification accuracy when values of an
attribute in a tree node are permuted randomly (Breman, 2001). Random forests produce
lower prediction errors than other classification tree algorithms (Felde et al., 2014).
5. Boosted classification trees (BCT): a machine learning method which produces a
prediction model in the form of an ensemble of decision trees. The algorithm uses a
random sample of observations, builds independent sets of boosted trees for each category
of the dependent variable, computes the predicted values for the observations in that
sample, and fits a regression tree to the residuals, applying a logistic transformation to the
predicted values before computing these residuals (Friedman, 2001).
6. k-means clustering (KMC): a nonhierarchical clustering method that searches for the
partition of a sample into an a priori given number of groups so that the within-group sum
of squares is minimal (Hartigan, 1975).
7. Expectation-maximisation (EM): a similar method that performs clustering by fitting
a mixture of n different distributions to the data. The algorithm estimates the means and
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standard deviations for each cluster so as to maximise the likelihood of the observed input
data (Witten & Frank, 2005).
8. Support vector machine (SVM): a learning algorithm that uses a hypothesis space of
linear functions in a high-dimensional feature space, trained with a learning algorithm
from optimization theory. It attempts to minimize the upper bound on the generalization
error based on the principle of structural risk minimization (Hongzong et al., 2007).
9. Naïve Bayes Classifier (NBC): a simple probabilistic classifier where a single node,
which represents a classification variable, is connected to all other nodes that represent
predictor variables. The method is based on Bayesian theory with strong independence
assumptions that the presence/absence of a particular feature of a class is not related to the
presence/absence of any other feature (Liu et al., 2011).
10. K-nearest neighbour (KNN): a simple, nonparametric classifier in which the class of
each object is determined with respect to the classes assigned to the nearest k objects, that
is, it is specified according to the most repeated labels of these k objects (Han et al., 2015).

Computations and graphical outputs were performed with PAST v. 3.14 (Hammer,
Harper & Ryan, 2001), Statistica v 10 (StatSoft, Tulsa, OK, USA: http://www.statsoft.com)
and R (R Core Team, 2016) under RStudio (RStudio Team, 2015) with the Caret (Wing et
al., 2016) and Ellipse (Murdoch & Chow, 2013) packages.

RESULTS
All analysed morphometric parameters overlapped between the species considered (e.g.,
L/W, Fig. 2). The lowest variability in terms of L, L/W and S parameters was found in G.
jadwigiae (CV of 11.9%, 6.2% and 9.9%, respectively), while the least variable population
in cell width was that of G. auritum (7.5%). Most parameters evaluated showed positive
skewness, indicating right-tailed distributions. None of the variables examined in any of
the Gomphonema species followed Gaussian distributions (Shapiro–Wilk test, p< 0.05).
As expected, the L/W relationship was monotonic positive for all populations (Fig. 3). Stria
density did not correlate with any other morphometric parameter.

MA
The algorithm was set to fit five different populations (Fig. 4), although the lowest AIC
values were found forcing 6–7 groups. Since MA is a univariate method, it provided four
different classifications according to each parameter tested. On average, only 59.8% of
the individuals were correctly classified by the MA method, with the highest success for
G. jadwigiae (67.0%) and the lowest success for G. parvulum (40.0%). The best average
results were obtained with W parameter (74.3%), while S had the lowest predictive power
(43.8%).

CVA
The resulting ordination of this method is shown in Fig. 5, highlighting cell length as
the most important variable for specimen classification. The species most frequently
misidentified according to this algorithm was G. acidoclinatum (only 33.7% of correct
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Figure 2 L/W histogram for the analysed Gomphonema populations:G. jadwigiae (n = 94),G. acido-
clinatum (n = 89),G. auritum (n = 101),G. gracile (n = 80) andG. parvulum (n = 46). Data fitted to
kernel distribution estimators.

Full-size DOI: 10.7717/peerj.4159/fig-2

assignations), whereby 29.2% of cases were identified erroneously as G. parvulum. On the
contrary, G. gracile was correctly classified in 68.8% of cases. In total, 55.1% of items were
correctly classified.

CHAID
A classification tree using only L and W parameters as classifying variables can be drawn
(Fig. 6), but with an estimated classification risk of 44.2± 0.02%. According to the resulting
confusion matrix (data not shown), as in the case of CVA results, G. acidoclinatum was
the taxon most often misidentified (in 30.4% of cases), frequently (in 23.6% of cases) as
G. jadwigiae, whereas G. gracile was again correctly classified in 77.5% of cases. Resulting
classification used only L and W variables.

RF
Random forests algorithm selected the classification tree shown in Fig. 7 as the most
parsimonious among the other 200 models tested. This led to a success percentage in
correct assignations of 61.7%. The most important classificatory variable was L. Most
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Figure 3 Scatterplot matrix of correlations between analysed morphometric parameters (A–P).Data
fitted to LOESS smoothers and 95% confidence ellipses.

Full-size DOI: 10.7717/peerj.4159/fig-3

misidentifications affected G. acidoclinatum (50.0%), erroneously considered G. jadwigiae
in 21.9% of cases. In this algorithm, the taxon achieving maximal correct assignations
(68.3%) was G. jadwigiae.

BCT
The classificatory success of this method is 67.9%. As in the case of RF, the most important
classificatory variable was L. Most frequent misclassifications were observed again in G.
acidoclinatum (45.2%), frequently (16.1%) assigned to G. jadwigiae. Gomphonema gracile
was correctly identified in 77.1% of cases.

KMC
K-means clustering forced on 5 groups achieved an average of 70.2% of correct
classifications. While taxa such as G. acidoclinatum or G. jadwigiae were always (100%)
assigned to unique clusters, the algorithm failed to discriminate G. auritum and G. gracile,
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Figure 4 L/W histogram for the whole dataset andMA distributions adjusted to five classes (red
curves).

Full-size DOI: 10.7717/peerj.4159/fig-4

which were gathered in the same cluster in 81% of cases. Gomphonema parvulum was also
misidentified in 48.9% of cases.

EM
The success percentage of this method was only 44.1%. As in the case of KMC, two different
class objects (G. acidoclinatum and G. parvulum) were erroneously gathered together. The
identification success ranked from 44.3% (G. acidoclinatum) to 71.3% (G. jadwigiae).

SVM
A total of 60.2% specimenswere correctly classified by this algorithm.The speciesmost often
misidentified wasG. parvulum (50.0%, of which 40.0% were misidentified asG. jadwigiae),
while 71.4% of G. gracile individuals tested were correctly identified.

NBC
A total of 62.1% specimens were correctly classified by this algorithm. The species most
often misidentified was G. acidoclinatum (71.4%, of which in 23.8% of cases misidentified
asG. parvulum), while 76.9% of theG. jadwigae individuals tested were correctly identified.
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Figure 5 CVA ordination biplot, dots represent individuals and line predictor variables. Points fitted
to 95% confidence ellipses.

Full-size DOI: 10.7717/peerj.4159/fig-5

KNN
The predictive power of this method was only 49.5%. The percentage of correct
classifications ranked from 61.9% (G. gracile) to 30.0% (G. parvulum, in 40.0% of cases
misidentified as G. auritum).

DISCUSSION
During recent decades, quantitative techniques have proposed many different methods
to suggest classifications of organisms based on metric characters (Julius et al., 1998).
Currently, size analysis is a potentially powerful tool for understanding diatom community
dynamics and systematic relationships (Spaulding et al., 2012). Our study tested different
classification algorithms based on metric and meristic parameters that are commonly
recorded in diatom taxonomy, and which have proven to be useful to segregate
morphologically similar taxa. For instance, Paull et al. (2008) demonstrated using linear
discriminant analysis that two closely related Staurosirella species could be distinguished
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Figure 6 CHAID classification tree.
Full-size DOI: 10.7717/peerj.4159/fig-6

with an error of 6% using only cell width and areolae length. In the genus Kobayasiella,
a single morphometric character can separate all individuals from sister species (Buczkó,
Wojtal & Jahn, 2009).

Our results show that amajority ofmethods selected L as the best classificatory parameter,
in contrast with previous studies showing S and W as the most stable characters (Genkal,
2004). Particularly, S is known to change little with changing valve length, although it may
vary due to environmental factors (Cox, 2010). On the contrary, S has been found to be
inadequate to distinguish diatom species in other works (Paull et al., 2008). With respect to
L/W parameter, this is themost popular ratio in algal taxonomy, and is commonly regarded
as a reliable parameter, despite the fact that it is often size-dependent, compounding
variations from several sources (Theriot, 1988).

Multivariate methods such as cluster or classificatory algorithms have started to be
adopted in diatom taxonomy (Buczkó, Wojtal & Jahn, 2009). These techniques are, in
contrast to the classical methods, more robust when dealing with complex multivariate
data (Felde et al., 2014). Both cluster analysis and ordination techniques have similar aims
in that they attempt to explore multivariate datasets by reducing their dimensionality and
summarising the major patterns of variation within the datasets (Felde et al., 2014). In
our analyses, cluster methods (KMC, MA, KNN, EM) performed somewhat worse than
classification algorithms (average classification risk: 44.1% vs. 39.5%, Table 1). Although
the computational requirements are much lower in clustering techniques, the assignation
of objects to each cluster must be supervised a posteriori (in this case, by calculating the
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Figure 7 RF classification tree.
Full-size DOI: 10.7717/peerj.4159/fig-7

modal class of each cluster). The best results (70.2% correct identification) were obtained
by the relatively simple KMC, but the outcome of this algorithm suggested the presence
of only 4 clusters. The Calinsky and silhouette criteria confirm that optimal partitioning
of data is obtained for n= 4. The confusion matrix shows that the algorithm gathered
G .acidoclinatum and G. parvulum in the same group, and this misidentification accounted
for the largest amountof the classification failure observed. The MA method also indicated
a different number of taxa in the studied assemblage according to AIC values, although
the statistically optimum number determined by AIC may not be particularly useful (Felde
et al., 2014). Within classification methods, best results were obtained by BCT (67.9%),
and this method has proven to provide more accurate results when compared to other
tree-based classification techniques (Bauer & Kohavi, 1999; Austin & Lee, 2011).

Contrary to our expectations, classification success was unrelated to sample size
(number of items per class). The taxa that were most oten correctly classified and less
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Table 1 Percentage of correct classifications achieved by eachmethod.

Method Correct classifications (%)
*KMC 70.2
BCT 67.9
NBC 62.1
RF 61.7
SVM 60.2
*MA 59.8
CHAID 55.8
CVA 55.1
*KNN 49.5
*EM 44.1

Notes.
*Cluster methods.

often misclassified (G. acidoclinatum and G. gracile, respectively) were not the species with
the largest or lowest numbers of individuals. Classification risk was also independent of
the variability of each species (measured as CV in L, W, L/W and S). This suggests that
unsupervised classification based on metric parameters may lead to consistent results
independently of the descriptive statistics of the groups involved.

Notwithstanding, the best scores achieved by the methods analysed in this study are far
below other automated identification techniques that consider not only morphometry, but
also cell shape and structural features, even when tested over similar species. For instance,
SHERPA obtained classification accuracies ranging from 98.9% to 100.0% when applied
to the Sellaphora pupula complex (Kloster, Kauer & Beszteri, 2014). Similarly, the system
developed in the ADIAC project allowed the identification of 37 species with an accuracy
of 97% (Buf & Bayer, 2002). Similar success ratios have been reported using a multi-label
classification system for diatom image classification developed by Dimitrovski et al. (2012).
This shows that the biological relevance of the morphological distinctness of diatoms
depends on whether the differences can be explained simply by size differences (Beszteri,
Ács & Medlin, 2005), and otherwise shape analyses allows the segregation of groups that
have different size ranges but vary only subtly in other characters (Mou & Stoermer, 1992).
When shape group separation is not evident, morphometric measures such as L, W or S
may be used (Kingston & Pappas, 2009).

CONCLUSIONS
In the light of our results, we cannot recommend the exclusive use of morphometric
measurements for unsupervised diatom classification that aims at segregating
morphologically similar species. According to our results and the available literature,
the combined use of morphometry and morphology seems to best suit this purpose.

Abbreviations

BCT Boosted classification trees
CHAID Chi-squared automatic interaction detector
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CVA Canonical variates analysis
EM Expectation-maximisation
KMC K-means clustering
KNN K-nearest neighbour
MA Mixture analysis
NBC Naïve Bayes Classifier
RF Random forests
SVM Support vector machine
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