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Abstract: Physical capacity provides a link between disease or impairment and limitations in activity;
in multiple sclerosis (MS), it is limited and decreased. The aim of this study was to study the effects
of exercise and transcranial direct current stimulation (tDCS) on the left dorsolateral prefrontal
cortex area in MS patients with fatigue and an impaired gait ability. A cross-over design was
carried out on fifteen patients with two disability associations, but three were excluded. Before
and after each intervention, the 6 min walk test (6MWT) and the 2 min walk test (2MWT) were
used to assess walking ability and the Modified Fatigue Impact Scale (MFIS) was used to assess
fatigue. A total of twelve patients were enrolled (48.0 median age, Kurtzke Disability Scale (EDSS)
3.66 ± 1.3): five females and seven males. After the application of the exercise program, significant
improvements were observed in the 6MWT (p < 0.001, g = 0.159) and 2MWT (p < 0.001, g = 0.182).
Furthermore, fatigue was significantly reduced after the application of the exercise program (p < 0.05,
g = 0.742) and after tDCS (p < 0.05, g = 0.525). We could consider therapeutic exercise in the future to
improve the walking ability and fatigue in MS patients. Furthermore, tDCS did not exert a significant
improvement in walking ability, but it appeared to influence fatigue. Clinical trial registration code:
ACTRN12622000264785.

Keywords: multiple sclerosis; walking ability; physical training; fatigue; 6MWT

1. Introduction

Physical capacity provides a link between disease or impairment and activity
limitations [1]. Likewise, if we focus on the individual, physical capacity is a means
by which they maintain their ability to carry out their functions. In multiple sclerosis
(MS), physical capacity is limited and decreased, which results in various limitations, most
notably the impact on the ability to walk. In MS, gait disturbances are so common that after
10–15 years of disease development, 80% of patients have difficulty walking [2–4]. Another
common symptom in this population is fatigue, which we understand as a subjective lack
of physical and/or mental energy. The European prevalence of this variable in MS is 83 per
100,000, and 55% of sufferers say it is the worst symptom they have experienced. This is
the reason why these disturbances cause a decrease in the general state of health, which,
together with the social and psychosocial conditioning factors, results in a lower quality of
life [2,5,6].

From this perspective, one of the most commonly used measures of physical capacity
is the ability to walk. Thus, one of the therapies that improves the ability to walk is physical
exercise, because exercise can modify the anti-inflammatory effect of MS and may even
slow down its progression. For this reason and for its ability to reverse the number of
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relapses, physical exercise is recommended in this population [5,7–10]. Moreover, Molt
et al. [11] established a bidirectional relationship between physical activity, symptomatology,
functional limitations and disability, finding that subjects with mild symptoms had higher
levels of physical activity. Current evidence suggests that physical rehabilitation based
on exercise could improve physical functions and the walking ability, probably by up to
6 points on the Kurtzke Disability Scale (EDSS) [12,13].

In this sense, another therapy with encouraging results to treat motor disorders and
their performance is transcranial direct current stimulation (tDCS). A recent review suggests
considering this therapy to train the walking ability [14]. Moreover, an innovation brought
by this therapy is the ability to generate long-term potentiation phenomena, causing specific
changes in the synaptic efficacy of the targeted brain region [15]. The effect of tDCS on
gait improvement has shown positive results, in which anodal-type stimulation leads to
the improvement of motor impairments, although all of them have been evaluated over
the primary motor cortex (M1) [16–19]. In contrast, other non-invasive brain stimulation
techniques, such as transcranial magnetic stimulation, have targeted stimulation to the left
dorsolateral prefrontal cortex (DLPFC), obtaining significant changes in gait parameters in
MS patients [20].

In view of this, and following the treatment model used in other studies, this study
focuses on the effects of tDCS in the DLPFC area and a concurrent training program for
the improvement of gait ability and fatigue [21,22]. The relationships between walking
ability, fatigue and sociodemographic data will also be studied. Our hypothesis is that
the application of exercise could be more effective than the application of tDCS in terms
of improving the walking ability, which could have a more significant impact on their
physical capacity. This is because there are currently many studies that claim that exercise
is beneficial for improving gait; however, no study has evaluated its effectiveness on
this variable through the application of tDCS in the DLPFC. Therefore, we believe that
this evaluation could be interesting and at the same time could be compared with the
application of exercise.

2. Material and Methods
2.1. Design and Participants

This is a pilot crossover design of tDCS therapy compared to an exercise program
for gait and fatigue performance. Ethical approval was obtained from the University of
León (ULE 010-2020). The study was carried out in accordance with the Ethical Principles
for Medical Research Involving Human Subjects outlined in the Declaration of Helsinki.
All participants were fully informed about all experimental procedures and signed the
written informed consent form prior to participation. This clinical trial is registered in a
WHO-approved public trials registry, the Australian New Zealand Clinical Trials Registry
(ANZCTR), registration number: ACTRN12622000264785.

The study was aimed at all participants with a diagnosis of MS, with no type of MS
being excluded. Eligibility criteria included being aged 18 years or older, the presence of
fatigue as assessed by the Modified Fatigue Impact Scale (MFIS) [23] (score of 38 or more)
and the ability to independently walk (with or without an assistive device) for at least 20 m.
Potential participants were excluded if they had any muscular disease or respiratory or
cardiovascular risk that might affect the exercise program [24]. Furthermore, the sample
selection and subsequent application of the interventions were carried out at the Palencia
headquarters of Aspaym Castilla y León (Spain) and at the multiple sclerosis association of
Palencia (Spain).

Thus, the first therapy was applied in March 2020, but the COVID-19 pandemic forced
the suspension of the treatment. Therefore, the application of tDCS was resumed on 8 June
2020 and its application ended on 28 August 2020. After a washout period of 5 months,
the second therapy was applied, which consisted of an exercise programme following the
guidelines of Muñoz et al. [21,22], and data collection was ended on 19 April 2020.
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2.2. Interventions

After the enrolment, an information sheet about the study was distributed and a
socio-demographic questionnaire was filled in.

In more detail, the tDCS protocol was applied by a specialised physiotherapist during
10 sessions lasting 20 min, distributed over 4 weeks. The tDCS was delivered with an
HDCstim stimulator (Newronika, Milan, Italy) connected to a pair of saline-soaked 35 cm2

sponge electrodes placed on the scalp. Current application points were chosen following
the 10–20 EEG system, using the protocol described by DaSilva [25] (Figure 1). According
to this system, the cathode was located in the right supraorbital cortex, whereas the anode
was located in the region corresponding to F3, the left DLPFC region.
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Figure 1. DLPFC (dorsolateral prefrontal cortex) position.

The procedure was divided into 4 time points, with T0 corresponding to the baseline,
where the 6MWT, 2MWT, IPAQ-SF, EDSS, MFIS and a questionnaire for the collection of
clinical, anthropometric and sociodemographic data were administered. After this period,
all participants were stimulated with the tDCS by a neurology-specialised physiotherapist
and moved to T1, where 6MWT, 2MWT and MFIS were re-evaluated. Following the first
intervention, a washout period was applied, which is necessary to prevent the effects of
the first intervention from interfering with the second. In our case, we selected a period of
5 months, as benefits of up to 3 weeks have been observed after the application of tDCS.
On the other hand, it has been shown that the effect of tDCS is accumulative and that this
effect is important to produce the necessary adaptations, so a long washout period was
chosen to avoid these effects interfering with those of the other therapy. This was followed
by T2, corresponding to the assessment of 6MWT, 2MWT and MFIS, before the exercise
programme intervention. Finally, the exercise programme was applied by a neurology-
specialised physiotherapist, followed by initiation of the last period, T3, where 6MWT,
2MWT and MFIS were evaluated for the last time.

In summary, the timepoints are T0 = Baseline/Pre-tDCS; T1 = Post-tDCS; (washout);
T2 = Pre-Exercise; and T3 = Post-Exercise.
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Following this period, the walking ability and fatigue data were collected once more,
and the exercise therapy was applied by a neurology-specialised physiotherapist for a
period of 4 weeks. Table 1 describes the exercise program protocol, which was divided into
strength and endurance.

Table 1. Exercise program.

Week 1 Week 2 Week 3 Week 4

Endurance

1 Ss 2 Ss 2 Ss 2–3 Ss

10 min 15 min 20 min (5 min of rest in the
middle of the session)

30 min (5 min of rest in the
middle of the session)

RPE 3–5 RPE 3–5 RPE 3–5 RPE 3–5
Static bike/MOTOmed Static bike/MOTOmed Static bike/MOTOmed Static bike/MOTOmed

Strength

2 Ss 2 Ss 3 Ss 3 Ss
15 Rep

(rest 2 min)
15 Rep

(rest 2 min)
10 Rep

(rest 3 min)
10 Rep

(rest 3 min)
2 Circuits

(rest 3 min)
2 Circuits

(rest 3 min)
3 Circuits

(rest 5 min)
3 Circuits

(rest 5 min)

Development of exercise program. Ss = session. RPE = rate of perceived exertion. min = minutes.
MOTOmed = aerobic kinesiotherapy equipment. Rep = repetition.

The training programme consisted of strength work and endurance work. Each sub-
ject started the first week with two sessions of strength work on alternate days and one
session of resistance work. As we can see, the sessions were increased in both training
sessions up to three sessions per week in the fourth week of training. As for the strength
training characteristics, the subjects began by performing two circuits composed of the
same six exercises, with 15 repetitions of each exercise and 2 min of rest between exercises.
Meanwhile, in weeks 3 and 4, they performed three circuits with the same exercises, with
10 repetitions of each exercise and 3 min of rest between exercises. The exercises in each
circuit consisted of pushing and pulling exercises, trunk and hip exercises and upper-
and lower-limb exercises. In this way, two circuits were developed; these required the
work of the same muscle groups but in different starting positions, which facilitated the
implementation of the exercises for those participants with some functional limitations.
Resistance training was increased from 10 min in week 1 to 30 min in week 4. During weeks
3 and 4, there was a 5 min break in the middle of the session. In addition, the intensity
used was moderate, which corresponds to a level of 3–5 on the rate of perceived exertion
(RPE) on the Borg scale [26]. The equipment used was a static bike or MOTOmed® kinesio-
therapy equipment (RECK-Technik GmbH and Co., Betzenweiler, Germany) depending
on the participant’s preference. Finally, walking ability was assessed and fatigue data
were collected.

2.3. Outcome Measures

The 6MWT and 2MWT were administered following the established instructions for
people with MS. The subjects were instructed to walk as fast and as far as possible for
6 min over a distance of 30 m marked by plastic cones. The investigator followed the
subject with a measuring wheel to subsequently record the distance travelled, which was
marked at 2 min and 6 min. According to the protocol developed for MS, the participants
were not encouraged during the test [27,28].

The International Physical Activity Questionnaire Short Form (IPAQ-SF) was used
to assess physical activity. This questionnaire has seven items, where six of the items
measured the frequency and duration of vigorous, moderate and walking activities during
the last 7 days. The 7th item on the IPAQ-SF measured the duration (minutes each day) of
time spent sitting on a typical weekday. Its reliability and validity have been investigated in
different countries and with different types of populations, including in MS subjects [29,30].
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The Kurtzke Disability Scale (EDSS) is considered a well-defined scale. The total score
in EDSS is based on an interview performed by the clinician and a neurological examination.
The EDSS consists of 20 steps with increments of 0.5: “0” indicates normal neurological
examination, while “10” indicates death due to MS [31,32].

The Spanish version of the Modified Fatigue Impact Scale is known as the the MFIS.
This scale is a 21 item scale with 9 “physical” items, 10 “cognitive” items and 2 “psychoso-
cial” items. This scale is recommended in the American Multiple Sclerosis Council for
Clinical Practice guidelines [23,33].

2.4. Statistical Analysis

A sample size calculation was carried out by calculating the difference between
dependent groups utilizing G*Power-3.1.9.2 software (G*Power©, Dusseldorf University,
Düsseldorf, Germany) and with an α-error of 0.05 and a B error of 0.20. These data produced
a sample of 27 subjects. Nevertheless, after the COVID-19 pandemic, many of the partici-
pants with MS stopped attending their usual rehabilitation centres, which made recruitment
difficult. For this reason, it was decided to use the crossover design. Furthermore, the results
found in these patients should be considered primary and the study should be considered a
pilot study.

The collected data were analysed using the statistical package IBM SPSS version 24
(SPSS 24, SPSS Inc., Chicago, IL USA). Descriptive analyses were generated for the demo-
graphic and clinical variables, the data for continuous variables presented
as ± standard deviation (SD) and categorical variables as frequencies (percentages). The
normal distribution of the continuous variables was assessed using the Shapiro–Wilk test.
The Wilcoxon signed-rank test was used to analyse the results obtained after applying
tDCS and the exercise program in the 6MWT, 2MWT and MFIS tests, and Spearman’s
correlation (r) was used to determine correlations between the variables (disability, physical
activity, fatigue and walking capacity) and the rest of the descriptive variables, with r
values showing high (±0.80), moderate (±0.50) and weak (±0.20) differences [34].

The effect size was calculated to express the magnitude of differences between samples,
expressed as Hedges’ g (scale: 0–1). The effect sizes were set as small (0.2–0.5), medium
(0.5–0.8) and large (>0.8) [34].

The significance level for all tests was set at p < 0.05.

3. Results

Out of the fifteen patients assessed for eligibility, three were excluded (one was hospi-
talised, one had COVID-19 and one underwent surgery), preventing them from carrying
out the exercise program. Finally, twelve patients provided informed consent and en-
rolled in the study. The types of MS were relapsing–remitting or secondary progressive,
patients’ ages ranged from 35 to 66 years and EDSS levels ranged from 0.5 to 5. A flow
chart of the enrolment and randomisation process, according to the CONSORT guide-
lines, is presented in Figure 2. Additionally, Table 2 shows the initial characteristics of
the participants.
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The results of this study showed significant improvements after the application of
exercise in the 6 min walk (p = 0.004, g = 0.159) and 2 min walk (p = 0.002, g = 0.182) scales,
although the effect size was small (Table 3). It should be noted that changes in the 6MWT
distance in excess of 30.5 m can be considered clinically significant, indicating that there
has been a real change in the 6MWT distance achieved. For the 2MWT scale, a change of
12% or more indicates a clinically significant change. On the other hand, we will take into
account the minimally important difference (MID), which refers to the smallest change in
score that is perceived as important. With respect to the MID, it has been established for
the 6MWT scale that a variability of 19.7 m shows improvement, while a reduction of 7.2 m
indicates deterioration.
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Table 2. Clinical and sociodemographic characteristics of participants.

Variables N [Min-Max]; Mean ± (SD) Frequency (%)

Age 12 [35–66]; 48.0 ± (8.5)
Diagnosis (years) 12 [0.8–28]; 16.65 ± (7.44)
Outbreaks (years) 11 [0–2]; 0.36 ± (0.67)

Kurtzke Disability Scale EDSS 12 [0.5–5]; 3.66 ± (1.30)
Walking time (minutes) 9 [0.0–120]; 51.11 ± (41.06)
Sitting time (minutes) 9 [0–960]; 466.667 ± (304.13)

6MWT 12 [66.9–669]; 411 ± (207.67)
2MWT 12 [25.8–292.3]; 139.27 ± (80.98)
MFIS 12 [38–69]; 44.5 ± (9.69)

IPAQ Level
High level 4 (33.3%)

Moderate level 5 (41.7%)
Low or inactive level 3 (25%)

Type of sclerosis
Relapsing–Remitting 7 (58.3%)

Progressive Secondary 5 (41.7%)
Outbreak intensity

Mild 2 (18.2%)
Moderate 1 (9.1%)

Intense 1 (9.1%)
No outbreaks 7 (63.6%)

Medical recommendation
Physical activity 6 (11.3%)

Other 1 (8.3%)
No recommendation 5 (41.7%)

Fatigue medication
Yes 5 (41.7%)
No 7 (58.3%)

Rehabilitation
Yes 11 (91.7%)
No 1 (8.3%)

Intensity rehabilitation
Occasional 5 (41.7%)

Periodic 7 (58.3%)
Exercise habits

Occasional 2 (16.7%)
Periodically 10 (83.3%)

Clinical and sociodemographic characteristics of participants. N: number of subjects; SD: standard deviation;
6MWT: six-minute walk test; 2MWT: two-minute walk test; MFIS: Modified Fatigue Impact Scale.

Table 3. Pre–post tDCS and pre–post exercise paired samples test for gait capacity and fatigue.

T0 Median
[Range]

T1 Median
[Range] p Size Effect

Hedges’ g
T2 Median

[Range]
T3 Median

[Range] p Size Effect
Hedges’ g

6MWT 504 [602.1] 467.1 [610] 0.388 0.632 362.8 [552] 409.65 [566] 0.004 ** 0.418

2MWT 144.45 [266.5] 149.95 [201.35] 0.347 0.027 107.45 [175.7] 119.7 [213.8] 0.002 ** 0.182

MFIS 39.5 [31] 38.5 [45] 0.028 * 0.525 43 [33] 36 [52] 0.003 ** 0.742

Non-parameter statistic. Wilcoxon signed-rank test. 6MWT: six-minute walk test. 2MWT: two-minute walk test.
MFIS: Modified Fatigue Impact Scale. T0: treatment before transcranial direct current stimulation. T1: treatment
after transcranial direct current stimulation (tDCS). T2: treatment before exercise. T3: treatment after exercise.
* p < 0.05 and ** p < 0.01.

The median score obtained by participants in the 2MWT tended to improve after
the implementation of tDCS and the exercise program. The measurement prior to the
application of tDCS was 144.45 (IQR: 69.92–188.67), and after the application of tDCS, it
was 149.95 (IQR: 65.25–187.85). The measurement prior to the application of the exercise
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program was 107.45 (IQR: 70–163.5), and after the application of exercise, it was 119.70
(IQR: 76.2–175.8) (Figure 3).
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However, the median score obtained by participants in the 6MWT only tended to
improve after the implementation of the exercise program. Thus, the measurement prior
to the application of tDCS was 504 (IQR: 198–577.5), and after the application of tDCS, it
was 467.1 (IQR: 182.47–565.9). Meanwhile, the measurement prior to the application of the
exercise program was 362.8 (IQR: 251.82–538.05), and after the application of exercise, it
was 409.65 (IQR: 257.22–547.57) (Figure 4).

It is important to note that after tDCS, the data indicated impairment in three subjects
in the 6MWT scales. In addition, three subjects also scored worse on the 2MWT scale.
In the meantime, in the 6MWT scale after tDCS and the exercise program, some subjects
obtained an MID that indicated a trend towards improvement, without reaching the values
to consider it clinically significant. Similarly, we must consider that the mean of the group
evaluated after tDCS was higher on the 2MWT scale, so there were clinical improvements,
although they were not clinically significant.
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A secondary analysis showed significant reductions in fatigue after the application
of the exercise program (p = 0.03, g = 0.742) and tDCS (p = 0.028, g = 0.525). On the
other hand, there were no correlations between the sociodemographic variables, IPAQ,
6MWT and 2MWT. The only correlation found was between 6MWT and 2MWT (r = 0.923,
p < 0.001) and between MFIS and 6MWT (r = 0.605, p = 0.037).

4. Discussion

In view of the possible interest in the results and their relevance, we present the results
of our pilot study as preliminary results. In this way, our principal objective was to study
the effects of tDCS on the DLPFC area and the exercise program on the improvement of the
gait ability. In this sense, significant improvements were observed in the 6MWT test and
2MWT after the exercise program.

To the best of our knowledge, at the time of writing, the present study is the first to
evaluate walking ability by separately applying a concurrent training program and tDCS
on the left DLPFC area.

Gait impairment in MS is mainly expressed as a reduction in walking speed, an
increased variability in hip, knee and ankle kinematics, a decreased endurance and an
impaired postural control. All of this leads to an increased metabolic cost of walking. When
we add the variable fatigue, present in the majority of these subjects, we encounter two
of the main limitations that are also correlated [27]. Therefore, we have applied therapies
that have reported beneficial effects on both fatigue and gait. Nevertheless, our results
indicate that the effects of these two variables were small, so we cannot affirm that the
training program used as a therapy is clinically relevant. However, there were changes
in these scales that are important to take into account at the clinical level. For the 6MWT
scale, it has been established that changes in distance exceeding 30.5 m can be considered
as clinically significant. On the other hand, the minimum important difference (MID) for
people with MS is established as a distance greater than 19.7 m for improvement and
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a distance lower than 7.2 m for deterioration [35,36]. Our results showed that nine of
the subjects exceeded the MID, and five of them exhibited a change greater than 30.5 m,
which suggests a clinically significant change. It is true that one of the subjects obtained a
lower distance than at the beginning of the treatment, but this did not reach the level of
deterioration, since it was not more than 7.2 m. For the 2MWT scale in MS, it is determined
that a change of 12% or more indicates a clinically significant difference [37]; our results
indicated that all subjects obtained improvements in this scale, although only three of them
showed a change of more than 12%.

Moreover, it is known that the 6MWT distance is associated with measures of gait
performance and measures of physical fitness [38]. Therefore, our results indicate that al-
though the exercise program is not clinically relevant, it conveys a significant improvement
by working on aerobic and muscular skills. In this way, our study, in line with other authors
such as Goldman [27], found a correlation between 6MWT and fatigue. The difference is
that Goldman’s study also found a correlation between the 6MWT scale and the physical
fatigue subscale of the MFIS in MS. However, our results did not show this correlation,
although they do reflect an improvement in both walking capacity and fatigue. This may
indicate the need to include a larger number of subjects in future studies.

On the other hand, several studies affirm that the application of an exercise program
can be beneficial in MS, and, more specifically, that the application of combined training
such as the one used by us has the ability to improve the walking capacity in MS [2,10]. For
this reason, in the strength part, it is also important to stimulate secondary and stabilising
muscles of the hip, trunk and upper limbs to work on coordination and stability in the
sagittal and frontal planes [39]. Despite having applied this, we did not obtain clinically
significant changes in all the subjects; this may be due to the association between speed
and gait pattern and because those subjects with a poor gait prior to training need a longer
training duration [40,41]. In this way, several studies use a training period of fewer than
8 weeks [42–44], which is effective as long as the volume of work increases from three ses-
sions per week. Our study uses this approach, although only two sessions were performed
in the first week, which could be another reason why some of the subjects did not obtain
significant improvements.

No significant improvements were obtained after tDCS application, and three of the
subjects displayed deterioration in both gait scales. In addition, two of them also exhibited
a worsening in the fatigue scale after the application of tDCS, but not after the training
program. This may be due to the inter-subject variability that exists in non-invasive brain
stimulation techniques and to the so-called “non-responders” who do not respond to the
expected corticospinal excitability after the application of the stimulation [45]. Nevertheless,
no other study has evaluated the effectiveness of tDCS in the left DLPFC area on walking
ability, although our results suggest that this stimulation is not effective. In this way,
another area in which we should discourage the use of this stimulation is in the cerebellum,
since Nguemaeni’s group [46] found no effect on locomotion, even though they only
applied a single stimulation session. Therefore, in future applications, we should follow
the recommendations made by other authors who obtained improvements in the 6MWT
and 2MWT scales when applying a current to M1 [16–19]. New trends in this field include
the combination of tDCS with aerobic physical activity, resulting in improvements in gait
in MS, which may enhance the rehabilitation of this population group [18,47].

It is necessary to consider that the data obtained are preliminary results, so they should
be read with caution regarding the significance of the findings, and the study should be
considered as a pilot study. This is mainly due to the fact that the study design has a small
sample size and no long follow-up over time.

4.1. Practical Application

The main strength of this study is the innovation of separately applying a concurrent
training program and tDCS on the left DLPFC area to assess walking ability. As for separate
therapies, we can highlight that in the strength work, we did not focus only on working the
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knee muscles, but we also worked secondary and stabilising muscles such as the trunk, hip
and upper limbs to achieve greater coordination and stability. On the other hand, no other
studies have evaluated the walking ability by applying stimulation to the left DLPFC area.
Although our results suggest that this stimulation is not effective, it would be interesting to
delimit the areas on which we should focus according to our work objective. This could
help the future development of more detailed protocols for the improvement of physical
capacity in MS, even though more studies are needed to confirm these data.

4.2. Future Line of Applications

In recent years, the development, study and application of different therapies in neuro-
logical pathologies such as MS has generated interest. However, despite demonstrating the
benefits of therapies such as exercise training, the current recommendations lack specificity.
In terms of gait training, as we have already seen, a combined exercise program is a good
option, and it is important that the secondary and stabilising muscles are worked. Other
therapies such as virtual reality, robot-assisted gait training or tDCS have been used to
improve the walking ability. There are some studies that have evaluated the combined
application of tDCS with walking or an exercise program in other pathologies, with pos-
itive results in stroke patients [16]. This combination of therapies has also been studied
in MS with promising results, suggesting that there could be a prolonged beneficial effect
induced by the combination of these rehabilitation therapies [47]. Therefore, a future line of
research in MS would be to further study the combination of these therapies to determine
whether tDCS can improve the efficacy of treatment. Another difficulty we encounter is
the disability of the subjects, so another challenge is to adapt the treatments and clinical
recommendations to the different degrees of disability [10,48–50].

In conclusion, although there are serious limitations due to the small sample size and
a lack of long-term assessments, these procedures could be considered as a future strategy
to improve walking ability and fatigue in MS patients. In this way, a combined exercise
program could improve walking ability and fatigue in patients with MS. Furthermore, tDCS
did not show significant improvements in walking ability, but it could improve fatigue.
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Abbreviations

MS Multiple sclerosis
tDCS Transcranial direct current stimulation
M1 Primary motor cortex
DLPFC Left dorsolateral prefrontal cortex
MFIS Modified fatigue impact scale
6MWT Six-minute walk test
2MWT Two-minute walk test
IPAQ-SF International physical activity questionnaire short form
EDSS Expanded disability status scale
MID Minimally important difference
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