
����������
�������

Citation: Castejón-Limas, M.;

Fernández-Robles, L.; Alaiz-Moretón,

H.; Cifuentes-Rodriguez, J.;

Fernández-Llamas, C. A Framework

for the Optimization of Complex

Cyber-Physical Systems via Directed

Acyclic Graph. Sensors 2022, 22, 1490.

https://doi.org/10.3390/s22041490

Academic Editors: Javier Villalba-

Diez and Alexios Mylonas

Received: 23 December 2021

Accepted: 11 February 2022

Published: 15 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

A Framework for the Optimization of Complex Cyber-Physical
Systems via Directed Acyclic Graph
Manuel Castejón-Limas , Laura Fernández-Robles * , Héctor Alaiz-Moretón , Jaime Cifuentes-Rodriguez
and Camino Fernández-Llamas

Department of Mechanical, Computer Science and Aerospace Engineering, Universidad de León, 24071 León,
Spain; manuel.castejon@unileon.es (M.C.-L.); hector.moreton@unileon.es (H.A.-M.); jcifr@unileon.es (J.C.-R.);
camino.fernandez@unileon.es (C.F.-L.)
* Correspondence: l.fernandez@unileon.es; Tel.: +34-987-29-3521

Abstract: Mathematical modeling and data-driven methodologies are frequently required to opti-
mize industrial processes in the context of Cyber-Physical Systems (CPS). This paper introduces
the PipeGraph software library, an open-source python toolbox for easing the creation of machine
learning models by using Directed Acyclic Graph (DAG)-like implementations that can be used for
CPS. scikit-learn’s Pipeline is a very useful tool to bind a sequence of transformers and a final
estimator in a single unit capable of working itself as an estimator. It sequentially assembles several
steps that can be cross-validated together while setting different parameters. Steps encapsulation
secures the experiment from data leakage during the training phase. The scientific goal of PipeGraph
is to extend the concept of Pipeline by using a graph structure that can handle scikit-learn’s
objects in DAG layouts. It allows performing diverse operations, instead of only transformations,
following the topological ordering of the steps in the graph; it provides access to all the data gen-
erated along the intermediate steps; and it is compatible with GridSearchCV function to tune the
hyperparameters of the steps. It is also not limited to (X, y) entries. Moreover, it has been proposed
as part of the scikit-learn-contrib supported project, and is fully compatible with scikit-learn.
Documentation and unitary tests are publicly available together with the source code. Two case
studies are analyzed in which PipeGraph proves to be essential in improving CPS modeling and
optimization: the first is about the optimization of a heat exchange management system, and the
second deals with the detection of anomalies in manufacturing processes.

Keywords: Cyber-Physical Systems; Lean Manufacturing; Directed Acyclic Graphs; scikit-learn;
pipegraph; machine learning models

1. Introduction

Continuous technological advancements in fields such as Information Technology
(IT), Artificial Intelligence (AI), and the Internet of Things (IoT), among others, have
drastically transformed manufacturing processes. Recent technological advancements have
permitted a systematic deployment of Cyber–Physical Systems (CPS) in manufacturing,
which allows intertwining physical and software components to control a mechanism by
means of a computer system. CPS has considerably improved the efficiency of production
processes while also making them more resilient and collaborative [1]. These cutting-edge
technologies are advancing the manufacturing economic sector in the Industry 4.0 era [2].

In the Industry 4.0 paradigm, manufacturing industries must modify their manage-
ment systems and look for new manufacturing strategies [3,4] to find solutions to tackle the
issues faced nowadays. Lean Manufacturing (LM) has become one of the most generally
accepted manufacturing methods and management styles used by organizations through-
out the world to improve their business performance and competitiveness [5]. Since LM
improves operational performance for manufacturing organizations in developing and

Sensors 2022, 22, 1490. https://doi.org/10.3390/s22041490 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041490
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5152-4555
https://orcid.org/0000-0001-6573-8477
https://orcid.org/0000-0001-6572-1261
https://orcid.org/0000-0003-3287-4899
https://orcid.org/0000-0002-8705-4786
https://doi.org/10.3390/s22041490
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041490?type=check_update&version=1


Sensors 2022, 22, 1490 2 of 11

developed countries [6], it has spread all over the world [4]. Ref. [7] suggested that the
future research methodologies for LM can be classified into meaningful themes, namely: the
size of the research sample and its composition; several types of study (other than surveys);
longitudinal studies; applying advanced statistical analysis and (mathematical) modeling
techniques; objective, real and quantitative data; surveys; mixed/multiple research studies;
reliability and validity analysis; using computer-aided technology for data collection, and
processing and research collaborations.

This paper focuses on the application of mathematical modeling techniques and the
use of computer-aided technology for data processing for LM CPS, at the core of Industry
4.0. LM deals with the optimization of the performance according to a specific set of
principles [8]. In the context of CPS, mathematical modeling and data-driven techniques
are usually needed to optimize industrial processes [9]. Ref. [10] presented a fully model-
driven technique based on MontiArc models of the architecture of the CPS and UML/P
class diagrams to construct the digital twin information system in CPS. Ref. [11] combined
Random Forest (RF) with Bayesian optimization for large-scale dimension data quality
prediction, selecting critical production aspects based on information gain, and then using
sensitivity analysis to preserve product quality, which may provide management insights
and operational guidance for predicting and controlling product quality in the real-world
process industry. In [12], in the context of varying design uncertainty of CPS, the feasibility
of appropriate evolutionary and Machine Learning (ML) techniques was examined. In [13],
the Neural Network Verification (NNV), a software tool that offers a set of reachability
methods for verifying and testing the safety (and robustness) of real-world Deep Neural
Networks (DNNs) and learning-enabled CPS, was introduced.

ML is contributory in solving difficult problems in the domains of data-driven forecast-
ing, classification and clustering for CPS. However, the literature of the ML field presents a
high number of approaches and variations which makes difficult to establish a clear classifi-
cation scheme for its algorithms [14]. Toolkits for ML aim at standardizing interfaces to ease
the use of ML algorithms in different programming languages as R [15], Apache Spark [16],
JAVA and C# [17], C++ [18,19], JAVA [20,21], PERL [22], JavaScript [23], command-line [24],
among others. Python is one of the most popular and widely-used software systems for
statistics, data mining, and ML, and scikit-learn [25] is the most widely used module for
implementing a wide range of state-of-the-art ML algorithms for medium-scale supervised
and unsupervised problems.

Data-driven CPS case studies usually need to split the data into training and test sets
and to combine a set of processes to be applied separately to the training and test data.
Some bad practices in data manipulation can end up in a misleading interpretation of the
achieved results. The use of tools that allow the selection of the pertinent steps in an ad-hoc
designed pipeline helps to reduce programming errors [26]. The Pipeline object of the
scikit-learn module allows combining several transformers and an estimator to create a
combined estimator [25]. This object behaves as a standard estimator, and GridSearchCV
therefore can be used to tune the parameters of all steps. Nevertheless, Pipeline has some
shortcomings such as: it is quite rigid since it strictly allows combining transformers and an
estimator sequentially in such a way that the inputs of a step are the transformed outputs
of the previous step; it requires (X, y)-like entries, the X is transformed by the transformers,
and (X, y) is used by the estimator; GridSearchCV on a Pipeline is constrained to only split
(X, y) and tune parameters that are variables of the functions, for example, a fit_param
cannot be tuned.

In this work we present PipeGraph, a new toolbox that aims at overcoming some of the
weaknesses of Pipeline while providing greater functionality to ML users. In PipeGraph,
all kinds of steps, not only transformers and an estimator, can be combined in the form
of a Directed Acyclic Graph (DAG), the entries of a step can come from the outputs of
any previous step or the inputs to the graph, see Figure 1. For more information about
the application of DAGs in ML see [27]. A PipeGraph accepts more variables than (X, y)
as inputs that can be appended or split within the graph to make use of the standard
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scikit-learn functions. This allows using hyperparameter tuning techniques such as
GridSearchCV to easily manage data further than (X, y) inputs and tune other parameters
apart from the variables of functions. The user can easily implement a new PipeGraph
creating steps that make use of: (i) scikit-learn functions, (ii) provided custom blocks
that implement basic functions, or (iii) their own elaborated custom blocks that implement
custom functions. Moreover, in this paper we report two case studies where PipeGraph
was essential to ease the modeling and optimization in the CPS area. The first case study
deals with an optimization of heat exchange management system, whereas the second one
deals with anomaly detection in manufacturing processes.

Figure 1. Graphical abstract. In the upper part, the Pipeline structure can be seen, which only allows
sequential steps. At the bottom, the PipeGraph structure is shown. The combination of steps based
on a directed acyclic graph makes a wide variety of operations feasible.

2. Data Leakage in ML Experiments

This section emphasizes the importance of avoiding data leakage in data driven
numerical modeling. Data leakage in experimental learning is an important design defect
that practitioners must consciously avoid. Best practices in ML projects establish that the
information related to the case study must be split in a number of different data sets, i.e.,
training set, test set, and if necessary validation test [28]. This allows the practitioner to
obtain a measure of the error expected on data unseen during the training process. It is
crucial for the model to be evaluated on unseen data in order to confirm the generalization
capability of the model. Moreover, cross–validation (CV) is one of the most popular
strategies to obtain a representative value of the error measure. CV pursues to provide an
error measure on unseen data by using the training set alone. To achieve that goal, it splits
the training data set in a number k of subsets, also known as ‘folds’, and runs k training
experiments by isolating one of those folds at a time, to later on measure the error on the
specific set that has been isolated. Thus, in each of the k experiments the model is trained
and tested on different sets. Finally, the error measures are condensed by using standard
statistics like mean value and standard deviation.

One of the most important risks associated to CV is data leakage, by failing to correctly
manage the different sets of data and their effect on the different stages of the training phase.
Let us consider the following simple illustrative case: a linear model that is fitted using
scaled data. Such an example requires the data to run through two processes: a scaler and
then a predictive model. During the training phase the scaler annotates information related
to the presented data, e.g., maximum and minimum, or mean value and standard deviation.
This annotations allow the scaler process to eventually apply the same transformation to
new and unseen data. A typical error that might occur is that the code for the CV presents
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the whole training data set to the scaler and then loops different fit experiments using the
k-fold strategy. By doing so, each of the k models fails to provide an error measure that is
representative of the behavior of the model on unseen data, because indeed, what is meant
to be considered as unseen data has effectively polluted the experiment by its potential
impact on the parameters annotated on the scaler.

One of the main strategies to avoid the risk of allowing the user to mishandle the
flow of information during CV is to embed the sequence of processes in an entity that is
handled in the code as a single unit. A remarkable example of such solution is the Pipeline
class provided by scikit-learn. According to scikit-learn documentation “pipelines
help avoid leaking statistics from your test data into the trained model in cross-validation blue (CV),
by ensuring that the same samples are used to train the transformers and predictors” [25].

In the former example, the scaler cannot be trained using the whole data set during
the CV experiment because Pipeline is in charge of training the scaler as many times as
the predictive model. This is a very successful strategy for migrating the responsibility of
orchestrating the fit and predict phases from the user to the code of the framework, thus
avoiding possible user errors while handling the data.

CV is one of the scenarios where data leakage can occur, other notable situations prone
to this design defect can occur when augmenting the data or during the feature engineering
stage, to name a few.

PipeGraph is another example of such encapsulation. As Pipeline, it provides the
researcher with the safety that no data leakage will occur during the training phase. More-
over, it enhances the capabilities of the standard Pipeline provided by scikit-learn by
allowing non–linear data flows, as we will show in the following section.

Thus the scientific goal of this paper is to present researchers from the ML community,
in particular those in the CPS area, a novel framework aimed at providing expressive
means to design complex models such as those typically present in CPS. PipeGraph thus
combines the expressive power of DAGs with the intrinsic safety of encapsulation.

3. Library Design
3.1. Project Management

Quality assurance. In order to ensure code quality and consistency, unitary tests are
provided. We granted a coverage of 89% for the release 0.0.15 of the PipeGraph toolbox.
New contributions are automatically checked through a Continuous Integration (CI) system
for the sake of determining metrics concerning code quality.

Continuous integration. In order to ensure CI when using and contributing to PipeGraph
toolbox, Travis CI is used to integrate new code and provide back-compatibility. Circle CI
is used to build new documentation along with examples containing calculations.

Community-based development. PipeGraph toolbox is fully developed under GitHub
and gitter to facilitate collaborative programming, this is, issue tracking, code integration,
and idea deliberations.

Documentation. We provide consistent Application Programming Interface (API) doc-
umentation and gallery examples (https://mcasl.github.io/PipeGraph/api.html, accessed
on 20 December 2021) by means of sphinx and numpydoc. A user’s guide together
with a link to the API reference and examples are provided and centralized in GitHub
(https://github.com/mcasl/PipeGraph, accessed on 20 December 2021).

Project relevance. At edition time of this paper PipeGraph toolbox has been proposed
as part of the scikit-learn-contrib supported project.

3.2. Implementation Details

Here we describe the main issues that had to be solved for PipeGraph to work. First,
scikit-learn step eligible classes provide a set of methods with different names for
essentially the same purpose; providing the output corresponding to an input dataset.
Depending on whether the class is a transformer or an estimator, this method can be called
either transform, predict, or even fit_predict. This issue was originally solved by using

https://mcasl.github.io/PipeGraph/api.html
https://github.com/mcasl/PipeGraph
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the wrapper design pattern, although it has been proposed by scikit-learn core developers
to consider the usage of mixin classes to provide a similar functionality. The development
branch of the package already implements this alternative approach.

The main difference from a users perspective between using a Pipeline object or a
PipeGraph object is the need of defining a dictionary that establishes the connections. Again,
a scikit-learn core developer suggested the implementation of an inject method for
that purpose and that approach is also already available along with the optional dictionary
for those cases in which the user finds it more convenient to use.

The proposed toolbox depends on numpy, pandas, networkx, inspect, logging and
scikit-learn and is distributed under MIT license.

PipeGraph can be easily installed using pip install pipegraph.

3.3. Example

We describe here one example for illustrative purposes. The system displays a predic-
tive model in which a classifier provides the information to a demultiplexer to separate the
dataset samples according to their corresponding class. After that, a different regression
model is fitted for each class. Thus, the system contains the following steps:

scaler: A scikit-learn MinMaxScaler data preprocessor in charge of scaling the dataset.

classifier: A scikit-learn GaussianMixture classifier in charge of performing the cluster-
ing of the dataset and the classification of any new sample.

demux: A custom Demultiplexer class in charge of splitting the input arrays accordingly
to the selection input vector. This block is provided by PipeGraph.

lm_0, lm_1, lm_2: A set of scikit-learn LinearRegression objects

mux: A custom Multiplexer class in charge of combining different input arrays into
a single one accordingly to the selection input vector. This block is provided by
PipeGraph.

This PipeGraph model is shown in Figure 2. It can be clearly seen in the figure the
non sequential nature of such a system that cannot be otherwise described as a standard
scikit-learn Pipeline.

Figure 2. A PipeGraph system for fitting a different model per cluster.

The code for creating an artificial dataset and configuring the system is described in
Listing A1 of Appendix A.
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3.4. Implemented Methods

PipeGraph toolbox provides two interfaces, PipeGraphRegressor and
PipeGraphClassifier, which are compatible with GridSearchCV and heavily based on
scikit-learn’s Pipeline on purpose, as its aim is to offer an interface as similar to
Pipeline as possible. By default, PipeGraphRegressor uses the regressor default score
(the coefficient of determination R2 of the prediction) and PipeGraphClassifier uses the
classifier default score (the mean accuracy of the prediction on given test data with respect
to labels). As for the rest, both interfaces are equivalent.

The following functions can be used by the user in both interfaces:

• inject(sink, sink_var, source, source_var) Defines a connection between two
nodes of the graph declaring which variable (source_var) from the origin node
(source) is passed to the destination node (sink) with new variable name sink_name).

• decision_function(X) Applies PipeGraphClasifier’s predict method and returns
the decision_function output of the final estimator.

• fit(X, y=None, ∗∗fit_params) Fits the PipeGraph steps one after the other and
following the topological order of the graph defined by the connections attribute.

• fit_predict(X, y=None, ∗∗fit_params) Applies predict of a PipeGraph to the
data following the topological order of the graph, followed by the fit_predict
method of the final step in the PipeGraph. Valid only if the final step implements
fit_predict.

• get_params(deep=True) Gets parameters for an estimator.
• predict(X) Predicts the PipeGraph steps one after the other and following the topo-

logical order defined by the alternative_connections attribute, in case it is not None,
or the connections attribute otherwise.

• predict_log_proba(X) Applies PipeGraphRegressor’s predict method and returns
the predict_log_proba output of the final estimator.

• predict_proba(X) Applies PipeGraphClassifier’s predict method and returns the
predict_proba output of the final estimator.

• score(X, y=None, sample_weight=None) Applies PipeGraphRegressor’s predict
method and returns the score output of the final estimator.

• set_params(∗∗kwargs) Sets the parameters of this estimator. Valid parameter keys
can be listed with get_params().

4. Case Studies
4.1. Anomaly Detection in Manufacturing Processes

The first case study deals with anomaly detection of machined workpieces using a
computer vision system [29]. In that paper, a set of four classifiers were tested in order to
choose the best model for identifying the presence of wear along the workpiece surface.
Following a workflow consisting of a preprocessing phase followed by feature extraction
and finally a classification step, the authors reported satisfactory results. In such scenario,
the results of a deeper analysis could have been provided, where the quality of the classifier
could have been improved by unleashing an additional parameter, the number of classes.
Instead of assuming that two classes are present in the dataset, namely correct pieces and
unacceptable pieces, according to the finishing quality, the result from considering more
classes can be explored.

For that purpose, a pipegraph model as the one shown in Figure 3 allows for a two
model workflow. In this case, a clustering algorithm partitions a dataset consisting of
10,000 artificially generated 5-dimensional samples. It is worth noting that the partition is
performed considering a specific and predefined number of clusters. This experiment splits
the dataset in 5 folds for cross–validation. For each configuration, the classifier is trained
and the quality of its results is assessed according to some convenient metric.The classifier
considered was the well–known k-means training for a maximum of 300 iterations and a
stopping criterion of error tolerance smaller than 0.0001.
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Figure 4 displays the quality results for such workflow in an illustrative case, described
in more detail in the library documentation. It is worth noting that such a workflow cannot
be constructed via standard scikit-learn tools as the two steps of the workflow are
models and the standard Pipeline class only allows for a set of transformers and a single
unique model in final position. We claim that for those purposes where different models are
useful, even in a linear sequence, PipeGraph provides a viable and convenient approach.

classifier
predictx

yclustering

x predictX

y_pred

classifier

predict

x

y

X y_pred
x

predict

clustering

Figure 3. A pipegraph sporting two sequential model blocks.

Figure 4. Number of clusters vs. a quality measure to assess the most appropriate number of clusters.

4.2. Heat Exchanger Modeling

The second case study deals with a problem that is common in manufacturing pro-
cesses: the management of faulty sensors [30]. In that paper, 52,699 measurements from a
sensor embedded in a heat exchanger system were compared to the predictions from a base-
line model capturing the expected behavior of such CPS system. If the sensor measurements
were significantly different from the predictions provided by the CPS model, an alarm was
raised and specific actions performed according to the particular case study. In the paper,
two classes were again considered, namely day and night, standing for the two particular
periods in which the 24 h are split. The best model obtained from a Cross-Validation setup
using 10 folds was an Extremely Randomized Tree whose training explored a range from
10 through 100 base estimators. A pipegraph similar to the one considered in Figure 2
was used in the experience reported in the paper for a two model for two classes case. For
such scenario, an approach using more than two classes could have been considered to
check if such an enhanced model can outperform the results reported. Figure 5 displays
a unified workflow in which PipeGraph is capable of automatically wiring as many local
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models as classes are defined in the dataset, thus relieving the user from the task of defining
multiple configurations depending on how many classes were considered. It is again worth
noting that such a workflow cannot be constructed via standard scikit-learn tools for
the non linear workflow necessary for the purpose, and because of the automatic building
procedure of the multiple prediction models put to play. We claim again that for those
purposes where different models are used in a non linear sequence, PipeGraph provides a
viable and convenient approach.

Figure 5. Parallel workflow with automatic wiring of the prediction models according to the labels
contained in a dataset.

5. Conclusions

CPS and LM can greatly leverage on improvements in the tools and techniques
available for system modeling. Data leakage, being one of the most common sources
of unexpected behavior when the fitted models are stressed with actual demands, can
largely be prevented by using encapsulation techniques such as the Pipeline provided by
the scikit-learn library. For some specific complex problem appearing in the context
of LM, and particularly in CPS modeling, the PipeGraph library provides a solution to
building complex workflows, which is specially important for those cases that the standard
Pipeline provided by scikit-learn cannot handle. Parallel blocks in non linear graph
are available to unleash the creativity of the data scientist in the pursue of a simple and
yet efficient model. In this paper we briefly introduced a novel PipeGraph toolbox for
easily expressing ML models using DAG while being compatible with scikit-learn.
We showed the potential of the toolbox and the underlying implementation details. We
provided references to two case studies with hints on approaches for possible improvements
by using PipeGraph and minor changes to the architecture proposed in two papers in the
field of CPS and LM modeling. Future works on PipeGraph will include a Graphical User
Interface (GUI) to use the API and new libraries which will encompass custom blocks
related to specific areas connected to machine learning, such as computer vision, control
systems, etc.
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Appendix A

Listing A1. Example code for the PipeGraph shown in Figure 2.

import numpy as np
import pandas as pd
from sk learn . preprocess ing import MinMaxScaler
from sk learn . l inear_model import LinearRegress ion
from sk learn . model_se lect ion import GridSearchCV
from pipegraph . base import PipeGraphRegressor
from pipegraph . base import Demultiplexer
from pipegraph . base import Mult iplexer
import m a t p l o t l i b . pyplot as p l t
from sk learn . mixture import GaussianMixture

X _ f i r s t = pd . S e r i e s ( np . random . rand ( 1 0 0 , ) )
y _ f i r s t = pd . S e r i e s (4 * X _ f i r s t + 0 . 5 * np . random . randn ( 1 0 0 , ) )
X_second = pd . S e r i e s ( np . random . rand ( 1 0 0 , ) + 3)
y_second = pd . S e r i e s ( −4 * X_second + 0 . 5 * np . random . randn ( 1 0 0 , ) )
X_third = pd . S e r i e s ( np . random . rand ( 1 0 0 , ) + 6)
y_th ird = pd . S e r i e s (2 * X_third + 0 . 5 * np . random . randn ( 1 0 0 , ) )

X = pd . concat ( [ X _ f i r s t , X_second , X_third ] , a x i s = 0 ) . to_frame ( )
y = pd . concat ( [ y _ f i r s t , y_second , y_third ] , a x i s = 0 ) . to_frame ( )

s c a l e r = MinMaxScaler ( )
gaussian_mixture = GaussianMixture ( n_components =3)
demux = Demultiplexer ( )
lm_0 = LinearRegress ion ( )
lm_1 = LinearRegress ion ( )
lm_2 = LinearRegress ion ( )
mux = Mult ip lexer ( )

s teps = [ ( ’ s c a l e r ’ , s c a l e r ) ,
( ’ c l a s s i f i e r ’ , gaussian_mixture ) ,
( ’demux ’ , demux ) ,

https://github.com/mcasl/PipeGraph
https://github.com/mcasl/PipeGraph
https://mcasl.github.io/PipeGraph/api.html
https://mcasl.github.io/PipeGraph/api.html
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( ’ lm_0 ’ , lm_0 ) ,
( ’ lm_1 ’ , lm_1 ) ,
( ’ lm_2 ’ , lm_2 ) ,
( ’mux ’ , mux) , ]

connect ions = {
’ s c a l e r ’ : { ’X ’ : ’X ’ } ,
’ c l a s s i f i e r ’ : { ’X ’ : ’ s c a l e r ’ } ,
’demux ’ : { ’X ’ : ’ s c a l e r ’ , ’ y ’ : ’ y ’ , . . .
’ s e l e c t i o n ’ : ’ c l a s s i f i e r ’ } ,
’ lm_0 ’ : { ’X ’ : ( ’demux ’ , ’ X_0 ’ ) , ’ y ’ : ( ’demux ’ , ’ y_0 ’ ) } ,
’ lm_1 ’ : { ’X ’ : ( ’demux ’ , ’ X_1 ’ ) , ’ y ’ : ( ’demux ’ , ’ y_1 ’ ) } ,
’ lm_2 ’ : { ’X ’ : ( ’demux ’ , ’ X_2 ’ ) , ’ y ’ : ( ’demux ’ , ’ y_2 ’ ) } ,
’mux ’ : { ’ 0 ’ : ’ lm_0 ’ , ’ 1 ’ : ’ lm_1 ’ , ’ 2 ’ : ’ lm_2 ’ , . . .
’ s e l e c t i o n ’ : ’ c l a s s i f i e r ’ } ,
}

pgraph = PipeGraphRegressor ( s teps=steps , . . .
f i t _ c o n n e c t i o n s =connect ions )
pgraph . f i t (X , y )
y_pred = pgraph . p r e d i c t (X)
p l t . s c a t t e r (X , y )
p l t . s c a t t e r (X , y_pred )
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