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Featured Application: The obtainment of a methodology for maximizing the social distancing
by increasing the distance among the school desks in the classrooms during the coronavirus
pandemic through a Genetic Algorithm optimization.

Abstract: The COVID-19 pandemic has supposed a challenge for education. The school closures
during the initial coronavirus outbreak for reducing the infections have promoted negative effects
on children, such as the interruption of their normal social relationships or their necessary physical
activity. Thus, most of the countries worldwide have considered as a priority the reopening of schools
but imposing some rules for keeping safe places for the school lessons such as social distancing,
wearing facemasks, hydroalcoholic gels or reducing the capacity in the indoor rooms. In Spain, the
government has fixed a minimum distance of 1.5 m among the students’ desks for preserving the
social distancing and schools have followed orthogonal and triangular mesh patterns for achieving
valid table dispositions that meet the requirements. However, these patterns may not attain the best
results for maximizing the distances among the tables. Therefore, in this paper, we introduce for the
first time in the authors’ best knowledge a Genetic Algorithm (GA) for optimizing the disposition
of the tables at schools during the coronavirus pandemic. We apply this GA in two real-application
scenarios in which we find table dispositions that increase the distances among the tables by 19.33%
and 10%, respectively, with regards to regular government patterns in these classrooms, thus fulfilling
the main objectives of the paper.

Keywords: COVID-19; table distribution optimization; table location problem; Genetic Algorithms;
genetic operators

1. Introduction

COVID-19 was declared a pandemic public health menace on 11 March 2020, by the World Health
Organization (WHO) [1]. This supposed the assumption of this severe acute respiratory syndrome
(SARS-CoV-2) as a challenge for humanity to deal with a virus with the potential to condition our
normal coexistence. In this pandemic, more than 190 countries have been affected by this outbreak
and more than 1.23 M deaths have been cumulated globally according to the John Hopkins University
as of 5 November 2020 [2].

People with COVID-19 commonly show fever, cough, musculoskeletal symptoms, gastrointestinal
symptoms, dyspnea or anosmia/dysgeusia even causing, in the most severe infections, death [3–5].
These symptoms can even persist months after overcoming the infection and present novel evidence
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such as hair loss or cutaneous spots [6]. These symptomatic patients have been treated in hospitals or
isolated at home with their close contacts in order to control the propagation of COVID-19 [7]. However,
the challenge arises in the asymptomatic coronavirus patients not diagnosed, which propagate the
virus without restricting their mobility [8]. Even the symptomatic patients have an initial asymptomatic
phase since alveolar macrophages, which are likely the first immune cells to encounter SARS-CoV-2
during the infection, are incapable of sensing the virus in the first stages [9].

As a consequence, countries around the world have opted for severe lockdowns, frontier
restrictions or contact tracing for controlling the virus propagation [10] but causing severe impacts on
the economy [11] or other different health problems such as mental health or sleep disturbances [12,13].

In this context, education has been severely affected by the effects of the lockdowns that have
forced new educational models in which online learning has taken special relevance [14]. These efforts
have partially mitigated the school closure and home confinement. However, especially for young
children, traditional evidence of studies performed during school holidays have shown that children
during these periods are physically less active, modify their sleep patterns, increment their screen time
or follow less favorable diets [15]. These effects have been even more pronounced during this outbreak
due to the impossibility of the children of socializing with their classmates or playing outside their
homes [16].

Therefore, the reopening of schools has been a priority for many governments worldwide [17].
Furthermore, schools are called to remain open during the second national lockdowns in some countries
such as France, the United Kingdom, Germany and Italy [18]. However, there are some studies that
argue that a strict control on precautionary measures must be done in order to control possible
COVID-19 outbreaks at school [19]. Therefore, several restrictions and rules have been imposed for
preserving the safe return to school such as the imposition of social distancing, wearing facemasks,
reducing the students in the classrooms or hydroalcoholic gels for hand cleaning in every classroom.

In Spain, schools reopened in September facing all these measures described and fixing a social
distancing of 1.5 m for reducing the exposition of the children to the virus in the school centers. This led
to reorganizing the student desks for guaranteeing the social distancing inside the classrooms.

However, this is a complex problem to be addressed, which forces the reduction of the number
of students in traditional classrooms. Many schools tried to find the most appropriate distribution
of the tables for fulfilling the government social distancing requirements but they found problems in
particularly irregular classrooms where regular patterns in the table disposition (i.e., rectangular or
zig-zag grids) do not reach the best achievable results. Even, the beneficial effect of the social distancing
for reducing the contagion probability in the COVID-19 pandemic [20] recommends the finding of the
table organization that maximizes the distance among the student desks even in classrooms in which
the attainment of a valid table disposition can be more easily found.

However, the finding of the optimal table disposition is a combinatorial problem, which is similar
to the technological Node Location Problem (NLP) [21], which has been assigned as NP-Hard [22,23].
Therefore, a heuristic solution to this problem is recommended. Simulated annealing [24], the firefly
algorithm [25] or the elephant herding optimization [26] have been traditionally used for the NLP even
though Genetic Algorithms (GA) [27–29] and memetic algorithms [30] are the most recommended
for this problem for their trade-off among diversification and intensification of the space of solutions,
which is essential for finding optimal results.

As a consequence, in this paper, we propose for the first time, in the authors’ best knowledge a GA
optimization for the Table Location Problem (TLP) for finding optimal table dispositions at school that
maximizes the distance among the student desks for increasing the social distancing in the classrooms
thus reducing the children exposure to COVID-19 in their daily lessons.

The remainder of the paper is organized as follows: we analyze the TLP and its similarities to the
NLP together with a complexity analysis in Section 2, the problem definition and the real scenarios
in which we applied our algorithm are described in Section 3, the GA for the TLP is introduced in
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Section 4, the results achieved are presented in Section 5, Section 6 presents the discussion for the TLP
and we conclude the manuscript in Section 7.

2. Analysis and Complexity Studies on the Table Location Problem

The TLP entails the definition of the two-dimensional Cartesian coordinates for the location of
each student in the classroom. This supposes the associated table distribution in the plane for ensuring
the follow-up of the classroom keeping the necessary social distancing by reducing the probability for
the students of being infected from the coronavirus during the pandemic.

Therefore, the TLP is a combinatorial problem in which the number of possible table distributions
(P) is factorial [30]:

P (Table Distributions) =

[
ns−1

∏
i=0

(nPLT − i)

]
(1)

where nPLT is the number of possible locations where a table can be located in the optimization process
and ns the number of students.

This analysis shows the dimensions of the space of solutions in which the size is incremented
when considering a larger number of students and when a larger number of possible table locations
is defined.

Since the number of students is commonly predetermined, an adequate selection of the nPLT
must be performed in order to achieve optimal results. This number should be, on the one hand,
high enough for granting sufficient resolution in the table location and on the other hand, reduced for
performing time-effective optimizations [29]. In this paper, we have proved different configurations
selecting the final hyperparameter based on the achievement of slight modifications in the principal
statistical variables when reducing the spatial resolution.

Each one of these considerations makes the TLP factorial in complexity [31] and very similar to
the technological NLP, which has been assigned as NP-Hard [22,23]. As a consequence, the finding of
an optimal solution for the TLP recommends a heuristic approach similarly to the NLP and can also be
categorized as NP-Hard.

Many different metaheuristics have been used for the NLP, which could be applied to the TLP
such as simulated annealing [24], the firefly algorithm [25], the elephant herding optimization [26],
the dolphin swarm [32], the bat algorithm [33], the grey wolf optimization [34], the bacterial foraging
algorithm [35] or diversified local search [36]. However, GA have been the most extended in the
literature [27–29,37] since they provide an optimal balance between diversification and intensification
of the space of solutions for the NLP [38]. In addition, their flexibility and adaptation to any problem
makes the GA the best candidate to address the TLP.

3. Problem Definition and Scenario of Application

A mathematical characterization of this problem is required for correctly defining the methods
followed for its solution. In this section, we define the problem and the characteristics of the real-world
scenarios in which we perform the table localization optimizations.

3.1. Problem Definition

Let 〈ti〉 = 〈xi, yi〉 be the spatial coordinates of the table i considered during the optimization
process, ns the number of students in the classroom and consequently the number of tables to be located,
T the set including every possible combination of tables in the classroom, Ti a subset containing a
possible disposition of the tables in the classroom, Tj the subset containing every possible combination
of T except Ti, fTi (ti) the evaluation of the quality of the location of the table i belonging to the set Ti,
the TLP is defined as finding the optimal Ti fulfilling the following relation:
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(Ti = (〈t1〉, . . . , 〈tns〉)) ⊂ T :

{
∑ns

i=1 fTi (ti)

ns
≥ max

(
∑ns

i=1 fTj(ti)

ns

)}
(2)

Consequently, the TLP is defined as the finding of the optimal table disposition in the classroom
for maximizing a fitness function of which the main purpose is the maximization of the distances
among tables but preserving the legislation of each country, which restricts the table disposition to
having a minimum required distance among every table.

3.2. Scenario of Application

The TLP is a real-application problem that has been addressed in collaboration with the Marist
Brothers School San José in the city of León, Spain. The government of the autonomous country of
Castilla and León has promoted the disposition of the students in two kinds of grids for addressing
the TLP (i.e., a rectangular and a zig-zag grid) in order to satisfy the 1.5 m separation defined by the
Spanish legislation. However, this kind of table disposition is suboptimal and the regular patterns do
not necessarily obtain the best results in this type of combinatorial problem [39] since better results can
be achieved by using metaheuristics for solving this complex problem.

Therefore, we have analyzed two different classrooms of this school (i.e., Class A and Class B)
with different characteristics, which forces different optimization goals. The first class consists of 16
tables while the second scenario needs to allocate 21 students, although the first scenario is smaller, its
student density is considerably lower than the second class. Therefore, the Class A scenario is less
restrictive than the second classroom in respect to the 1.5 minimum separation protocol.

In order to model these classes and the table allocation area, we have defined three different
regions for each class. The first area, the bigger one, represents the class limits, both classes were
approximately rectangular; thus, both scenarios are considered to be of such shape.

The second area is defined as the Table Location Environment (TLE) and it is the region within
the class limits where the tables can be positioned. For this optimization, the positions of the tables
are referenced from the students coordinates; thus, each point of the TLE is a possible location for a
student. Therefore, a series of table measurements, shown in Table 1, have been considered in order to
properly define the TLE region.

Table 1. List of parameters measured from the studied classrooms, implemented into the scenario
modeling and table distribution optimization.

Parameters Values

Table Length 69.5 cm
Table Width 49.5 cm
Student Space Radius 10 cm
Distance from Student to Table 20 cm

Moreover, although major obstacles of the classrooms were considered into the TLE limit
definition, some prohibited areas remained inside the TLE region, thus the codification of these areas is
required. The third region in the scenario is the prohibited areas or obstacles, which are defined as areas
where a student cannot be allocated. In the simulations presented in this paper, we have displayed
the limits of these obstacles with respect to the student’s table for visual clarification. Thus, in the
following figures, neither the student nor the table can be positioned inside these obstacle regions.

As for the original student distribution, the first class, shown in Figure 1a, displays an orthogonal
mesh distribution of tables, with this scenario being less restrictive in terms of student allocation.
On the other hand, Class B, shown in Figure 1b, requires a greater density of students, thus utilizing a
triangular mesh distribution, which generally produces more efficient results in the table optimization.

Figure 2a,b shows the classroom models used in this study.
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(a) Class A (b) Class B

Figure 1. Picture of both classrooms from the Marist Brothers School San José, used for the scenario
modeling and optimization in this paper.

(a) Class A Model (b) Class B Model

Figure 2. Models for the two classrooms under study, Class A (a) deployed an orthogonal mesh
distribution while Class B (b) displayed a triangular mesh table allocation.

4. Genetic Algorithm Optimization for the TLP

Genetic Algorithms have proven to be among other metaheuristic techniques an excellent trade-off
between diversification and intensification of the space of solutions in the optimization procedure.
GA were initially proposed by Holland [40] and refined by Goldberg [41] afterward. These algorithms
are based on the theory of evolution and rely on the fitness adaptation of a population of individuals
to the problem specific scenario.

These individuals contain the problem’s distinct variables, from which the solution is dependent
of. Through the optimization, our population is exposed to a certain pressure selection, so that the
most adapted individuals prevail and pass out their remarkable genes to the following generation
of individuals. This cycle of evolution, carried out through a sufficient amount of iterations, may
achieve a state where an individual or a group of individuals contains an optimal enough solution to
the problem, thus concluding the optimization.
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In the following section we discuss the codification and implementation of the GA proposed for
the TLP.

4.1. Codification of the Individuals

The population of a GA must be coded in a way so that it contains all the essential information for
the optimization procedure. For this particular case, the main variable of the optimization is the spatial
distribution of the tables among the specified region (i.e., the coordinates of each table). Therefore, each
individual of the population contains a particular table distribution, carrying the coordinates of each
table along the TLE.

Figure 3 shows the codification scheme followed in this paper, executed in the Python
programming language, where we create a population list composed of n individuals. Each individual
represents a distinct table distribution, carrying i lists for coordinates of each specified table.
Every table array carries the two spatial coordinates required for the table positioning, both coded into
binary arrays.

Figure 3. Binary codification of the population in the Genetic Algorithm (GA) proposed for the Table
Location Problem (TLP).

The binary codification is particularly useful when undergoing the genetic operators, such as
crossover or mutation. Moreover, the binary structure grants a superior degree of flexibility when
facing irregular scenarios, through the application of a binary scaling [29].

4.2. Evaluation of the Individuals

Once the population is coded and generated, the next step in the GA structure is to determine the
value of each individual, through a specially designed fitness function.

For our particular case of study, the objective of the optimization is the distributions of the
student’s tables in a way so that a minimum separation of 1.5 m is obtained, thus fulfilling the Spanish
legislation. However, it is desirable in multiple ways for the distance between each pair of tables to
be maximized, thus reducing contagion probability and increasing student and professor mobility
through the class. Hence, the fitness function proposed must guarantee the minimum separation
among every table while also seeking to enhance even beyond the 1.5 m separation distance.

Although it is possible to compute both elements of the optimization simultaneously
(i.e., 1.5 minimum separation and mean distance maximization), we have concluded that it is more
fruitful to implement a two-step fitness function evaluation that foremost aims to guarantee the safety
distance, being this an imperative requisite for the optimization. Once the 1.5 has been obtained,
the second phase of the fitness function takes place, seeking to optimize the mean distance between
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tables. This is similar to the process of predefining an initial population of the GA not randomized
containing optimal potential solutions in particularly difficult evolutionary optimization scenarios [42].

For the first phase of the evaluation, we have considered the severity of the 1.5 m infraction
into the evaluation of the individuals. In GA optimizations, it is crucial to preserve the convergence
through the generations to the final solution. By introducing some progression into the evaluation,
even though the individuals may not have achieved the minimum separation, we assure a rewarding
mechanism for those individuals that represent a more scattered distribution.

Therefore, the following fitness function equations have been implemented for the first phase of
the evaluation:

f fStep1
= 1.5l − Pend − Penobs (3)

Pend =
L−1

∑
i=0

[
L−1

∑
j=0

(√(
xi − xj

)2
+
(
yi − yj

)2
)]

; ∀i, j :
(√(

xi − xj
)2

+
(
yi − yj

)2
< 1.5

)
; i 6= j (4)

where Pend is the sum of all the distances between pairs of tables that are under 1.5 m; l is the number
of distances that satisfy this statement; L is the number of tables and the number of distances previously
measured that are under 1.5 m; and Penobs is a penalization applied to those individuals in which
some of the tables have been located in a banned region, where Penobs values κ if a table is positioned
in a prohibited region and Penobs values 0; otherwise, κ is a stated hyperparameter.

This fitness function evaluation may vary between [−1.5l ∏L−1
i=0 (L− 1), 0], being the first value

obtained when every table is positioned in the same coordinates, and 0 if all the tables maintain a
minimum separation of 1.5 m.

This progressing evaluation grants a steadier convergence of the population to a state where most
individuals respect the 1.5 m separation.

Once this evaluation has taken place, only if a certain individual or group of individuals have
achieved a value of 0, the evaluation proceeds to the following phase.

In this second phase we seek to optimize the mean distance between tables; thus, the following
fitness function is proposed:

f fStep2
= µ− λσ (5)

µ =
1

2L

L−1

∑
i=0

[
L−1

∑
j=0

(√(
xi − xj

)2
+
(
yi − yj

)2
)]

; ∀i, j :
(√(

xi − xj
)2

+
(
yi − yj

)2 ≤ ρ

)
; i 6= j (6)

σ =

√√√√ 1
2L

L−1

∑
i=0

[
L−1

∑
j=0

(√(
xi − xj

)2
+
(
yi − yj

)2 − µ

)2
]

;

∀i, j :
(√(

xi − xj
)2

+
(
yi − yj

)2 ≤ ρ

)
; i 6= j

(7)

where µ is the mean distance between pairs of tables; σ is the standard deviation of the distribution of
the distances; λ is a weight hyperparameter; and ρ is the hyperparameter that determines whether or
not a pair of tables is considered to be close to each other.

In this second phase of the fitness evaluation, we measure both the mean distance and the standard
deviation of the table distancing. The introduction of the standard deviation into the optimization aims
to obtain a more uniform table distribution. The uniformity of the table distancing plays a vital role in
the contagion probability, being undesirable the scenario where some tables are considerably closer
than the mean distance. Moreover, we have encountered experimentally that this scenario (i.e., where a
reduced number of tables are rather separated from the rest while the rest are substantially close to each
other) to be particularly common in the different optimization stages. Therefore, the implementation
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of the standard deviation in our fitness evaluation addresses this phenomena by penalizing these
imbalanced distributions. Figure 4 shows the two-step fitness evaluation procedure proposed for
the TLP.

Figure 4. Flux diagram of the GA fitness evaluation proposed for the TLP.

Furthermore, the main goal in this paper is to obtain a table distribution that minimizes the
COVID-19 contagion probability, thus, maximizing the separation for every pair of tables is crucial.
The implementation of the mean distance between tables as the primary value estimator results in the
introduction of the selection pressure required for the GA convergence to the desired solution.

4.3. Selection and Elitism

The selection operator aims to arrange the individuals of the population in a way that enhances
the optimization performance. This criterion is based on the fitness value given by the fitness function
of each individual in the previous step.

However, we can encounter multiple selection methodologies throughout the literature.
These methodologies differ in the pressure selection that they introduce into the optimization.
GA optimization is mainly driven by two core aspects, the intensification and the diversification
of the solution [43].

The diversification phenomena introduce entropy into the optimization process, this randomness
slows the convergence to the final solution, allowing a greater exploration of the solution environment,
enhancing the quality of the solutions obtained.

On the other hand, the intensification boosts the convergence to a solution, thus directing the
genetic evolution to the optimal path in a reduced space of solutions [44].

The balance between these two factors is key in any GA optimization. An excessive approach
to intensification may conclude in premature convergence of the problem into a local maximum due
to the lack of exploration, while a heavy intensification focus may compromise the convergence to
any solution.

Moreover, this balance depends not only on the problem studied but also may differ from different
initial conditions or scenarios of applications. Therefore, we must study the performance of different
genetic operators for each particular case of study [45].

Thence, we will analyze the performance of the selection techniques of Tournament 2 (T2),
Tournament 3 (T3) and Roulette (R) selection, being these methodologies among the most expanded
selection techniques throughout the literature [46].
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Furthermore, in addition to the selection methodologies, we can introduce selection pressure
into the optimization through the use of elitism. This technique aims to preserve the better adapted
individuals throughout the generations, seeking to influence the optimization convergence into the
optimal path.

Therefore, through elitism we preserve a certain percentage of individuals along with omitting
those with a lesser fitness value [43]. The percentage used is another hyperparameter that needs to be
adjusted for each particular application. An excessive value may incur in a premature convergence
while an insufficient percentage may not achieve the desired results.

4.4. Crossover and Mutation

The crossover operator seeks to create the new generation of individuals, based on the genetic
characteristics of their predecessors. Being the pairing arrangement decided in the selection operator,
by combining parents with different genetic properties, it is possible for their offspring to better both
of their parents.

However, there coexist multiple crossover techniques, and likewise to the selection operators,
their performance depends on the characteristics of the problem’s scenario. Therefore, we must study
the behavior of multiple crossover methodologies in search of the most appropriate for every particular
problem [47].

Therefore, we analyze the implementation of the Single-Point crossover (SP), MultiPoint crossover
for 2 and 3 cross-points (MP2 and MP3, respectively) and Uniform crossover (U), being these techniques
among the most expanded methodologies throughout the literature [48].

Moreover, it is possible to introduce a higher degree of entropy into the optimization through
the application of mutation. In this operator, we randomly modify certain genes of a specific number
of individuals. The purpose of this alteration is to perform a further exploration of the solution
environment, since it is possible for a random mutation to induce a rather superior performance of the
individual, influencing the optimization direction [43,49].

This operator plays a key role in the GA optimization, and although its implementation might
appear less favorable, its adequate application allows the achievement of a greater solution in the
whole GA optimization.

However, it is vital to balance the degree of entropy generated, being an excessive amount of
mutation detrimental for the convergence; thus, we must study the appropriate amount for the desired
scenario of application [43,50].

4.5. Stop Criteria

Once the new generation is created, the iteration of the GA ends, giving way to the successor
generation to be evaluated in the following iteration. This cycle of evaluation, selection and crossover
continues throughout multiple iterations, until the stop criteria of the GA is fulfilled.

Heuristic methodologies like GA are frequently applied in optimization problems where the
optimal solution cannot be easily obtained. Furthermore, in these problems it is common that any
solution obtained cannot be verified to be optimal.

For this particular problem, although we can evaluate a certain distribution by measuring its
mean distance and verifying the 1.5 m separation accomplishment, we are unable to define if a
certain distribution of tables is optimal. Therefore, it is necessary to define a stop criterion in the
GA optimization.

In this paper, a double stop condition based on two logic parameters is proposed. Firstly, the GA
optimization shall stop if a certain percentage of the population is identical, thus concluding the
optimization when the algorithm has converged to a certain solution. In this state, any deviation from
this solution presents a lower fitness value than the previous value; however, this phenomena is not
limited to the optimal solution, being possible for this solution to be a local maximum [51].
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Secondly, the GA optimization shall also stop if a certain number of iterations have been completed.
The addition of this parameter is crucial in any GA optimization, since it is possible that the GA does
not achieve a convergence to any solution, thus entering the GA into an infinite loop.

5. Results

In this section, we present the results of the previously detailed GA in both classroom scenarios.
All algorithms were coded and executed in the Python software environment, performing every test
with an Intel(R) i7 2.4 GHz of CPU and 16 GB f RAM.

Previously, we have studied the significant impact of different genetic operators into the GA
global performance. Their effect on the balance between intensification and diversification of the
solution is key in order to obtain an adequate solution through the GA optimization.

Therefore, in order to obtain the most appropriate genetic operators for each particular scenario,
firstly, we must study the performance of each individual combination of genetic operators through
multiple simulations. All simulations were executed with the following parameters, as shown in
Table 2.

Table 2. GA hyperparameters used for all simulations, the hyperparameter values were optimized and
adjusted experimentally. Elitism and Mutation values are provisional and require further adjustment.

GA Hyperparameters Class A Class B

Stop criteria 800 Generations
30% Population equal

Number of Individuals 200
Elitism 10%

Mutation 10%
ρ 2 m
κ 500 m

Number of Tables 16 21
TLP Points 4096 16,384

Number of Possible Combinations 6.09 × 1057 3.14 × 1088

Hence, in search of the optimal combination of genetic operators, we have analyzed the
performance of each possible individual combination among these functions, resulting in the
comparison shown in Table 3.

Table 3. Comparison of the fitness value obtained by the multiple selection and crossover genetic
operators previously proposed.

Crossover Operators
Tournament 2 Tournament 3 Roulette

Max Mean Max Mean Max Mean

Single point—Class A 1.648 1.553 1.602 1.264 1.515 1.169
Two-point—Class A 1.634 1.229 1.572 1.237 1.563 1.158
Three-point—Class A 1.652 1.57 1.646 1.579 1.638 1.545
Uniform—Class A 1.622 1.089 1.669 0.739 1.506 0.11

Single point—Class B −0.262 −4.76 1.681 −2.312 −1.296 −.611
Two-point—Class B 1.676 −0.628 −0.876 −2.017 1.675 −1.264
Three-point—Class B 1.677 −1.046 −0.482 −3.102 1.645 −2.04
Uniform—Class B −0.657 −2.961 −0.866 −4.204 −1.64 −4.59

Table 3 shows the difference in the optimization performance of the GA depending on the
combination of genetic operators selected and the scenario of application.

The first classroom presents a great opportunity for table location optimization; however,
the results of the optimization differs from each combination of selection and crossover techniques
utilized.
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The second scenario is far more restrictive than the previous one, and in some combinations,
the GA did not achieve a valid solution, proving the importance of testing the performance of
multiple operators.

For both scenarios, the roulette selection and the uniform crossover showed inferior performance
than the other studied techniques. Generally, R. selection and U. crossover are particularly heavy
focused techniques on intensification and diversification, respectively, thus their introduction to this
problem may result inadequate.

On the other hand, from the other combinations, tournament-2 with three-point crossover
(T2-MP3) and two-point crossover (T2-MP2) showed satisfying results for the first and second scenario
analyzed, respectively. These combinations of selection and crossover methodologies exhibiting an
adequate balance between diversification and intensification in the maximum and mean fitness values
obtained throughout the simulations.

Furthermore, once we selected both methodologies, we evaluated the most advantageous elitism
and mutation values for each scenario of application, as shown in Table 4.

Table 4. Adjustment of the most rewarding elitism and mutation values for each particular scenario,
for the methodologies selected. Values were obtained experimentally.

Scenario Methodology Elitism Mutation

Class A T2-MP3 15% 12.5%
Class B T2-MP2 7.5% 7.5%

The resulting configurations of the GA proposed in Table 4, executed for both scenarios obtaining
the following table distribution, as shown in Figure 5. The evolution of the algorithms and convergence
to the final solution is also shown in Figure 6.

(a) Class A Optimization (b) Class B Optimization

Figure 5. Table distributions obtained for each scenario. The application of each optimization is based
on the configuration proposed in Table 4.
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Figure 6. Evolution of the GA optimization for both scenarios and convergence to the final solution.
Class B requires additional generations to obtain an adequate solution, due to the restrictive limitations
of the scenario. The rapid increase in fitness value for both functions when surpassing the 0 axis is due
to the change in the fitness evaluation technique.

These resulting distributions obtained by the GA in both scenarios thrive at optimizing the
available space, achieving a mean separation, shown in Table 5, unreachable for regular meshes.

Furthermore, due to the introduction of the standard deviation into the fitness evaluation,
the resulting distributions, although presenting irregular patterns, exhibit some degree of uniformity.
This fact proves essential when minimizing Covid-19 contagion in our scenarios.

Table 5. Comparison of the mean table separation achieved between the GA optimized distribution
and the initial mesh models.

Scenario GA Optimization Original Distribution Improvement

Class A 1.79 m 1.5 m 19.33%
Class B 1.65 m 1.5 m 10%

Results in Table 5 show an improvement up to 19.33% in the mean distance between tables from
the GA optimization. This statement proves the viability of these algorithms for any scenario of
application, also achieving a 10% increase in mean distance in the second, most restrictive scenario.

Moreover, the obtained distribution for the first scenario was later implemented into the
original classroom studied, proving the viability of this methodology, resulting in the distribution
shown in Figure 7.

Figure 7. Implementation of the optimized distribution into the original classroom.
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Therefore, the GA proposed in this paper successfully enhances the table distribution for multiple
scenarios with respect to the Covid-19 contagion probability, thus fulfilling the main objective of
this research.

6. Discussion

This paper presents a technological solution for the TLP in the schools during the COVID-19
pandemic. The distance achieved among the students’ desks allows the reduction of the probability of
contagion of this emerging infection, which collaborates with other rules such as wearing facemasks or
using hydroalcoholic gels for creating safe places for the children to follow their daily lessons.

Our approach addresses a novel problem, which is firstly introduced in this paper. The location
of the tables has been proved in the manuscript to be a combinatorial NP-Hard problem, which
recommends a heuristic solution to find acceptable results. The huge dimension of the space of
solutions dependent on the resolution of the TLE and the number of tables to be located introduces
difficulties during the optimization process, which requires the definition of a two-step optimization
procedure in which we first ensure a combination of the tables in a space that meets the government
1.5 m minimum separation among all the tables and we later expand this distance to minimize the
contagion risks in the classrooms.

We have implemented a GA optimization for this purpose due to the flexibility of adaptation
of this metaheuristic to different similar technological problems [27–29,37,52–54] and the trade-off
achieved between diversification and intensification of the space of solutions. The results obtained
in the manuscript have demonstrated the suitability of the application of metaheuristics to solve this
kind of problem that emerged during the pandemic, improving the government solutions proposed.

In our future works, we will extend the analysis of the TLP to other different metaheuristics
such as simulated annealing, diversified local search or the combination of the GA with a local search
procedure to explore improvements in the optimization results. Furthermore, we will consider novel
optimization scenarios such as the school canteen, restaurants, or pubs in which novel challenges
for the optimization can arise. Such as multi-objective optimization for different criteria leading to
algorithms such as NSGA-II, NSGA-III or MOEA.

7. Conclusions

The COVID-19 pandemic has supposed a challenge for humanity to deal with a virus that has
changed the normal coexistence. As a consequence, many restrictions have been imposed globally
for reducing the probability of contagion of a virus that can even cause, in the most severe cases,
death. Therefore, social distancing, wearing facemasks, hydroalcoholic gels for hand cleaning or
reducing the capacity allowed in indoor spaces have been some of the rules adopted for containing the
virus propagation.

Education has been one of the most affected sectors. Most of the countries decided to move to
online learning during the first lockdowns promoted for facing the emergency of the initial coronavirus
outbreak. This has complicated the normal learning of children, their social relationships and their
physical health activity. Consequently, most of the countries have considered the reopening of the
schools as a priority, even keeping the schools opened during the second coronavirus outbreak that it
is nowadays facing Europe. This has promoted the implementation of restrictions and rules at schools
for reducing the infectious potential of the virus.

One of them has consisted of smart dispositions of the tables in the classrooms for maintaining
the social distancing. In Spain, the government has fixed a minimum of 1.5 m among the students’
desks, which has led to reducing the number of children in each classroom and designing regular
patterns in the disposition of the tables such as orthogonal or triangular mesh configurations.

However, the problem of the disposition of the tables is NP-Hard and a metaheuristic solution
is recommended for obtaining improved results through irregular table disposition patterns that
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maximize the distances among the tables thus minimizing the probability of getting the coronavirus
at schools.

In this paper, we introduce for the first time to the authors’ best knowledge a Genetic Algorithm
optimization for the Table Location Problem for addressing the table disposition during the COVID-19
pandemic. We analyze the definition and complexity of the problem and we propose a methodology
for its resolution. This methodology is applied in two different real-application scenarios (i.e., Class A
and Class B) in which we prove the suitability of the optimization of the table disposition for obtaining
improved results. Results show that an increase of the mean distance among tables of 19.33% in Class
A and 10% in Class B can be attained following the proposed methodology thus fulfilling the main
objectives of this paper.
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