AVANCES
EN
CALIDAD AMBIENTAL

SEPARATA
El análisis del paisaje en los procesos de Evaluación de Impacto Ambiental. Aplicación de resultados a la cuenca visual

E. DE LUX1, I. PRIETO2, S. SUÁREZ-SEOANE1 y J. CORTIZO2

1Área de Ecología. Facultad de Ciencias Biológicas y Ambientales. Universidad de León 24071 León. E-mail: degelc@unileon.es

2Servicio de Cartografía. Vicerrectorado de Investigación. Universidad de León. 24071 León

Palabras clave: EIA paisaje, cuenca visual.

INTRODUCCIÓN

La estructura y composición del paisaje puede cambiar sensiblemente a lo largo del tiempo [1] debido en muchos casos a la acción humana. La actividad minera causa graves daños ambientales, desde modificaciones generales que inciden directamente en la calidad del paisaje, con inclusión de fuertes impactos visuales, hasta actuaciones más concretas sobre los procesos ecológicos, atmósfera, aguas, suelos, flora y fauna, los usos del suelo y los ruidos. Tanto la minería subterránea, con elevada profusión de escombreras, como la minería a cielo abierto, producen impactos ambientales negativos de distinta intensidad según se encuentren en su fase de investigación, creación de infraestructuras, explotación o abandono [2].

La creciente atención dedicada a los cambios en el paisaje, ha subrayado la necesidad de nuevos métodos para su cuantificación y modelización [3]. Los sistemas de información geográfica, de complejidad variable, han emergido como una herramienta útil para dirigir las investigaciones al nivel de paisaje, permitiendo validar hipótesis a grandes escalas espaciales [4]. Así mismo, los avances informáticos, las técnicas de análisis de datos, la teledetección y el desarrollo de modelos, han sido de gran importancia para la evolución de las metodologías cuantitativas de análisis del paisaje [3].

Por necesidades de cumplimiento normativo en las Evaluaciones de Impacto Ambiental es fundamental el análisis de la componente paisajística. Este trabajo se centra en el establecimiento de distintas formas de evaluación de impactos sobre el paisaje, tomando como referencia la cuenca visual. Partiendo de un análisis sencillo de determinación de la superficie de la cuenca visual de una actuación, se irá complementando con información relacionada con la sectorización del proyecto y el grado de influencia sobre la cuenca. En la última fase se establece una correlación con los niveles de calidad de las zonas afectadas y la transformación cuantitativa de los niveles de impacto.
ÁREA DE ESTUDIO

La subcuenca carbonífera Bierzo Occidental -Fabero- (6° 40' 51" W, 6° 30' 59" W, 42° 48' 42" N, 42° 42' 35" N) se encuentra situada en el cuadrante noroccidental de la Península Ibérica, en la provincia de León [5]. Su extensión total es 75.23 km², con altitud media de 921.39 m, comprendida entre 646 y 1221 m, lo que da una idea de lo accidentado del terreno. Contiene, al menos de manera parcial, 11 núcleos de población. La escombrera La Rubiona se sitúa muy próxima a la carretera entre Berlanga y Fabero. Se trata de una escombrera que está ardiendo desde hace varios años por lo que su impacto ambiental es superior al de otras explotaciones abandonadas.

La zona de estudio presenta un considerable grado de heterogeneidad estructural originado por la conjunción de elementos más o menos naturalizados y una importante influencia antrópica, siendo la actividad minera el principal agente perturbador. El paisaje se caracteriza por ser abierto y de mediana altitud. Posee una amplitud general de vistas, con grandes espacios de pequeña pendiente dedicados al uso agrícola y a praderas, con bosquetes que no forman masas continuas. Es un paisaje muy influenciado por la actividad humana, especialmente agrícola, alternando las tierras de labor intensiva de regadío con los pastos, el viñedo y los árboles frutales. En las laderas que cierran estos amplios valles, predominan los bosques más o menos degradados de melojo, encina y pinos de repoblación, así como matorral que altera con pastizales de diente. En este paisaje de cierta amplitud escénica, apariencia agradable y bien cuidada, el impacto de las escombreras y de las cortas a cielo abierto es notorio, creando manchas negruzcas o áreas descarnadas sobre la cubierta vegetal.

METODOLOGÍA

Se realizaron dos mapas paisajísticos de la subcuenca de Fabero, a escala 1: 25 000, para los años 1990 y 1999. El mapa del año 1990 se elaboró por fotointerpretación a partir de la fotografía aérea pancromática a escala 1: 20 000 de ese mismo año, vuelo del MAPA y reposición cartográfica. El mapa de 1999 se realizó a partir de las imágenes de satélite IRS 5 m del año 1998, LANDSAT 30 m del año 1993, y sobre el terreno. Se utilizaron Arc Info (ESRI) e IDRISI 2002 [6]. Para la digitalización, se retintaron las unidades paisajísticas sobre la imagen de satélite IRS a escala 1: 25 000, escaneada y digitalizada.

![Diagrama de unidades de paisaje]

FIGURA 1. Unidades de paisaje definidas en la subcuenca carbonífera de Fabero
en pantalla con Arc Info 7.12. La rasterización se llevó a cabo con el programa IDRISI 2002 [6] a una resolución espacial de 625 m²/pixel. Las diez unidades paisajísticas identificadas en la subcuenca de Fabero para el año 1999 se basan en la vegetación actual y los usos antópicos del territorio (Fig. 1).

El análisis de visibilidad se realizó tomando como referencia un cuadrado envolvente situado en el entorno de la Gran Corta (la mancha de mayor tamaño presente en la subcuenca de Fabero) que cubre un total de 29 295 ha (315 por 372 celdas de 50 m de lado) y cuya altitud oscila entre los 557 y los 1 497 m (altura media de 894.7 m y desviación típica de 156.3). La escombrera La Rubiona, situada en la zona sudoeste de la explotación ocupa una superficie de 8.5 ha.

La cuenca visual de un punto se define como la zona desde la que es visible ese punto [7]. Para la elaboración de las cuencas visuales a las escalas de análisis citadas arriba, se aplicó un cálculo de visibilidad a un modelo topográfico digital de resolución 50 m. Sobre el mapa se superpuso una malla de puntos separados entre sí 50 m. Desde cada pixel del modelo topográfico se aplicó un algoritmo que permitió conocer cuántos puntos correspondientes a la «unidad minería» pueden ser físicamente visibles en función de sus altitudes. Con el objeto de evitar el error que supondría la pérdida de visibilidad causada por la vegetación, se aplicó una corrección estandarizada de 1 m. El número de veces que cada pixel es visto desde cada punto de observación se va almacenando en la memoria. El resultado es un mapa donde se representan distintas categorías establecidas en función de la visibilidad del elemento paisajístico en cuestión, que indican el porcentaje de puntos con minería físicamente visibles desde cada punto del mapa situados con una resolución de 50 m.

Tras analizar la superficie total (y por categorías de visibilidad) de la cuenca visual para los dos impactos considerados para 1999 (Gran Corta y escombrera), se calculó para la escombrera el nivel de intervisibilidad en función de la relación de alturas entre el impacto y los puntos de observación. El siguiente análisis trata de evaluar el resultado de la unión y la intersección de impactos para una misma fecha. Finalmente, se elaboró un índice de ponderación de la calidad visual y ambiental del paisaje de toda la subcuenca de Fabero en 1999. Para ello, se agruparon las unidades paisajísticas (ver Fig. 1) en cuatro categorías en función del grado de naturalidad de su vegetación y de su calidad ambiental, obteniéndose:

| 0 - Minería, suelo descubierto | Calidad ambiental |
| 1 - Pueblos, cultivos |
| 2 - Matorral, pinar, castaño |
| 3 - Encinar, melojar, fondos de valle |

La visibilidad de la unidad minera en el territorio también se clasificó en cuatro categorías:

| 0 - Impacto visible mayor del 50% |
| 1 - Impacto visible de 25-50% |
| 2 - Impacto visible de 1-25% |
| 3 - Impacto no visible |

Resultados y discusión

En 1990, la zona de explotación incluida en la zona de estudio, estaba fragmentada en diversos frentes de extracción, ocupando una superficie de 517.3 ha (Tabla I y Fig. 2a). En
1999, la superficie de la explotación alcanzó las 1 204.5 ha, es decir se incrementó en un 132.8%, uniéndose varios de sus frentes en una gran mancha: la Gran Corta (Fig. 2b). En 1990 sólo se aprecian los dos rangos de visibilidad inferiores al 50%, dominando el de menor impacto visual, aunque llega a afectar a casi una tercera parte de la superficie de estudio considerada. En 1999, al incrementarse la superficie de explotación, aparecen dos nuevas categorías con mayor visibilidad de las explotaciones mineras, y por lo tanto, menor calidad visual. El rango de menor visibilidad casi permanece invariable, pero el impacto total llega a afectar a casi la mitad de la superficie de estudio. Los rangos superiores al 50% de visibilidad alcanzan el 5.5% de la manifestación paisajística de la zona, fundamentalmente localizados en las zonas altas del oeste.

En la Tabla II se presenta la superficie total y por categorías de la cuenca visual de la escombrera La Rubiona, aplicándose en este caso, además de la caracterización por niveles de visibilidad, otra complementaria según el rango de altitud, en función de la posición de los puntos de observación con respecto a la mancha ocupada por la escombrera.
La escombrera ocupa 8.5 ha, con una inclinación bastante pronunciada entre las cotas comprendidas entre los 862 y 973 m y orientación dominante hacia el sur y sureste. El impacto dominante por visibilidad (1 414 ha) se corresponde, en este caso, con el rango superior al 75%, y aunque llega a ser superior al doble de otras categorías en cuanto a las superficies afectadas, no hay una gran diferencia en su expresión relativa para la zona de estudio. El impacto global en el paisaje alcanza las 3 750 ha.

| TABLA I. Superficies y rangos de visibilidad de la cuenca visual de la Gran Corta |
|----------------------------------|------------------|------------------|
| | 1990 | 1999 |
| | Superficie (ha) | % | Superficie (ha) | % |
| **EXPLOTACIÓN** | | |
| Visible <25 % | 517.3 | 1.8 | 1204.5 | 4.1 |
| Visible 25-50 % | 9 510.5 | 32.5 | 9 575.0 | 32.7 |
| Visible 50-75 % | 1 640.3 | 5.6 | 2 298.0 | 7.8 |
| Visible >75 % | 0.0 | 0.0 | 1 178.5 | 4.0 |
| TOTAL | 11 150.8 | 38.1 | 13 495.0 | 46.0 |

En relación a la posición relativa de la interacción de intervisibilidad (Fig. 2c), el mayor impacto visual (8.4%) se obtiene cuando el observador se sitúa por debajo de 861 m (cota menor de la escombrera), mientras que en la posición de dominancia (cotas superiores a 973 m) afecta tan solo al 1.6 % de la superficie de estudio.

<table>
<thead>
<tr>
<th>TABLA II. Superficie y caracterización de la cuenca visual de La Rubiona según niveles de visibilidad y rangos de altitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUENCA VISUAL ESCOMBRERA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>EXPLOTACIÓN</td>
</tr>
<tr>
<td>Visible <25 %</td>
</tr>
<tr>
<td>Visible 25-50 %</td>
</tr>
<tr>
<td>Visible 50-75 %</td>
</tr>
<tr>
<td>Visible >75 %</td>
</tr>
<tr>
<td>Desde abajo</td>
</tr>
<tr>
<td>Al mismo nivel</td>
</tr>
<tr>
<td>Desde arriba</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
<tr>
<td>Superficie (ha) %</td>
</tr>
<tr>
<td>8.5</td>
</tr>
<tr>
<td>601.0</td>
</tr>
<tr>
<td>1 120.8</td>
</tr>
<tr>
<td>614.5</td>
</tr>
<tr>
<td>1 414.0</td>
</tr>
<tr>
<td>2 465.8</td>
</tr>
<tr>
<td>820.3</td>
</tr>
<tr>
<td>464.3</td>
</tr>
<tr>
<td>3 750.3</td>
</tr>
</tbody>
</table>

Los impactos paisajísticos no se manifiestan de forma aislada e independiente, por lo que en la práctica será necesario evaluar el efecto conjunto. En este caso se ha considerado para un mismo año los impactos sumados de la Gran Corta y de la escombrera La Rubiona (Fig. 2d), obteniéndose la cuenca visual para ambas explotaciones mineras. Se pueden aplicar en este caso los mismos criterios de ponderación en función del porcentaje de visibilidad desde cualquiera de ellas, pero resulta mucho más importante conocer
la superficie de superposición de ambos impactos, es decir, la mancha de puntos desde la cual son visibles ambas explotaciones mineras (Fig. 2e), ya que para esta zona sería necesario ponderar el efecto negativo que supone tal incidencia. Concretamente en este ejemplo, sin considerar rangos de visibilidad, la zona doblemente afectada paisajísticamente alcanza el 7.7% de la zona de estudio (2 260.5 ha).

Finalmente se puede calcular la calidad paisajística, en función de la calidad ambiental intrínseca de la unidad de paisaje desde la que puede ubicarse cualquier punto de observación, y la calidad visual definida por la cuenca visual del mismo punto. La matriz resultante del cruce de esa información para la zona específicamente explorada (subcuenca carbonífera de Fabero) puede aportar los resultados por superficies de cada clase y su valor ponderal, resultante de multiplicar cada superficie por la suma de los coeficientes de calidad ambiental y visual (Tabla III).

<table>
<thead>
<tr>
<th>CALIDAD AMBIENTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>población</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>165.8</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>752.5</td>
</tr>
<tr>
<td>CALIDAD</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>752,5</td>
</tr>
<tr>
<td>VISUAL</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>537.8</td>
</tr>
<tr>
<td>1,147.6</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>201.5</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Las unidades de paisaje con mejor calidad ambiental y sin visibilidad de actividades mineras (196,3 ha) se sitúan en la esquina inferior derecha de la matriz, y las de peor calidad ambiental y visual en la esquina superior izquierda (165,8 ha). Las categorías de mayor extensión absoluta se corresponden con las unidades de mejor calidad ambiental pero de baja calidad visual. Cuando se considera el valor ponderado, las dos clases de mejor calidad ambiental son dominantes en cualquiera de los niveles de calidad visual, con excepción de la clase de nula calidad ambiental y visibilidad del impacto entre 1 y 25%. La categoría de calidad ambiental 1, que se corresponde con las unidades de paisaje de núcleos de población y cultivos, no disfrutan de los valores más altos de calidad visual y, sin embargo, la clase con mayor extensión es precisamente la de calidad visual nula.

BIBLIOGRAFÍA

[5] Luis Calabuig, E. (dir.) (1999), Recuperación ambiental de zonas afectadas por escombreras y minería a cielo abierto, UGT Castilla y León, Fondo Social Europeo.
