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Scaling of species distribution models across spatial resolutions and 
extents along a biogeographic gradient. The case of the Iberian mole 
Talpa occidentalis

Susana Suárez-Seoane, Emilio Virgós, Olga Terroba, Xosé Pardavila and Jose M. Barea-Azcón

S. Suárez-Seoane (s.seoane@unileon.es), Área de Ecología, Depto de Biodiversidad y Gestión Ambiental, Facultad de Ciencias Biológicas y 
Ambientales, Univ. de León, Campus de Vegazana s/n, ES-24071 León (León), Spain. – E. Virgós, O. Terroba, X. Pardavila and J. M. Barea-Azcón, 
ESCET, Depto de Biología y Geología, Univ. Rey Juan Carlos, C/Tulipán s/n, ES-28933 Móstoles (Madrid), Spain.

Scaling is a key process in modelling approaches since it allows for translating information from one scale to another. 
However, the success of this procedure may depend on ‘source’ and ‘target’ scales, but also on the biogeographic/ecological 
context of the study area. We aimed to quantify how performance and scaling of species distribution models (SDMs) varied 
across spatial resolution and extent along a biogeographic gradient using the Iberian mole as study case. We ran separate 
MaxEnt models at two extents (national and regional) using independent datasets (species locations and environmental 
predictors) collected at 10 km and 50 m resolutions respectively. Model performance and success of scaling SDMs were 
quantified on the basis of accuracy measures and spatial predictions. Complementarily, we calculated marginality and 
tolerance as indicators of habitat availability and niche truncation along the biogeographic gradient. Model performance 
increased with resolution and extent, as well as from North to South (mainly for high resolution models). When regional 
models were validated at different scales, their performance reduced severely, particularly in the case of coarse resolution 
models (some of them performed worse than random). However, when the 10 km-national model was downscaled within 
regions, it performed better (AUCtest: 0.82, 0.85 and 0.55 respectively for Galicia, Madrid and Granada) than models 
specifically calibrated within each region at 10 km (0.47, 0.65, 0.44). Indeed, it also had a better accuracy when projected 
at 50m (0.77, 0.91, 0.79) than models fitted at that resolution (0.62, 0.83, 0.96) in two of the three cases. The success of 
scaling model predictions decreased along the biogeographic gradient, being these differences associated to niche trunca-
tion. Models representing non-truncated niches were more successfully scaled across resolutions and extents (particularly 
in areas not offering all possible habitats for species), which has important implications for SDM applications.

During the last decade, species distribution models (SDMs) 
have been widely developed in ecology and biogeography 
(Guisan and Zimmerman 2000, Scott et al. 2002, Rushton 
et al. 2004, Elith et al. 2006, Franklin and Miller 2009). They 
are valuable tools for predicting species occurrence on the 
basis of the relationship between species locations and envi-
ronmental features. Although still with a certain degree of 
uncertainty (Austin 2002, Guisan and Thuiller 2005, Araújo 
and Guisan 2006, Peterson 2006, Hirzel and Le Lay 2008), 
SDMs can be interpreted within the theoretical framework 
of ecological niche theory (Chase and Liebold 2003). For 
example, Kearney (2006) considers that correlative models 
based on distribution data are non-suitable to define niche 
per se, which could only be achieved by mechanistic models. 
Nevertheless, other authors (Franklin and Miller 2009) spec-
ify that SDMs cannot measure the fundamental niche from 
distribution data but only the realized niche, with the excep-
tion of sink populations (Pulliam 2000). Most niche-based 
SDMs are set at a large scale (when distributional limits 

matter), encompassing the full species’ geographic range or 
a section of this range (Pearson and Dawson 2003). Usually, 
they are developed on the basis of the current species distri-
bution and a pool of abiotic variables describing the coarse-
scale environmental requirements which allow population 
growth and persist. These models are interpreted as defining 
the ‘Grinellian niche’ and contrasts with those characteriz-
ing the ‘Eltonian niche’, which are based on biotic interac-
tions and define the functional niche at more detailed scales 
(Soberon 2007). However, this scale-dependent differentia-
tion is probably misleading, because biotic and abiotic fac-
tors shape species distribution at all scales (Case et al. 2005, 
Morin and Lechowicz 2008, Soberón 2010).

Although the usefulness of SDMs has been demonstrated 
in many applications, there are still some methodological 
challenges that need to be addressed (Austin 2007). This is 
the case of scaling model predictions across spatial resolu-
tions and extents. Spatial resolution (grain) refers to the ‘size’ 
of each observation and extent (domain) defines the study 
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area where the model is used to extrapolate from data (Elith 
and Leathwick 2009, Franklin and Miller 2009). Scaling is a 
key process in modelling approaches since it allows for trans-
lating information from one scale to another (Wiens 1989, 
King 1991, Wu 2004, Melbourne and Chesson 2005). 
According to Lischke et al. (2007), this could be useful for: 
1) making compatible ecological data gathered at different 
scales; 2) translating model process from one scale to other; 
and 3) building predictions on scales not accessible for direct 
observation. Scaling can be done from small to large scales 
(up-scaling) or viceversa (down-scaling). Upscaling can help 
to understand complex ecological systems, as well as to iden-
tify source mechanisms relevant for target scale phenomena 
(Lischke et al. 2007, Marcer et al. 2012). Downscaling can 
be useful to analyze climate change effects on species distri-
bution shifts or to redefine conservation strategies at local 
scale from the assessment of large scale distribution atlases 
(Araújo et al. 2005, Keil et al. 2013). However, scaling can 
be a difficult and problematic process (Bugmann et al. 2000) 
since ecological systems are organized hierarchically (with 
many feedback processes across scales) and also because they 
are non-linear and spatially heterogeneous (as a consequence 
of spatial variations in climate, edaphic properties and dis-
turbances). On the top of these constraints, choices on the 
‘source’ and ‘target’ scales (Lischke et al. 2007) can also play 
a relevant role in the performance of scaling exercises. The 
selection of the ‘source’ scale generally depends on the avail-
able information more than on data adequacy for finding 
causal relationships (Araújo and Guisan 2006, Austin 2007). 
This fact is particularly problematic when the spatial resolu-
tion of the environmental variables does not match that of 
the species data (Boyce 2006, McPherson et al. 2006), as it 
may lead to erroneous predictions. Other limitation can be 
arisen from the fact that model predictions are scale-depen-
dent (Trivedi et  al. 2008), as the importance of predictors 
for species may vary with the resolution and extent of the 
analysis (Wiens 1995, Luoto et al. 2007, Menke et al. 2009). 
Up to recent times, it has been widely accepted that, at large 
scale, the major driver for species’ distribution was climate 
(Root 1988, Thuiller et al. 2005), while other abiotic (soils 
or micro-habitat) or biotic factors were more relevant predic-
tors at fine scale (Brown 1984, Wiens et al. 1987). However, 
species distribution is actually explained by a combination of 
abiotic and biotic predictors at all spatial scales (Case et al. 
2005). For example, Normand et  al. (2009), Meier et  al. 
(2011), Kissling et al. (2012) or Wisz et al. (2013), accord-
ing to the ‘stress gradient hypothesis’ (Menge and Sutherland 
1987) recognized that species ranges are frequently limited 
by abiotic constraints in scenarios of low resource availability 
or stress. However, under more suitable environmental con-
ditions, they seem to be outcompeted by other species of the 
same trophic level. This finding highlights the fact that biotic 
interactions can also shape the range of species at large scale. 
In spite of these questions, most modelling exercises consider 
fine scale abiotic features (e.g. roughness or habitat edge) as 
not very useful predictors at large spatial scales, where other 
abiotic factors could overcome their importance. As a con-
sequence, large scale models may have problems to predict 
suitable sites at small scales (when the importance of biotic 
interactions or vegetation type increases). Furthermore, the 
magnitude of all the above mentioned effects can vary along 

biogeographic gradients due to differences in both environ-
mental suitability and habitat availability for species. As a 
consequence, the ecological and biogeographic context of 
the study area could affect performance (Osborne and 
Suárez-Seoane 2002, Osborne et  al. 2007) and scaling of 
SDMs across spatial resolutions and extents. According to 
Brown et al. (1995), species would tend to be more abun-
dant and generalists in the ecological centre of their distribu-
tion, where they would find a higher availability of suitable 
habitats. In parallel, they would be rarer and more special-
ised towards the ecological boundaries, where they cope with 
a reduction on habitat availability (Holt and Keitt 2000), 
as well as on their fitness due to low habitat quality and 
extreme environmental conditions (Brown 1984, Hoffman 
and Blows 1994). Therefore, in ecologically marginal areas, 
species would find their niche truncated (Braunisch et  al. 
2008). Niche truncation challenge current practices of scal-
ing in SDM approaches because models developed over small 
extents can fail when extrapolated to larger extents (Austin 
2007), as most of the suitable habitats found at large extent 
are unavailable within smaller portions of this area (Pearson 
and Dawson 2003, Thuiller et al. 2004).

In this paper we aim to assess how the performance and 
success of scaling SDM predictions vary across spatial resolu-
tions and extents using the Iberian mole as study case. We 
expect to find variations in these model parameters along 
a biogeographic gradient, which be associated with differ-
ences in habitat availability (niche truncation) and spe-
cies responses. The particular questions to be explored are:  
1) how does model performance change across scales along 
the biogeographic gradient? We predict that SDMs will per-
form better at high spatial resolution and small extent, as 
well as in marginal than in core ecological areas, because the 
range of environmental conditions selected by the species 
will be narrower (Brotons et al. 2004, Hernández et al. 2006, 
Suárez-Seoane et al. 2008). 2) Do environmental responses 
of species vary across scales and within the biogeographic 
gradient? We hypothesize that the national model (large 
extent) will be mainly driven by climate, while regional 
models (small extent) should involve topography, vegetation 
or human disturbances. 3) Does the success of scaling model 
predictions across resolutions and extents changes along the 
biogeographic gradient? Because scaling is probably context-
dependent, we cannot predict any a priori response along 
the biogeographic gradient or among scales. 4) Could differ-
ences in performance and scaling of models among regions 
be associated with changes in habitat availability? In the core 
ecological area, the species should occupy a broader range  
of suitable habitats and, therefore, niche would be non- 
truncated. In ecologically marginal areas, niche would be 
truncated because habitat availability would decrease.

Methods

The Iberian mole as the study system

The Iberian mole Talpa occidentalis is an endemic species of 
the Iberian Peninsula (Loy 1999), where it is sympatric with 
its European counterpart, the common mole Talpa europaea 
(Kryštufek 1999). The Iberian species shows a wider 
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distribution, occupying the whole peninsular range, but 
the north-eastern corner, where only the common mole is 
present (Román 2007a, b). The Iberian mole is an IUCN 
Least Concern species (Fernandes and Herrero 2008) that 
may be found in a variety of temperate habitats, where soil is 
deep and moist all year-round, so long as it is not excessively 
stony, sandy or waterlogged. It prefers meadows, pastures and 
woodlands, as well as shrublands and rural gardens. In these 
habitats, moles find high availability of their preferred prey, 
earthworms (Funmilayo 1977, 1979, Niethammer 1990), 
but also good places for building their underground burrows 
(Macdonald et al. 1997). This species can be seen as a good 
study model to understand how aridity gradients constraint 
the distribution of temperate species in the Mediterranean 
region.

Setting the spatial scale of analysis and the 
biogeographic gradient

We defined two spatial scales with different resolution and 
extent: 1) a nationwide scale, covering the full Spanish 
range of the species, which was analysed at 10 km resolu-
tion, as constrained by the Spanish Atlas of Mammals. 2) 
A regional scale, including three areas located along a bio
geographic (latitudinal, from north to south) gradient 
driven by temperature and precipitation: Galicia, Madrid 
and Granada (Fig. 1). Galicia holds the most suitable habi-
tat and the highest mole abundance and, therefore, it can be 
considered as the core ecological area. Madrid and Granada 
support more extreme conditions for species survival and, 
then, both may be evaluated as ecologically marginal areas. 
All regions were mapped at 50 m resolution (i.e. pixel area 
was 2500 m2), since this value had a functional equiva-
lency to European mole home range (estimated in 2324 m2 
by Macdonald et  al. 1997), but also at 10 km resolution 
to assess model performance and scaling of models across 
resolutions.

Spanish topography, geology and climate are highly 
heterogeneous. Consequently, vegetation patterns are 
complex: from Atlantic Spain in the north and west, 
with extensive deciduous forests and rich grassy plains, 
to Mediterranean Spain in the south-east, with xero-
phytic scrublands and sparse woodlands. In Galicia, the 
north-westernmost region, annual average rainfall exceeds 
900 mm and mean temperature is 13°C. Landscape is a 
fine-gained mosaic made of forests, crops, meadows and 
pasturelands. In order to maximize the environmental dif-
ferences among study regions, we only considered those 
provinces with a typical Atlantic climate (A Coruña, Lugo 
and Pontevedra). Madrid lies in central Spain and holds 
a more diverse landscape, including xeric open habitats 
and deciduous woodlands. Winters are cold and sum-
mers are hot. Annual average precipitation is below 500 
mm and mean temperature is 14°C. Granada is located 
in the southeasternmost corner of the country. It supports 
extreme variations in landscape and climate, associated 
with a sharp altitudinal gradient. The climate is hot and 
dry in summer and cold in winter. Annual average rain-
fall is around 350 mm and mean temperature is 15°C. 
Landscape is dominated by dry and scattered scrublands.

Mole data collection

An independent set of species occurrence data was collected 
at each scale. At the national scale, we used the Spanish Atlas 
and Red Book of Mammals (Román 2007a), which was 
built on the basis of direct observations of molehills (Mead-
Briggs and Woods 1973, Edwards et al. 1999) for the period 
1970–2000. We extracted the central coordinates of each 
10  10 km square that was occupied by the species. Despite 
this coarse resolution, the relatively specialized mole habitat 
selection guarantees the suitability of the presences’ dataset 
for modelling exercises. Since some of the reported absences 
could be imprecise because of insufficient sampling effort, we 
assume that absences are a mixture of true absences and pseu-
do-absences. At regional scale, we conducted field sampling 
in autumn–winter (October–December) of 2006–2008. 
During these months, males are more detectable since they 
show a high peak of activity associated with the construc-
tion of subterranean nests, which is coincident with a second 
mating period (Jiménez et  al. 1990). Data were collected 
in 50  50 m plots, randomly located through each study  
area (196 in Galicia; 117 in Madrid and 114 in Granada). 
Plot size corresponds to the pixel size considered in further 
GIS analyses. Plots were walked by two-three people to 
exhaustively search for molehills or other signs of the pres-
ence (e.g. above-ground tunnels). Complementary we also 
extracted, for each region, the presence records from the 

Galicia

Madrid

Granada

Spain

Mm

Msm

Osm

Sm

Tm

Ssm

Om
Mt

St

Ot

Europe

Figure 1. Location of the study area. Target regions are placed  
across a biogeographic gradient representative of different thermo-
climatic belts. Mediterranean variants: Tm (Thermomediterra-
nean), Mm (Mesomediterranean), Sm (Supramediterranean), Om 
(Oromediterranean). Temperate variants: Mt (Mesotemperate), 
Msm (Mesosubmediterranean), St (Supratemperate), Ssm (Supra-
submediterranean), Ot (Orotemperate), Osm (Orosubmediterra-
nean). From Rivas-Martínez et al. (2004).
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Table 1. Environmental variables used as predictors to train Maxent models (see Supplementary material Apendix 1 for more details).

Source and input resolution of data

Code Description of the variable National scale (10  10 km) Regional scale (50  50 m)

Topography
TOPOV5 Topographic variability. It varies from ‘0’ 

(flat areas) to ‘1’ (maximal variability)
DEM 200 m DEM 50 m

Hydrography
RIVERDIST Distance to the nearest river Hydrography at 1:200 000 Idem at 1:50 000

Vegetation pattern
PASTDENS
WOODDENS

PATCHSIZE

Percentage of meadows and pastures
Percentage of broad-leafed and mixed 

woodlands
Size of patches made of pasturelands and 

woodlands

CORINE Land Cover Map 
(Heymann et al. 1994) at 1:100 000

Regional habitat cartography 
of Madrid (CAM 1998), 
Galicia (SITGA 1998) and 
Andalucía (SINAMBA 1999) 
at 1:50 000

Above ground net primary production
NDVIMAX
NDVIMIN

Annual maximum of NDVI
Annual minimum of NDVI

NDVI from NOAA-AVHRR 1 km
(monthly series, period 1983–1999)

Human disturbances
TOWNDIST
ROADDIST

Distance to the nearest town
Distance to the nearest road–trail

Towns and roads at 1:200 000 Idem at 1:50 000

Climate
TMAXSUM

PRECSUM

Maximal temperatures (°C) in summer 
(June to August)

Mean precipitation (mm) in summer (June 
to August)

WorldClim data (Hijmans et al. 2005) (1965–2005) at 1 km

Atlas in order to model regional species distribution at coarse 
resolution (10  10 km).

Environmental predictors

We selected a pool of 11 environmental variables poten-
tially affecting species distribution (climate, topography, 
hydrography, vegetation and human disturbances; Table 1, 
Supplementary material Appendix 1). Predictors were chosen 
according to previous knowledge on the habitat preferences 
of the Iberian mole (Loy 1999, Román 2007a) and other 
closely related species (Funmilayo 1979, Román 2007b). The 
number of predictors was relatively high to allow for flexibil-
ity when fitting models, since we expect important variations 
in habitat preferences across scales along the biogeographic 
gradient. Predictors were measured separately for each study 
area and scale. They were derived by applying identical 
GIS algorithms from different sources, when possible, to 
make them comparable. The size of the array (5  5 cells) 
used in the context analyses was selected according to the  
movement capacity of European moles at a local scale, which 
is a radius of 100 m around the external border of the terri-
tory (Macdonald et al. 1997). We used the normalized dif-
ference vegetation index (NDVI; Rouse et al. 1973, Pettorelli 
et al. 2005) as a proxy of aboveground net primary produc-
tion (Goward et  al. 1994, Paruelo et  al. 1997, Osborne 
et al. 2001). This index has emerged as a powerful indicator  
for exploring the link between animal distribution and  
available resources (Pettorelli et al. 2006, 2011, Wiegand et al. 
2008). It was estimated from a monthly series of cloud-free 
maximum value composite derived from NOAA-AVHRR 
imagery at 1 km resolution for the period 1983–1999  
(see Suárez-Seoane et  al. 2002, 2004 for details on the  
characteristics of the imagery). NDVI is based on the reflec-
tance difference between visible and near infrared regions 

of the electromagnetic spectrum in channels 1 and 2 of the 
AVHRR images. The range of NDVI values lies between 21 
and  1. Only the positive values correspond with vegetated 
zones. Climatic variables were measured for the summer 
period, since this is the most limiting season for temper-
ate species in the Mediterranean; Virgós and Tellería 1998, 
Virgós et al. 2004). To prevent multicollinearity effects, we 
verified that pairwise Spearman correlations among all pre-
dictors were under the threshold of 0.8 (Tabachnick and 
Fidell 1996).

Measuring performance and success of scaling 
model predictions across scales along the 
biogeographic gradient

We fitted separate models to characterize mole distribu-
tion at different spatial resolution and extent using the 
Maximum Entropy algorithm (MaxEnt 3.3.3; Phillips et al. 
2006, Phillips and Dudíck 2008). We selected this method 
due to its good performance in comparison with other SMD 
techniques, particularly when species records are presence-
only data derived from non-systematic biological surveys,  
as is the case for the Atlas data (Elith et  al. 2006, 2010).  
In MaxEnt, the reliability of the predictions strongly depends 
on the number of ‘easy negatives’ in the background data 
used to represent the available environment, which lastly 
may affect prevalence. Then, selecting background points  
in unlike areas for the target species may result in over- 
prediction. On the other hand, many ‘easy positives’ in the 
background data have the opposite effect. See Chefaoui 
and Lobo (2008), Franklin and Miller (2009), Elith and 
Leathwick (2009) or Elith et al. (2010) for a discussion on 
this topic. To enhance model reliability and comparability, 
we created a sample of 10 000 randomly distributed back-
ground points for each model, avoiding points within highly 
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unsuitable areas (terrain slope higher than 60%; personal 
observations) and within a radius around the presence loca-
tions used for model training (5  5 pixels for 50 m models, 
but only one pixel for 10 km models due to the reduced num-
ber of pixels at this resolution). Each model was built using 
70% of the occurrence points (training dataset), retaining 
the remaining 30% for evaluation (testing dataset). Model 
performance was evaluated internally (within the same geo-
graphic area and at the same spatial resolution at which it 
was built) by calculating the AUC (area under the receiver 
operating characteristic curve; Beck and Shultz 1986, Zweig 
and Campbell 1993, Fielding and Bell 1997), adapted for 
use with background samples, in the next three cases: 1) full 
models built from the complete training dataset and tested 
against calibration data with no independence (re-substi-
tution test; Edwards et  al. 2006); 2) 10-fold cross-validated 
models ran on the training dataset (Verbyla and Litvaitis 1989, 
van Houwelingen and Le Cessie 1990); 3) full models tested 
against the 30% set-aside independent data that were not used 
for model calibration. Complementarily, we also measured the 
Boyce index (Boyce et al. 2002, Hirzel et al. 2006) on the test-
ing samples. This index measures the Spearman rank correla-
tion coefficient between the frequency of presence locations 
within ranked classes of predicted habitat suitability (adjusted 
by the area) and the mean habitat suitability of these classes.  
It ranges from 21 to  1. AUC and Boyce index are threshold-
independent SDM evaluation methods fairly insensitive to spe-
cies prevalence (Franklin and Miller 2009). Full models were 
also externally evaluated with independent species data (testing 
datasets collected at a different resolution or extent, according 
the case) through AUC and Boyce evaluators. To allow for reli-
able estimates, we always compared pairs of models by using 
the same testing dataset. So, that the measured performance 
has the same meaning (Phillips pers. comm.).

The success of scaling model predictions across spa-
tial resolutions and extents was quantified by applying an 
adaptation of the method of Randin et  al. (2006), which 
was first used to measure model transferability across space. 
This approach was also applied by Tuanmu et al. (2011) to 
measure temporal transferability of wildlife habitat models. 
According to them, a successful scaling of models could be 
achieved if: 1) internal evaluation of models fitted in differ-
ent frameworks is similar; 2) a model trained at a particu-
lar spatial resolution/geographic area retains a comparable 
external evaluation when projected into other situation; and 
3) spatial predictions made by two models fitted in different 
frameworks match for each species location. Criteria 1 and 
2, based on AUC values, were assessed through Eq. 1; while 
the third criterion, based on spatial predictions, was evalu-
ated with Eq. 2.
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Equation 1 (T1) computes cross-scaling (a combination 
of up and downscaling estimates) of models across spatial 
resolutions using both internal and external measurements 
of validation (all based on testing samples). AUCa®a and 
AUCb®b are the internal validation of models that have been 
fitted and evaluated in a particular area and spatial resolu-
tion. For example, AUCa®a result from validating a model 
calibrated in Granada at 10km with the testing dataset cre-
ated for that region at that resolution. AUCa®b and AUCb®a 
are the external validation of models that have been fitted at 
other resolution. In the example, AUCa®b result from vali-
dating a model calibrated in Granada at 10km with the test-
ing dataset created at 50 m for that region (i.e. downscaling), 
while AUCb®a means the reverse situation (i.e. upscaling 
from 50 m to 10 km). Index values range from 21 (when 
internal validation reaches the maximum value, but external 
is null) to 1 (when internal and external validation values 
are maximal). Equation 2 (T2) is based on the Kulczynski’s 
coefficient (Legendre and Legendre 2012) and quantifies the 
scaling of models across resolutions according to the distance 
between the spatial logistic predictions (habitat suitabil-
ity index; HSia, HSib) made by two models fitted at differ-
ent resolutions for each location of the testing sample. For 
example, the index may compare the predictions made by a 
model fitted in Madrid region at 10 km (situation a) with 
the predictions made for the same region at 50 m (situation 
b), using either the testing sample collected at 10 km or that 
at 50 m. Therefore, T2 can be used to estimate downscaling 
(T2a; if calculate the distance from logistic predictions made 
by a model set at low resolution with predictions made at 
high resolution) or up-scaling (T2b; the reverse situation). 
Index values varies from 0 (HSia and HSib are identical and 
scaling perform successfully) to 1 (differences between both 
sets of values are maximal and scaling perform badly).

To evaluate model scaling across extents (i.e. from national 
to regional level and viceversa), we also used Eq. 2. We only 
operated at 10 km resolution, since we had no data for the 
whole Spain at 50 m resolution.

Estimating the availability of suitable habitat along 
the biogeographic gradient

To understand the eventual relationships between perfor-
mance and scaling of models with the availability of suitable 
habitat along the biogeographic gradient (i.e. niche trunca-
tion), we calculated marginality and tolerance (Hirzel and 
Le Lay 2008) by using the ENFA analysis of BioMapper 4.0 
(Hirzel et al. 2002, 2007). Traditionally, marginality (M; Eq. 
3) has been understood in terms of how much the used habi-
tat differs from the available (Hirzel et al. 2002, 2007), with 
values ranging from 0 (species living in average conditions 
throughout the study area) to 1 or higher (using extreme 
habitats) (Basille et al. 2008). Tolerance (To; Eq. 4) has been 
commonly considered as an index of specialization, which 
reports the ratio between the variance of available conditions 
and the variance of the used conditions. It ranges from 0  
(specialist or stenoecious species) to 1 (generalist or euriecious 
species). However, both marginality and tolerance could be 
best used as indicators of habitat availability and, therefore, 
of niche truncation. Marginality can be seen as a measure of 
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a better internal evaluation than the regional models ran at 
the same resolution. When the 10 km-national model was 
downscaled across extents, AUC values (AUCtest: 0.82, 0.85 
and 0.55 respectively for Galicia, Madrid and Granada) were 
higher than those of models fitted at the same resolution  
specifically for each region (AUCtest: 0.47, 0.65 and 0.44 
respectively). Indeed, when the national model was down-
scaled across both resolutions and extents, results (AUCtest: 
0.77, 0.91 and 0.79 respectively) were better than those 
obtained when fitted regional models at 50m (AUCtest: 0.62, 
0.83 and 0.96 respectively) in two of the three cases, with the 
exception of Granada.

The spatial pattern of species occurrence at national scale was 
very close to the picture published by the Atlas (Fig. 2). Both 
identified two core areas (north-western square of the country 
and southernmost Betic Mountains) and other scattered and 
small marginal populations in eastern Spain. The model suc-
cessfully excluded the area near Pyrenees, which is occupied by 
Talpa europaea. At regional level, important differences were 
detected when comparing models at both spatial resolutions 
(Fig. 3). Models ran at coarse resolution overestimated habitat 
suitability in comparison with models at detailed resolution. 
The range predicted by fine-resolution models strongly differed 
along the biogeographic gradient, becoming more restricted 
from north to south. At national scale, the most relevant driver 
of mole distribution was climate. At regional level, there were 
marked differences on the most contributing variables along 
the biogeographic gradient. In Galicia, species occurrence was 
linked to similar environmental factors as those identified at 
national level. In Madrid, the effect of climate was replaced 
by vegetation. In Granada, the main drivers were topography 
and human disturbances. Results were consistent across spatial 
resolutions, but in Granada (Table 3).

Species responses and habitat availability along  
the biogeographic gradient

Mole responses to environmental factors differed between 
spatial resolutions and along the biogeographic gradient 
(Fig. 4). Curves drawn at coarser resolution were broader 
than those built at detailed resolution. Galicia was the region 
where mole responses were more similar to those achieved in 
the Spanish model, while Granada was the most different. 
Marginality was lower, on average, on national than regional 
levels. It deeply changed along the biogeographic gradient, 
with the highest value in Granada and the lowest in Galicia. 
In the case of tolerance, the trend was the opposite. Tolerance 
was higher at national than regional scale and decreased from 
Galicia to Granada (Table 4). In summary, niche truncation 
increased (while habitat availability decreased) from national 
to regional scale, as well as from Galicia to Granada.

Scaling of models across resolutions and extents 
along the biogeographic gradient

According to Eq. 1 and 2 (Table 5), the success of scaling 
model predictions across both spatial resolutions and extents 
decreased along the biogeographic gradient (from Galicia 
to Granada). The efficiency of downscaling practices (T2a; 
from coarse to fine resolution; from large to small extent) 

how niche conditions are represented in a particular loca-
tion. For example, if only a part of the niche is present in 
a geographic area, niche would be truncated (Austin 2002, 
Thuiller et al. 2004). In that case, species would not be able 
to select a habitat over the whole niche conditions offered at 
the whole distribution, but only over a narrow fraction. In 
such a situation, we could conclude an apparent specializa-
tion of the species, which is actually an artifact. Therefore, 
marginality can be re-interpreted as follows: values close to  
0 indicate high availability of the whole niche conditions 
and values close to 1 (or higher) indicate a niche truncation. 
In the case of tolerance, values close to 0 can be related to 
niche truncation, whereas values close to 1 indicate that the 
whole niche conditions are available for the species.

M  sqrt (∑i  1,v [Mi
2])/1.96� (3)

To  1/(sqrt (∑i  1,v(li)/V))� (4)

Where sqrt is the square root function; Mi are the coeffi-
cients of the marginality factor; li are the eigenvalues and 
V is the number of variables (Hirzel et al. 2002). The nor-
mality of each variable was previously verified according to 
a Kolmogorov–Smirnov test and, when necessary, variables 
were Box–Cox transformed.

Results

We collected 823 presence records at 10 km resolution from 
the Atlas for modelling Spanish distribution. From this 
dataset, 67 points were in Galicia, 28 in Madrid and 35 in 
Granada. By fieldwork we obtained 74 data at 50 m resolu-
tion in Galicia, 45 in Madrid and 35 in Granada.

Model performance and distribution patterns across 
scales along the biogeographic gradient

Table 2 summarizes the results of model validation across 
spatial resolutions and extents along the biogeographic gra-
dient. At regional scale, the performance (AUC and Boyce 
values) of models set at high resolution (50 m) increased 
along the biogeographic gradient, from north to south. 
However, models set a coarse resolution (10 km) did not fit 
this trend, since Granada performed the worst. Looking at 
the internal evaluation, regional full models performed bet-
ter at the most detailed resolution than at the coarsest one. 
When these models were cross-validated and tested against 
the 30% set-aside of data not used for calibration, AUC 
values reduced soundly, particularly in the case of coarse 
resolution models. In specific, values were lower than 0.5 
in Galicia and Granada, indicating that 10 km-models per-
formed worse than random in these regions. External vali-
dation across spatial resolutions showed that, when model 
predictions were downscaled, AUC and Boyce values were 
moderate and increased along the biogeographic gradient. 
However, when predictions were upscaled, AUC and Boyce 
values were much weaker (AUC was in all cases equal or 
lower than 0.5 and Boyce index showed negative values). 
In this case, the worst values were obtained in Granada. 
Regarding the effect of the extent, the national model had 
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Figure 2. Spatial predictions of Iberian mole occurrence calculated at the national level at 10 km resolution. (a) Logistic continuous output. 
(b) Species distribution pattern from the Spanish atlas and Red book of mammals (Román, 2007a).

depended less on the biogeographic and ecological context 
of the target study area (index values were more similar along 
the gradient) than in the case of up-scaling (T2b; from fine 
to coarse resolution; from small to large extent).

Discussion

Our results showed that model performance was depen-
dent on spatial resolution and extent of the data. Indeed, 
both performance and scaling of models varied along the 
biogeographic gradient linked to differences in species envi-
ronmental responses and also in the availability of suitable 
habitat which, in turn, is related to niche truncation. Models 
representing non-truncated niches were more successfully 
scaled across resolutions and extents (particularly in areas 
that did not offer all possible habitats for the target species), 
which has important implications for SDM applications, as 
those related to conservation planning under climate change 
(Thuiller et al. 2004, Seo et al. 2009).

As a trend, regional SDMs trained at coarse resolution 
performed worse than more detailed models. The weak per-
formance of these models (see values of cross-validation and 
independent test with the 30% data-aside) could be, at least 
partially, explained by low sample size (Wisz et al. 2008) and/
or sampling bias. Atlas data coverage across regions could 
be affected by different sampling effort and observer experi-
ence, which may imply either over or underestimation of the 
real distribution. Aditionally, other authors as Luoto et  al. 
(2007) or Menke et al. (2009) suggested that low resolution 
models may fail because they over-predict species occurrence 
since they tend to select climate variables against variables 
reflecting small-scale variations on vegetation or human  
disturbances. However, in our case, there were little differ-
ences between pairs of models trained for the same region 
at different resolution in terms of the nature of the key 
environmental predictors. Actually, differences were stron-
ger between regions (Galicia was driven by climate, while 
vegetation, topography or human disturbances were more 
important in the other areas). Therefore, the need to consider 
variables accounting for vegetation or human disturbances 

not necessarily depend on spatial resolution, but on other 
factors such as the location of the study area along environ-
mental gradients, which may determine niche truncation, 
availability of suitable habitat, environmental responses 
(McPherson and Jetz 2007, Menke et al. 2009, Gottschalk 
et al. 2011) and particular life-history traits of target species. 
Specialist species (or species with low movement capacity) 
may need fine-grained variables, while generalists (or highly 
mobile species) do not respond so clearly to these variables  
(Suárez-Seoane and Baudry 2002). In Galicia (the core 
ecological area), moles showed broader environmental 
responses and were more widely distributed than in other 
regions of the biogeographic gradient. The explanation could 
be related to the availability of suitable habitat that decreased 
(as marginality and tolerance suggested) from North to 
South along the biogeographic gradient. Particularly, in the 
most marginal region (Granada), habitat suitability was very 
low and adverse climatic conditions, as well as a lack of plas-
tic responses, could hamper the exploitation of alternative 
habitats. Consequently, it is of critical importance to explic-
itly consider the full ecological (both biological and envi-
ronmental) and biogeographic context of target study areas 
when developing a model.

The way in which populations interact with environmen-
tal factors is also linked to ecophysiological stress, histori-
cal factors or dispersal opportunities (Costa et al. 2008), as 
well as interspecific interactions like competition that may 
drive local structure (Brown et al. 2000, Glen and Dickman 
2005). The biogeographic gradient here analyzed is associ-
ated with a transition from the Atlantic to the Mediterranean 
region and it reflects critically diverse environmental condi-
tions which, in a broad sense, relates to an increasing degree 
of aridity (higher air temperatures and lower water and food 
availability). Aridity is a key factor that determines the level 
of ecophysiological stress and, therefore, constrains species 
occurrence and abundance, especially for temperate species 
(Lara-Romero et al. 2012). It provides a proxy for the selec-
tion pressures experienced by animals (Mueller and Diamond 
2001, Rezende et al. 2004), since it is directly related to pri-
mary production (Emberger 1955) which, in turn, may be 
considered as an index of food availability. In the case of 
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Figure 3. Comparison between model outputs obtained at both spatial resolutions for the three regions located along the biogeographic 
gradient: (a, b) Galicia at 10 km vs 50 m; (c, d) Madrid at 10 km vs 50 m; (e, f ) Granada at 10 km vs 50 m. Points in (a), (c) and (e) are 
the Atlas centroids; points in (b), (d) and (f ) are fieldwork data.

moles, earthworm abundance decreases with increasing arid-
ity (Virgós et al. 2004), which may explain the reduced spe-
cies occurrence in southern areas of the Iberian Peninsula. 
According to our results, temperature and rainfall were the 
most relevant predictors in Galicia, whereas production  
had a minimal contribution, probably because this is not  
a limiting factor in this region. We did not expect to find 

climate as the main driver of species distribution in the core 
ecological region, but a probable explanation is that Galicia 
shows a strong gradient of temperature from the interior to 
the coast and, therefore, moles select particular climatic con-
ditions. Complementarily, according to the ‘stress gradient 
hypothesis’ (Menge and Sutherland 1987), we should expect 
biotic interactions (competition) driving species distribution 
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Table 3. Relative contribution (in percentage) of the environmental predictors to the models. See Table 1 for the meaning of predictor 
codes.

Variable Spain Galicia 10 km Galicia 50 m Madrid 10 km Madrid 50 m Granada 10 km Granada 50 m

TOPO5 0.3 7 3.9 2.9 0.8 2.1 52.2
RIVERDIST 2.3 9.5 0.7 3.6 0.5 39.9 2.2
PASTDENS 12 0.9 0.1 1.4 0.7 0 0.4
WOODDENS 0.3 10.5 17.2 13.2 11.8 12.7 1.3
PATCHSIZE 1.3 8.6 0.5 70.2 28.7 1.2 0.7
NDVIMAX 18 3.5 0.2 5.1 2.9 2 2.5
NDVIMIN 2.4 13.1 1.8 2.9 39 5 1.1
TOWNDIST 1.3 1.5 3.7 0.5 5 2.1 24.0
ROADDIST 1.8 6.6 2.3 0 6.5 19.4 0.8
TMAXSUM 36 2.1 24.9 0.1 4.1 15.5 5.2
PPSUM 24.2 36.6 44.8 0 0 0.3 9.5

Spain 10 km

Topographical variation Minimum NDVI
Summer maximum

temperature 
Summer average

precipitation

Galicia 50 m

Madrid 50 m

Granada 50 m

Environmental variable

H
ab

ita
t s

ui
ta

bi
lit

y

Figure 4. An example of response curves for some of the most relevant environmental variables when predicting Iberian mole distribution 
at different scales. Curves show how the logistic output (habitat suitability) change as each environmental variable is varied. Each curve 
represents a different model created using only the corresponding variable and shows the mean response of the 10 replicate MaxEnt runs 
(red) and the mean /2 one standard deviation (blue). NDVI original values (from 21 to 1) were stretched to 256 levels to maximize 
differences among values.

in Galicia (the core ecological area), while in Granada (the 
most ecologically marginal area), environmental constraints 
would explain better species responses. However, further 
research should be done in this respect. According to this 
idea, topography and human disturbances were actually the 
main drivers of mole distribution in Granada. In contrast 
with other regions, moles preferred here lower summer tem-
perature (to avoid high physiological stress) and precipita-
tion. The latter was unexpected, but may be due to the fact 

that selected habitats by moles in this region include irri-
gated crops and orchards that depend on the watering of 
Populus plantations. Therefore, moisture and, as a result, 
earthworm availability do not depend so strongly on rainfall 
(García-López de Hierro et al. 2013). In Madrid, vegetation 
was the strongest explanatory variable, while climate was  
not an important constraint. Here, Iberian moles benefit 
from a good diversity of both climatic conditions and veg-
etation types, as with other Eurosiberian species that live at 
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Table 5. Scaling of models across resolutions and extents along the 
biogeographic gradient. T1 quantifies cross-scaling of models on the 
basis of internal and external validation (AUC) on testing samples. 
Values range from 21 to 1, the highest values corresponding to the 
best performing scaling exercises. T2a measures down-scaling and 
T2b up-scaling, both on the basis of the distance between spatial 
logistic outputs. Values range from 0 to 1, higher values correspond-
ing to poor performing scaling exercises.

Resolution Extent

T1 T2a T2b T2a T2b

Galicia 0.71 0.13 0.25 0.20 0.03
Madrid 0.40 0.19 0.55 0.20 0.04
Granada 0.41 0.20 1.00 0.23 0.23

Table 4. Variations in marginality and tolerance across the bio
geographic gradient calculated by using the ENFA analysis of BioMap-
per. A value of marginality close to 0 indicates a high availability of the 
whole niche conditions, whereas a value close to 1 (or higher) means 
niche truncation. Tolerance is bounded between 0 (niche truncation) 
to 1 (whole niche conditions are available for the species).

Spain* Galicia* Madrid** Granada**

Marginality 0.419 0.406 0.790 1.439
Tolerance 0.897 0.651 0.369 0.298

*Patchsize was Box–Cox transformed.
** Patchsize, pastdens and wooddens were Box–Cox transformed.

relatively high densities in the mountains (Virgós and Tellería 
1998, Virgós and Casanovas 1999). Mole prey reaches a high 
abundance associated with pasturelands and broad-leaved 
woodlands (Virgós et al. 2004).

Regarding the national model, it is highly remarkable 
that it performed better, in almost all cases, when validated 
(downscaled) within regions than models specifically trained 
at regional scale at 10 km and 50 m resolutions. Different 
explanations may be put forward to explain these results as 
a combination of biological, sampling and environmental 
features. A model with predictors covering a wider range in 
the training region (national model) is more likely to give 
accurate predictions when downscaled in a test area (regional 
models) than the reverse (Thuiller et al. 2004, Randin et al. 
2006, Menke et al. 2009). In this sense, our national model 
incorporated a higher heterogeneity of environmental 
responses which allowed for detecting local variations more 
effectively (Osborne and Suárez-Seoane 2002, Barbosa et al. 
2009). Therefore, this model fitted the non-truncated niche 
of the species much better than did any regional model. 
The success of downscaling across extents may also indicate 
a common pattern of species preferences across geographic 
ranges for some environmental conditions, such as rainfall or 
temperature, which were identified as important predictors 
regardless spatial scale. Indeed, rainfall and temperature can 
be considered as very good proxies of earthworm availability 
(Virgós et al. 2004) and this factor is probably very impor-
tant to determine mole distribution at different extents and 
resolutions. Other explanation could be that sampling cover-
age at national scale was good and predictors selected at fine 
scale were also relevant at large scale (e.g. rainfall regime or 
temperature).

The success of scaling model predictions across resolu-
tions and extents decreased from North to South along the 

biogeographic gradient, being down-scaling less dependent 
on the biogeographic and ecological context of the study area 
than up-scaling. This result could be explained by the qual-
ity of the training and testing data and also by variations in 
environmental responses and niche truncation. Incomplete 
and/or geographically biased occurrence data samples may 
fail to encompass the full range of environmental condi-
tions present within a region. When such a data are used to 
train SDMs, outputs may not be transferable to other scales 
(Guisan and Zimmermann 2000, Pearson and Dawson 
2003, Thuiller et al. 2004, Randin et al. 2006, Menke et al. 
2009). In our case, we found particularly bad results in 
Granada. Here, we cope with an interesting situation, con-
sisting of an ecologically marginal population living at the 
edge of the species geographic range, in a highly diverse and 
patchy landscape, where most of the available habitats are 
non-suitable. Under this scenario, modelling and sampling 
are especially demanding. The patchy and low population 
density of Iberian mole in Granada can difficult an efficient 
field sampling, because individuals become easily undetected 
under the common sampling effort in core populations. 
Only at a higher effort, this bias could be overcome or, at 
least, be mitigated. On the other side, data collected from 
Atlas can record highly localized populations because vol-
unteers can sample the space in an efficient, although non-
systematic, way that allow for recording most of available 
habitats in a region. Complementarily, large-scale data at 
10 km summarize in only one record all the environmental 
information of this plot, allowing for a higher success when 
modelling presence at more fine scales. Regarding the effect 
of environmental responses and niche truncation, the fact 
that Galicia (the core ecological area) was the region with 
the highest success in scaling of models could be interpreted 
considering that SDM for species living within wide envi-
ronmental limits have to be very general. As a consequence, 
they can be applied more widely than models representing 
sharply defined niches of species occurring within narrow 
environmental limits (Evangelista et  al. 2008). All these 
facts highlight that model interpretation and application is 
complicated in ecologically marginal situations, where only 
under exhaustive sampling is possible to obtain consistent 
and symmetric modelling outputs across scales, a situation 
probably exacerbated in very specialized species, as it the case 
of the Iberian mole.

We conclude that scaling of models across extents and 
resolutions may be hampered by the truncation of species 
fundamental niches, which is a major source of uncertainty. 
Since many species probably have truncated niches, SDM 
would tend to incorrectly scale model predictions in scenar-
ios that exceed the evaluated environmental limits (see also 
Thuiller et al. 2004, Wiens et al. 2009, Feeley and Silman 
2010, Veloz et al. 2012). We advertise to SDM practitioners 
about the robustness of downscaling exercises across extents, 
as well as about the need of carefully evaluating the geo-
graphic and ecological modelling context of the study area 
before performing upscaling procedures. Indeed, if we are 
about to scale SDM predictions, it is crucial to ran ‘source’ 
models at such an extent that warranties a sample size big 
enough to account for the whole environmental complexity 
of the species range (Wisz et al. 2008, Braunisch and Suchant 
2010). Assessing how species’ niches extend into portions of 
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environmental space not observed in study areas is currently 
a key challenge in modelling approaches.
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