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Abstract

Computer-assisted sperm analysis (CASA) allows assessing the motility of individual spermatozoa, generating huge datasets.
These datasets can be analyzed using data mining techniques such as cluster analysis, to group the spermatozoa in subpopulations
with biological meaning. This review considers the use of statistical techniques for clustering CASA data, their challenges and
possibilities. There are many clustering approaches potentially useful for grouping sperm motility data, but some options may be
more appropriate than others. Future development should focus not only in improvements of subpopulation analysis, but also in
finding consistent biological meanings for these subpopulations.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

Many studies have showed that the spermatozoon is
a dynamic cell, with active biochemical pathways that
modify the sperm physiology throughout maturation,
ejaculation, transport in the female genital tract and
fertilization. Flagellar beating is affected by these
changes [1–3], thus spermatozoa show different swim-
ming patterns in the epididymis, seminal plasma, cer-
vical mucus, oviduct (capacitation) and while penetrat-
ing the oocyte vestments [4]. In many ways, motility
integrates the biochemical events occurring in the sper-
matozoa. Moreover, sperm samples are heterogeneous,
implying that spermatozoa with different motility co-
exist in the same ejaculate [5–8]. Therefore, the anal-
ysis of sperm subpopulations based on motility charac-
teristics may help to assess the status of the sperm
sample and its fertility potential, exploiting the hetero-
geneity of sperm samples.

This kind of detailed analysis was allowed by the
spread of computer-assisted sperm assessment (CASA).
The term CASA defines hardware and software de-
signed to acquire and digitize successive images of
sperm, process and analyze the image sequence, and
output the information of the kinematics of individual
spermatozoa. CASA details will not be treated here, but
other reviews have ample information on the topic
[4,9–15]. Despite of its advantages, some authors have
warned about the misuse of CASA results [16]. More-
over, the capacity of CASA for generating huge data-
sets comprising motility data from thousands of sper-
matozoa has been overlooked in favor of the summary
statistics provided by the software, which do not show
the intrinsic variability of the sample.

Cluster analysis is a technique for statistical data
analysis that allows unsupervised grouping of observa-
tions into subsets (called clusters), so that observations
in the same cluster are similar depending on a given
criteria [17–19]. “Unsupervised” implies that there is
not an a priori grouped dataset to guide the grouping.
Cluster analysis is also a multivariate technique, be-
cause the information for grouping observations is pro-
vided by several to many descriptors characterizing the

observations. Therefore, cluster analysis is perfectly
suited to resolve the heterogeneity of sperm motility
data in discrete subpopulations, helping to take advan-
tage of the information contained in CASA datasets.

In this review, we start by giving a quick outlook to
previous studies on sperm motility subpopulations.
However, most of this review aims at explaining how to
perform and validate cluster analysis, in the context of
CASA data. Nevertheless, because of the complexity of
the topic, this explanation is far from being compre-
hensive, and we recommend the reader look up the
bibliography for specific information. We hope that this
review will inspire spermatologists to embrace new
statistical techniques, and to apply them in their studies.

2. Sperm motility subpopulations and their
relation with sperm quality and fertility

Many studies have explored the use of cluster anal-
ysis to identify subpopulation patterns in sperm sam-
ples. Although this review is aimed at analysis of mo-
tility data, we must keep in mind that other kinds of
spermatozoa data can be used for such analyses (e.g.,
morphology data [20–22]). Before 2000, few studies
reported using these techniques for processing CASA
data [23–27]. However, some 30 articles have dealt
with this topic in the last decade (Tables 1 and 2),
concerning around 11 species and using different sta-
tistical approaches.

Once identified, it is easy to characterize each sub-
population accordingly to its average kinematic vari-
ables. For instance, a subpopulation with high velocity
variables and high linearity variables (see Table 3)
could be defined as “fast, linear”, whereas another
could be defined as “slow, non-linear” if these variables
are low. Then, the frequencies of these subpopulations
are used, rather than the kinematic variables them-
selves. Variations in these frequencies have been asso-
ciated to individual variations among ejaculates and
males [28], to sperm freezability [29], or to sperm
fertility [30].
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It is interesting to note that, except for a few studies
[28], most researchers have found a low number of
subpopulations (3–4) when analyzing motility of sperm
samples, even among quite different species. When
reviewing these studies, we can find some similarities
in the subpopulation patterns. In fact, the presence of a
“fast and linear” subpopulation has been proposed as a
good indicator of sample quality, whereas a predomi-
nant “slow and non-linear” subpopulation would be a
marker of poor quality. As an example of the improve-
ment that subpopulation analysis conveys over utiliza-
tion of average CASA measurements, we can compare

the outcome of two of our studies on the effects of
postmortem time on epididymal spermatozoa from red
deer. In a first paper [31], in which we did not use
subpopulation analysis, we reported a drop of CASA
variables with post-mortem time, but we missed further
information from CASA data. However, when we ap-
plied cluster analysis in a second study [32], we found
that the motility decrease comprised a complex dynam-
ics involving three subpopulations, marked by the de-
crease of the “fast and linear” subpopulation and the
increase of a “slow and non-linear” subpopulation with
time. We also found that, after 48 h post-mortem, a new

Table 1
Review of clustering methods used by different authors on CASA data (continued in Table 2). The table features the species studied,
references, the number of variables entered in the analysis (displaying the variable reduction method, if any), the clustering method, and the
resulting number of clusters. In some cases, specific details about the clustering algorithms are not available or unclear. Detailed information
regarding proprietary software may not be available.

Species References Variables Clustering method Clusters

Bull [57,61] 8 k-means, then hierarchical (Ward linkage) 4
Dog [28] 2 (PCA) k-means 11

[68] 2 (PCA) BIRCH, then hierarchicala 6
[60] 8 k-meansb 4

Donkey [40,43] 6 (hierarchical clustering) k-meansb 4
[58] 8 k-meansb 4

Gazelle [27,70] 7 partitional, then hierarchicalc 4
Goat [51] 3 (PCA) k-meansb, then hierarchical (average

linkage)
4

Horse [30] 7 (hierarchical clustering) BIRCH, then hierarchicala 5
[69] 3 (subjective trimming) BIRCH, then hierarchicala 4, 6

Human [24,25] 3 (iterative) k-means 5
a Two-step SPSSTM procedure. The first step is based in the BIRCH (balanced iterative reducing and hierarchical clustering) algorithm for large

datasets [67]; the second step is an agglomerative hierarchical procedure (not clear which kind it uses).
b FASTCLUS procedure of SASTM, a fast k-means algorithm.
c ALOC (partitional), Flexible UPGMA (hierarchical, average linkage) and FUSE (hierarchical) modules from the PATN package.

Table 2
Review of clustering methods using by different authors on CASA data (continued from Table 1).

Species Reference Variables Clustering method Clusters

Marmoset [26] 8 k-means 2
Pig [26] 8 k-means 3

[27,63,71] 7 partitional, then hierarchicala 3
[39,42] 7 (hierarchical clustering) k-meansb 3
[44] 6 (hierarchical clustering) k-meansb 4
[56,58] 8 k-meansb 4

Rabbit [41] 7 (hierarchical clustering) k-meansb 4
Red deer [29,32,50] 2 (PCA) k-meansb, then hierarchical (average linkage) 3, 4

[75] 4 (lower correlations) CLARAc, then model-based 3
Sole fish [33] 2 (PCA) CLARAc 4

[86] 8 BIRCH, then hierarchicald 4
a ALOC (partitional), Flexible UPGMA (hierarchical, average linkage) and FUSE (hierarchical) modules from the PATN package.
b FASTCLUS procedure of SASTM, a fast k-means algorithm.
c A partitional algorithm for clustering large datasets [17].
d Two-step SPSSTM procedure. See footnote a in Table 1.
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“slow and linear” subpopulation appeared, being in-
volved in the loss of sample quality. Taking into
account the importance of the “fast and linear” sub-
population that was suggested by another study [29],
the value of performing cluster analysis on these
samples emerges clearly. Nevertheless, we must
keep in mind that subpopulation analysis has still to
spread among spermatology studies, and that conclu-
sions about particular species and situations may not
apply to others. For instance, Quintero-Moreno et al
[30] showed that a “slow and linear” subpopulation
seemed to be associated to the semen samples of
stallions of proven fertility.

Since male-to-male differences regarding subpopu-
lation patterns have been shown to be evident [28,33],
this kind of study seems promising and bound to be
developed further. In this context, there is a need to
clarify the meaning of these subpopulations and to test
if they correspond to a functional or physiological re-
ality. This way, the “correct” and “wrong” subpopula-
tions could be effectively used to assess ejaculate or
male quality, and sperm work techniques could be
developed so to improve the presence of the former and
reduce or remove the latter. Moreover, standardization
and improvement of the statistical methods used to
disclose the subpopulation pattern must be carried out
at the same time, in order to improve the results and
facilitate comparison among studies. In the next sec-
tions we will explain the basis of these kinds of anal-
yses, suggesting some new ways to carry them out with
CASA data.

3. Preliminaries of the subpopulation analysis

3.1. Data acquisition and evaluation

A requirement for correct subpopulation studies is
that the CASA system must render accurate data. It is

advisable to work with high-definition cameras, capa-
ble of acquiring more than 30 frames per second (more
than 50 for mammals [13] and more than 100 for fish
[15]), and to use microscopes with appropriate optics
and measurement chambers adapted to the species stud-
ied [9,34]. The combination of clearly acquired image-
sequences and sophisticated image processing allows
obtaining reliable motility parameters, resulting in
richer datasets, and possibly in better clustering results.

It is important to have a good knowledge of the
principles governing the operation of CASA systems,
the meaning of the kinematic parameters, and the char-
acteristics and reliability of our own CASA system
[4,13]. For instance, smoothing algorithms may vary
among CASA software. That means that VAP, ALH, as
well as other angular or distance parameters, could be
different even among versions of the same system [13]
(see Table 3 for definitions of some abbreviations of
CASA kinematic parameters). Moreover, as we will see
later, some kinematic variables are more important than
others in the clustering process, but their relative im-
portance may vary depending on the characteristics of
the CASA system and the experimental conditions.
Therefore, CASA characteristics must be taken into
account when identifying the most relevant kinematic
variables. A combination of subjective knowledge and
statistical methods can be useful to correct our original
assumptions and to identify unsuspected noise in our
preferred variables.

Raw datasets are usually plagued with problems for
the clustering process. Typical problems comprise: lack
of normality, strong skewness, outliers, data “noise”, a
weak clustering structure, colinearity among different
variables (no independence) and differences among
variables regarding internal variability. Nevertheless,
we have to take into account that datasets containing
clusters are expected to bear non-normal (multi-modal)

Table 3
Definitions for some standardized abbreviations of CASA kinematic parameters [4].

Acronym Meaning

VCL Curvilinear velocity: the time-average velocity of the sperm head along its actual trajectory.
VSL Straight-line velocity: the time-average velocity of the sperm head along a straight line from its first detected position to its last

detected position.
VAP Average-path velocity: the time-average velocity of the sperm head along its average trajectory. The average trajectory is

computed by smoothing the actual trajectory.
LIN Linearity: the linearity of the curvilinear trajectory (VSL/VCL).
STR Straightness: the straightness of the average path (VSL/VAP).
ALH Amplitude of lateral head displacement: the amplitude of variations of the actual sperm-head trajectory along its average

trajectory.
BCF Beat-cross frequency: the time-average rate at which the actual sperm trajectory crosses its average path trajectory.
DNC Dance: a measure of the pattern of sperm motion VCL"ALH).
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and skewed variables. Thus, the presence of such fea-
tures should not be automatically taken as a sign of
problematic data.

The number of motile spermatozoa included in the
dataset must be large. The objective of a cluster anal-
ysis is to obtain frequencies and summary statistics
from the subgroups obtained after partitioning the data,
and these statistics should be reliable (that is, with
narrow confidence intervals). Therefore, enough motile
spermatozoa must be acquired (at least 200 per sample)
in order to locate a relatively large number in each
subgroup, after the clustering. A pilot experiment could
be useful to estimate the results of the clustering, es-
tablishing a minimum number of motile spermatozoa
that should be acquired. Nonetheless, it may be impos-
sible to achieve that target, either because of few motile
spermatozoa, to the presence of small clusters (which
would force us to acquire an unrealistically large num-
ber of spermatozoa), or to experimental limitations
(low sperm concentration, acquisition of few fields,
etc.). If facing such problems, one must be aware of the
implications of obtaining summary statistics from a low
number of events, and must take that into account when
interpreting the results.

Having obtained the data, the first step in the eval-
uation of CASA datasets is outlier pruning. Datasets
should be examined for extreme or unreliable data,
which could deeply affect clustering results. CASA
errors are generally easy to spot and remove (e.g.,
records with unrealistic velocity values). Nevertheless,
it is often difficult to determine if an event is a true
outlier (and thus, if it should be removed) or a genuine
event belonging to an underrepresented—albeit valid—
cluster. An added difficulty is the multidimensionality
of CASA data, requiring specific algorithms to detect
outliers [35]. Interestingly, the vulnerability of typical
clustering methods to outliers (e.g., k-means cluster-
ing), tending to group outliers in clusters of one or few
events, can be used to remove them. A preliminary
clustering step is applied to the raw dataset; then that
first solution is examined, removing small clusters with
extreme median values. Moreover, there are some clus-
tering methods that can deal with noise or outliers (e.g.,
model-based clustering [36]).

Data transformation (sine-root, logarithmic and oth-
ers [37]) may be necessary before the clustering step,
especially if variables have a high skewness (detectable
by descriptive statistics and histograms). Nonetheless,
transformations should preserve the multimodal distri-
bution that we would expect in CASA data. Similarly,
standardization of the variables (fitting them to the

same scale) is advisable. Otherwise, variables with
large values (e.g., VCL, DNC) would dominate,
whereas others would be underrepresented in the clus-
tering process (e.g., ALH, BCF). The most typical
standardization is the z-transformation. However, this
transformation is based in the mean and standard devi-
ation of the data, which might not be optimal for CASA
variables (often non-normal). Transformations based
on more robust estimates, such as the median and
median absolute deviation (MAD), may be preferable.

3.2. Variable selection

CASA data are characterized by the high number of
kinematic variables (from 8 to more than 20), and by
the redundancy of these variables. This redundancy
arises from the fact that many variables convey similar
information (e.g., VCL, VAP and VSL, all of them
describing spermatozoa velocity), whereas other are
derived (e.g., LIN is the VSL/VCL ratio). Therefore, it
is desirable to reduce the number of variables before
feeding the data to the clustering algorithm, for reduc-
ing both dimensionality and redundancy. Moreover, not
all variables contribute equally to defining the cluster
structure, and an incorrect variable selection could re-
sult in poor clustering [38]. Selecting the appropriate
variables is difficult and varies among studies (see
Tables 1 and 2), due to differences among CASA
systems, acquisition methodology, experimental condi-
tions and species. Therefore, a combination of subjec-
tive knowledge and statistical methods should be ap-
plied in this step. A simple correlation analysis should
disclose subsets of highly correlated variables, suggest-
ing redundant ones. Variable clustering is another tech-
nique that can be easily applied, grouping highly re-
lated variables [30,39–46], and allowing to select a
representative variable from each group for further pro-
cessing. In other fields, some authors have proposed the
use of iterative clustering methods to select the variable
subsets that better disclose the cluster structure [47,48].

Principal component analysis (PCA) is a dimension-
reducing tool that has been used for working with
CASA data [28,29,32,33,49–51]. PCA replaces the
variables in a multivariate data set by an uncorrelated
set of derived variables (linear combinations of the
initial variables) called principal components. This al-
lows selecting only the principal components that con-
vey most variance, thus reducing the number of vari-
ables. However, the use of principal components in
cluster analysis has been criticized [52,53], because
they may not capture the cluster structure. Neverthe-
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less, PCA can still be a valuable tool for data explora-
tion and variable selection [54,55].

4. Clustering and validation

4.1. Calculation of a distance matrix

The clustering process presents a high number of
choices to the researcher. In fact, before carrying out
the actual clustering, it is usually necessary to perform
a preliminary step to generate a triangular matrix of
distances between observations (in this case, among
spermatozoa). These distances are a measurement of
proximity among observations in the multidimensional
space formed by the selected kinematic parameters:
they show how similar each spermatozoon is to each
other. We must point out that this step is not obvious in
many statistic packages, where the calculation of the
distance matrix and the clustering are presented as a
single step. Some CASA studies reported used Euclid-
ean distances [30,39,41,42,44–46,56–61], and it is
likely that those not providing that information used
this metrics too. It would be interesting to compare the
performance of other metrics (such as Manhattan or
Mahalanobis distances), because the performance of
clustering methods may vary [18,19,62]. Moreover, the
algorithm selected for generating the dissimilarity ma-
trix influences the geometry of the clusters found,
which may differ from the real clusters. Indeed, Euclid-
ean distances would not be adequate in some cases
[18,19].

4.2. Clustering methods

This is the core step in subpopulation analysis, and
the one that most influences the number and character-
istics of the groups obtained. Like other statistical
methods, clustering algorithms expect that the data
comply with a set of assumptions. Therefore, research-
ers willing to perform subpopulation analysis must take
this into account when acquiring and processing CASA
data, because if these assumptions are not met, results
might not be correct. Likewise, a particular clustering
algorithm is better suited for some kinds of dataset,
while performing poorly in others. There is a huge
choice of clustering methods [18], and only some of
them may be useful for CASA data. For instance,
CASA datasets rarely show well-separated or regular
clusters, as exemplified in the Figure 1 and highlighted
in several studies [25–27,29,63,64]. Therefore, meth-
ods based on the assumption of well-separated clusters

or center-based clusters would be less suited for that
purpose [65].

Clustering methods can be grossly divided among
partitional and hierarchical. However, other kinds of
clustering algorithms are currently available, and
could be useful for processing CASA data. Here, we
will quickly review these methods, although, the
reader is encouraged to consult specific references in
the bibliography for algorithm details, examples, and
requirements of the different methods (e.g., [17–
19,53,62,65,66]).

4.2.1. Partitional (non-hierarchical) methods
In partitional methods, the final number of clusters

(k) is decided by the researcher before carrying out the
actual clustering. Thus, the algorithm begins assigning
the observations to the k clusters, recalculating cluster
membership in an iterative manner, and seeking for the
optimal partitioning of the data. The k-means algorithm
is the simplest and most popular partitional method, but
it suffers from many drawbacks, of which researchers
should be aware. The choice of initial clusters and the
convergence to a global optimum can be problematic,
and the algorithm is sensitive to outliers and noise. Xu
and Wunsch [18] reviewed the problems and possible
improvements of the k-means algorithm. There are
more robust versions of the k-means method [17], in-
cluding algorithms more computationally efficient, ca-
pable of processing large datasets in acceptable times.
Such algorithms (e.g., CLARA and its variants [17])
are of use for CASA datasets, which often contain
thousands of observations. Most CASA studies have
made use of k-means methods or other partitional meth-
ods, either alone or prior to a hierachical clustering (see
Tables 1 and 2).

Fig. 1. Two representations of the same dataset of CASA motility
data (redraw from Martinez-Pastor et al [32]), displaying the two first
principal components of a PCA (left) or the VAP and LIN variables
(right). Shapes identify cases belonging to three clusters in this
dataset (dots, slow and non-linear; circles, fast and linear; triangles,
fast and non-linear). Note the lack of regularity and the proximity of
the clusters.
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4.2.2. Hierarchical methods
Instead of using a single-level procedure like parti-

tional methods, hierarchical methods can be understood
as a multiple-step procedure, with a single large cluster
in one extreme and singleton clusters at the other. There
are two subfamilies of hierarchical methods, divisive
and agglomerative [65]. In divisive methods, the algo-
rithm starts from a single cluster, and clusters are split
in successive steps. Contrary, agglomerative methods
start by assuming that each observation form a single-
ton cluster, which are joined two by two in each step. In
any case, these procedures create a hierarchy of nested
clusters, which can be plotted as a tree or dendrogram
(very useful for descriptive purposes or for analyzing
relationships among sub-clusters and choosing consis-
tent clusters). There are quite a lot of algorithms pro-
ducing hierarchical clustering, each one with its own
strengths and weaknesses. Among the agglomerative
algorithms, single linkage (nearest neighbor) and com-
plete linkage (further neighbor) seem to be less suited
for clustering CASA data, because these methods are
sensitive to noise and expect regular clusters, respec-
tively. Average linkage (UPGMA) or Ward’s averaging
method may be more appropriate. As a drawback, hi-
erarchical methods generally require high computa-
tional resources. Therefore, in CASA studies, they have
been used to further process the results of a partitional
clustering (see Two-step methods below), instead of
processing the raw data. Nevertheless, high-perfor-
mance hierarchical clustering algorithms have been de-
veloped [18,67], and have been used in several CASA
studies [68,69].

4.2.3. Two-step methods
Two clustering methods are often combined sequen-

tially in order to get the advantages of both, especially
when the second method has unpractical requirements
(computation time or memory size). A fast method,
with light computational requirements, can be used on
the raw data to produce a relatively large number of
clusters, and the centers of these clusters can be fed to
the second one. The second clustering step is used to
identify a set of sensible clusters, while overcoming the
limitations of the first method. Generally, partitional
methods are employed as the first step. The clusters
produced by the partitional method are then merged in
the second step by an agglomerative hierarchical
method, allowing visualization of their relationships in
a dendrogram [27,29,32,50,57,61,63,70,71]. The first
step may also be used to identify outliers or special
clusters, allowing continuation to the second step with
an optimized set of clusters.

4.2.4. Other methods: fuzzy and model-based
clustering

We must mention other two clustering methods with
potential for being used for clustering CASA data.
Fuzzy clustering [18] is characterized by not assigning
absolute membership to the observations. Instead, each
object may feature several degrees of membership to all
clusters. This kind of classification could be useful with
CASA data, because overlapping and irregular clusters
are commonly present in the datasets. The other method
is model-based clustering [72], which assumes that the
sample comes from a mixture of several populations.
With this approach, model-based clustering intends to
solve some typical problems, such as detecting the
number of actual clusters, choosing the most suitable
clustering algorithm among a choice of those and re-
moving outliers [36,73]. Using maximum likelihood
methods, the algorithm tries to identify the best model
(according to the putative cluster characteristics), and
then performs an agglomerative hierarchical clustering
seeking to optimize the model. Although model-based
clustering performs well in small or moderately sized
datasets, the computational requirements for large data-
sets (common when working with CASA data) are
prohibitive. However, some alternative approaches
have been described recently [74], allowing the use of
these methods with datasets up to 100,000 cases. Work-
ing with a large database of deer spermatozoa, we used
model-based clustering as the second step of a two-step
clustering with good results [75].

4.3. Deciding on the number of clusters

As indicated previously, rarely there is a priori
knowledge of how many clusters a dataset contains. Of
course, previous experiments, preliminary examination
of the datasets or even the use of “training” datasets
could be used to fix the number of clusters for a given
situation (a training dataset is defined as a dataset used
to train or build a model). Moreover, the subjective
estimation of the number of clusters must not be un-
derestimated, and, even if other methods are used, it
might be useful for identifying real patterns and dis-
carding outliers or identifying potentially valuable clus-
ters.

There are many statistics that can be used to estimate
the optimal number of clusters in a dataset [18,76].
These statistics are sometimes included in the cluster-
ing algorithm, stopping the iterations when a given
value is reached, although these rules might have lim-
itations [66]. A useful method for deciding on the
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number of clusters consists in calculating distance-
based statistics for decreasing numbers of clusters.
Sharp variations in the values of these statistics indicate
potentially optimal numbers of clusters. Thus, plotting
the number of clusters vs. the value of the statistics is
often employed to detect these variations (that look as
“peaks” or “valleys”, as shown in Fig. 2). Examples of
such statistics are the Dunn index and the Hubert’s #.
Model-based methods use a different approach, trying
to optimize some criterion functions, such as the Bayes-
ian inference criterion (BIC). Notwithstanding, quoting
Yeung and Ruzzo [52], “on purely philosophical
grounds, it seems impossible to determine the ‘right’
number of clusters, or even to define the concept, in
the absence of a well-grounded statistical model”.

These authors stated in 2001 that a well-grounded
statistical model was not yet available for gene ex-
pression data, and we could say the same for CASA
data. This is not to say that subpopulation analysis in
CASA data has no real value, but that further re-
search must be done to identify the best methodology
to carry out this analysis, and even developing cus-
tomized ones.

4.4. Validation of the cluster solution

Cluster validation is another important step that
should be performed after a clustering analysis. There
are many statistical strategies to validate a cluster so-
lution [18,52,76], some of them apt for CASA cluster-

Fig. 2. Example of four indexes for choosing the final number of clusters. A CASA dataset (1000 motile spermatozoa) was processed using the
partitional algorithm CLARA [17], with k (final number of clusters) taking values from 2 to 12. For each k value, four validation statistics were
calculated: the ratio among the average distances within clusters and between clusters; the Dunn index (ratio among the minimum separation and
maximum diameter of the clusters); the Hubert # (which assess the compliance between a partitioning and the distance matrix); and the average
silhouette width (the silhouette value measures the degree of confidence in the clustering assignment of a particular observation). It is expected
that a correct number of clusters would be followed by an increase of the within/between ratio when decreasing the number of clusters. For the
other indexes, peaks announce choices that might reflect the adequate cluster structure of the dataset. It is important to realize that more than one
choice is possible, and that different indexes might not agree. For instance, the Hubert # and the average silhouette indicate that 4 and 10 would
be good choices, whereas the Dunn index show 10 clusters as a bad option, suggesting 8 and 11 clusters instead (Dunn index is more sensitive
to noise than Hubert # or the average silhouette width [76]). Note that 4, 8 and 10 are followed by sharp increases of the within/between ratio.
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ing. The best option would be to compare our classifi-
cation to a standard—already classified—dataset, but it
might not be possible. The adjusted Rand index or
Hubert’s # can be used to assess the degree of agree-
ment between two classifications [47], being useful not
only to compare with a standard, but also to compare
different clustering approaches (a sensible strategy, es-
pecially when testing the suitability of different algo-
rithms on our dataset). Cophenetic correlations, which
measures the similarity between original dissimilarities
and dissimilarities estimated from the clustering, can be
used to validate the solutions of different algorithms,
but only when hierarchical methods are used [66,76].

Once sub-optimal methods are discarded, the stabil-
ity of the cluster solution can be tested. Clusters should
be tested for quality (as much compact and separated as
possible), stability (consistency of the solution even in
the presence of disturbances) and, of utmost impor-
tance, biological meaning. Some statistics for obtaining
the optimal number of clusters can be also used for
assessing cluster quality, as mentioned in the previous
paragraph. Stability can be assessed by subsampling,
assuming that random samples from the dataset would
produce a consistent clustering solution. Others have
proposed the use of bootstrapping or jackknifing (kind
of resampling methods) to generate many slightly per-
turbed datasets from the original data, and testing if the
clustering structure remains the same despite of the
perturbation [77]. Finally, even if statistically optimal,
a cluster solution may lack biological significance.
Therefore, researchers must study the results of cluster
analysis carefully and, if possible, test the subpopula-
tion pattern against other biological data (sperm phys-
iological parameters or fertility results).

We must point out that in any case it is correct to
compare the average values of the clusters (using p
values) to probe the validity of a clustering solution.
Clustering algorithms are best suited to separate cases
among distinct groups, and therefore, finding signifi-
cant p values after such a comparison is not a proof of
the validity of the classification, but something ex-
pected!

5. Working with the subpopulations

After assigning the observations (spermatozoa) to
clusters (subpopulations), the latter can be character-
ized by calculating the respective average values of
the CASA parameters (the median and other robust
estimates should be preferred). The frequencies of
each subpopulation within samples, males and/or

treatments can be easily calculated, thus obtaining
different subpopulation patterns. These population
frequencies can be used for carrying out further sta-
tistical analyses. Differences in the relative propor-
tions of the subpopulations among samples or treat-
ments may relate to changes in sperm physiology.
Similarly, regression or other statistical techniques
may be used to relate subpopulations to other sperm
features (physiological markers, fertility results, etc.)
[39,41], and to test their predictive value. In fact, this
is the final aim of subpopulation analysis, where its
usefulness can be tested and applied to better under-
stand sperm biology.

Some difficulties can arise when comparing sub-
populations obtained from different datasets (even
within the same experiment), because the subpopula-
tion characteristics could vary. Most of the time it is
easy to find analogies among subpopulations found in
different analyses (“slow and non-linear spermatozoa”,
“fast and linear”, etc.), which might be enough for most
purposes. Nevertheless, some graphical tools can help
when comparing different subpopulation sets. For in-
stance, Chernoff faces can be very effective for finding
relationships among objects defined by many numeric
parameters (such as CASA clusters), because of the
ability of the human brain to deal with face-like entities
[24,33].

Finally, it is expected that subpopulation studies
advance beyond the unsupervised classification meth-
ods described previously. Once the subpopulation pat-
terns are characterized, it would be desirable to use
validated datasets as a guide to classify new datasets,
instead of repeating the clustering process. This has
been attempted in several studies. For instance, Holt
[26] used discriminant analysis (a supervised classifi-
cation system) to assign cluster memberships to unclus-
tered datasets, using an initial dataset that had been
classified using cluster analysis. Data mining and ma-
chine learning are disciplines that can contribute enor-
mously to this purpose. Machine learning is aimed at
design computer programs that solve a task not based
on predefined rules provided by the user, but using
relations that they ‘learned’ from the information, data
or feedback that they receive [78,79]. A dataset (the
clustered one) is used as a training sample. Using that
dataset, the system builds a prediction model (learner),
enabling prediction of the outcome for new observa-
tions, the test set. The application of these statistical
tests on validated clustered datasets would allow the
development of new applications based in CASA-de-
fined subpopulations.
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6. Future perspectives and conclusions

Use of sperm subpopulation analysis is not yet wide-
spread. Even though the availability of CASA for mo-
tility assessment has increased and its use has been
reported in almost 500 articles in the last 10 years, only
around 30 of them reported using cluster analysis to
detect sperm subpopulations. Indeed, while other areas
have received dedicated attention from the Statistical
Sciences [78,80], sperm motility analysis by multivar-
iate methods has not spread beyond reproductive jour-
nals yet. There are promising results, but many aspects
must be studied in detail (e.g., the internal characteris-
tics of CASA datasets, cluster shapes, algorithm opti-
mization, variable selection methods, etc.). Moreover,
it is necessary to perform comparative studies among
several statistical approaches, using both real and sim-
ulated datasets. We should be able to define the typical
clustering structures of sperm from different species, at
physiological or non-physiological conditions, while
selecting a set of robust and validated statistical proto-
cols to process these data. As mentioned previously, it
may be desirable that, once studies on unsupervised
classification are able to characterize clusters with a
defined biological meaning, we apply machine learning
techniques [78], to develop automated supervised clas-
sification of sperm samples. Given the increasing ca-
pability of computer hardware, CASA software could
be upgraded to yield reliable information about sperm
subpopulations in real time.

To achieve these goals, we must also consider three
factors. First, CASA systems, both hardware (special-
ized optics, high definition cameras, fast computers)
and software (fast and bug-free, improved track-resolv-
ing algorithms) must continue improving. It is neces-
sary that developers follow the minimal requirements,
improvements and standards demanded by experts
[10–14]. CASA data are greatly affected by variations
among software algorithms (to obtain VAP, ALH, etc.)
and acquisition settings. Therefore, researchers should
adhere to the aforementioned recommendations as
closely as possible, detailing in their reports the settings
of their systems with great detail, and CASA develop-
ers should provide as much information as possible
about their products.

Second, open source solutions should be developed
and be available, together with proprietary options.
Open source software has been successfully applied in
many biological fields, helping to advance the infor-
matics tools and to standardize methods and formats
[81–83]. Advances in open source bioimaging software
has led to promising efforts to develop an open source

CASA [15], and there are many open source clustering
options [81,84,85]. Open source software provides the
source code of the applications, allowing one to exam-
ine directly the algorithms that process the data, facil-
itating collaborative development and feedback. The
presence of open source projects usually helps enforce
standards (instead having to deal with proprietary data
formats, which need to be processed only with a spe-
cific CASA software), and promote sharing information
and standardization on image processing and statistical
algorithms.

Lastly, sperm subpopulations must be thoroughly
characterized, identifying those patterns that have a
consistent biological meaning. As indicated in the In-
troduction, several authors have made attempts to relate
specific subpopulations to the freezability or fertility of
sperm samples. It is necessary to confirm such rela-
tionships, and to perform molecular analyses to study if
spermatozoa in these subpopulations share specific
physiological traits. Moreover, only few studies have
considered the changes of motility subpopulations dur-
ing capacitation [23,26,56]. Since the fertility of a se-
men sample requires the presence of a subpopulation
responsive to the oviductal environment [64], the
changes in the subpopulation pattern must be linked to
these physiological changes and, ultimately, to the fer-
tility of the semen samples. To achieve this task, we
must take into account that artificial reproductive tech-
niques may modify both motility patterns and the rela-
tionship among subpopulations and fertility outcomes.
Future studies should characterize sperm samples and
consider different approaches regarding species, source
of the samples (epididymal, semen in seminal plasma,
spermatozoa diluted/washed/selected), storage (cooled,
cryopreserved), and application (vaginal/transcervical
or intrauterine-laparoscopic insemination, in vitro fer-
tilization, etc.). It is possible that subpopulation pat-
terns have different meanings in each of these contexts,
and research should focus in deciphering these mean-
ings.
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