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Considering the forward perspective, most studies have tried to 
establish functional relationships between sperm traits during the 
fertilization process and their performance in assisted reproductive 
techniques (ARTs), with regard to sperm resilience or fertility. Typically, 
traits such as motility, viability (either plasma-lemma integrity or the 
hyper-osmotic shock test [HOST] responsiveness), acrosomal integrity, 
or absence of abnormalities have been used as endpoints for predicting 
sperm fertility or, rather, discarding potentially low-fertility semen 
doses.10–13 Availability of advanced techniques and hardware such as 
computer-assisted sperm analysis  (CASA),14–16 fluorescence probes 
and ultimately flow cytometry,17,18 and new endpoints, e.g. capacitation 
and chromatin assessment,19,20 have allowed more objective and faster 
analysis, but the predictive power of laboratory sperm assessment 
still needs improvement.21 The routine evaluation of semen has 
traditionally included the assessment of normal sperm morphology, 
but the important subjective component has limited its practical 
use.22 The development of automatic image-processing systems has 
displaced classical methods and is a major advance in sperm analysis. 
Computer-assisted sperm morphometric analysis  (CASA-Morph) 
systems have been successfully used to determine the relationships 
between sperm shape and fertility of males23,24 or sperm freezability.25,26

There is a need to develop new analytical tools to capture sperm 
diversity better, and to improve data analysis methods. New equipment 

INTRODUCTION
Sperm research has received increased attention in recent decades, 
given the peculiarities of this cell: it develops part of its lifespan 
outside the male body, often in a hostile environment, and it carries 
the genetic material from the male to the oocyte. The differences in 
sperm morphology and physiology, even between related species, and 
the presence of highly specialized structures, have led to questions on 
the reasons for this diversity and specialization. Considering different 
sperm features, the study of sperm morphology has been considered 
an essential part of sperm research. Two main questions arise: how did 
the diversity in sperm morphology arise during speciation (a backward 
perspective) and what role do the different specializations play in sperm 
function (a forward perspective)?

Several studies have addressed the first question, many of 
them from an evolutionary point of view, and the majority being 
descriptive.1–3 These studies have put considerable effort into finding 
the ultimate cause of this sperm diversification, and how within- and 
between-male variation and within-  and between-species variation 
contribute to sperm performance and behavior.4,5 Adaptation to specific 
fertilization environments and the fertilization process itself have been 
proposed as the main selection forces.4,6,7 With these forces, sperm 
competition seems to play a major role, influencing not only sperm 
morphology but also sperm length and sperm numbers.8,9
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should take advantage of high-resolution optics and image analysis 
programs to increase accuracy and precision of laboratory tests; the 
implementation of this new equipment should allow the simultaneous 
assessment of morphological and functional sperm features. Given the 
high amount of information that is expected in the mid-term future, 
the development of new statistical methods is also necessary for the 
joint analysis of all these sources of information, which will allow a 
better assessment of relationships among sperm features and their 
functional meaning.

MORPHOLOGICAL SPERM DIVERSITY
The spermatozoon is the most diverse cell type known. This diversity 
is thought to reflect adaptation to conditions under which the cells 
function, as a way to ensure their survival in different fertilization 
environments and to maximize their fertilizing capacity.4,6 The 
spermatozoon of thousands of species has been described including 
insects,27 crustaceans,28 fish,29 birds,30 mammals,31,32 and many other 
groups. The existence of morphological diversity among species is 
widely recognized, with a high degree of variation in size, shape, 
and behavior,3,32,33 reflected in main structures (i.e., head, midpiece, 
and principal piece) and overall size. Different specializations have 
been observed, such as the absence of a flagellum or multiple flagella, 
gigantism, the presence of an apical hook, bristles or brushtail, etc. In 
some species, the shape of the spermatozoon allows it to cooperate 
with others, as in the case of sperm conjugation, a phenomenon in 
which two or more spermatozoa are physically united during transport 
through female reproductive tract.

A first attempt to explain this diversity was conducted by Franzén4,6 
who proposed that sperm modifications are adaptations to their specific 
fertilization environment. Thus, pre-  and post-copulatory selection 
such as mate choice, mode of fertilization, cryptic female choice, 
sexual conflict, and sperm competition may influence the evolution of 
sperm traits.5 Two of these traits are likely to play an important role as 
selective forces: female selection and sperm competition.9 Numerous 
studies have focused on the correlated evolution of sperm length and 
female reproductive tract design,34–38 suggesting a sexual coevolution 
of the fertilization system.39 Selection would favor very different sperm 
traits depending on whether spermatozoa are released into open 
water (e.g., external fertilizers), have to remain for longer periods of 
time in female storage organs (e.g., birds, bats and insects), or have 
a short time window to fertilize after being transferred to the female 
tract (e.g., mammals).

Sperm competition has also been found to be a significant 
source of sperm variability.40–44 High levels of sperm competition are 
associated with increases in testicular mass relative to body size5,41,45,46 
and with high relative sperm numbers45,47,48 in many taxa. While 
initial hypotheses were that an energy trade-off exists between sperm 
numbers and sperm size,49 and consequently sperm competition 
would result in a reduction in sperm size, later studies demonstrated 
that higher sperm size represented an advantage by increasing sperm 
velocity43,44,48,50–52 and that sperm competition, therefore, resulted in an 
increase of sperm size.41,53,54

Evolutionary forces
Morphological variation has been driven by evolutionary forces. 
However, the development of assisted reproductive techniques (ARTs) 
has introduced a new  –  artificial  –  source of variation in sperm 
morphology.55 The in vitro fertilization process includes stages outside 
the male and female reproductive tracts, during which spermatozoa 
are subjected to procedures aimed at maximizing reproductive success. 

The sperm characteristics that determine which are the best for 
ART may not be the same as those determined from a physiological 
assessment. Therefore, it may be expected that those males having a 
higher proportion of the relevant kind of spermatozoa would produce 
more offspring, ultimately leading to a selection toward more favorable 
sperm design for ART.

A number of studies have reported that spermatozoa with 
smaller heads withstand the cryopreservation process better56,57 and 
that the sperm head morphometry–cryoresistance relationship is 
in part genetically determined.26 The use of selection media before 
AI could also select cells of a specific morphology58 and could favor 
a certain shape although these methods are expected to work in a 
similar manner to the selection processes occurring in the female 
reproductive tract.59,60 It is too soon to assess the role that ART plays in 
the evolution of sperm morphology, but it might be advisable to follow 
up morphological changes derived from the use of these techniques, 
and their consequences.

ASSESSMENT OF SPERM MORPHOMETRY 
I – TECHNOLOGICAL ASPECTS
Many techniques can assess sperm morphometry61,62 but CASA-Morph 
has become the main choice, because it provides increased reliability 
and repeatability, and reduced subjectivity.62–64 Studies that assess the 
different sources of variation affecting CASA-Morph are critical for 
guaranteeing its repeatability and consistency among laboratories. The 
main sources of variation of CASA-Morph, other than the software and 
data analysis, are the sample preparation, fixation method, staining 
method, microscopic system  (optics and camera), and technician. 
All these steps can affect not only the repeatability of the experiments 
but also the reproducibility and the comparison of results among 
laboratories, which are necessary for the practical use of sperm 
morphometric analyses. These aspects have been studied by several 
authors,64–71 and they have not yet been completely resolved.

Sample preparation
The preparation of the sample, its concentration, and the fixation 
procedure are the first steps to consider in a CASA-Morph protocol. 
Varying the sperm concentration may affect CASA-Morph 
performance.66,72–74 Fixation, together with drying of the sample, has 
received little attention, but they are both critical steps, and it has 
been demonstrated that they affect CASA-Morph results.75,76 During 
slide preparation, it is advisable to make at least one replicate so that 
inter-slide variability can be assessed,77,78 and that replicates that fall 
outside certain thresholds can be rejected, because of unacceptable 
variability in slide preparation.

The choice of staining protocol is the issue on which most 
authors have conducted their studies63,65,66,68,70–73,79,80 since it influences 
background noise, sperm contrast, and the identification of 
different areas within the cell. To prevent these problems during 
morphometric sperm analysis, fluorescence-based methods in 
combination with a CASA-Morph system have been developed for a 
more precise measurement of the nucleus, acrosome, and sperm head, 
yielding promising results.64,81 In addition, a new system has been 
developed (Trumorph®, Proiser R+D, Paterna, Spain) that avoids fixing 
and staining of the sample, and in combination with phase-contrast 
microscopy, allows assessment of sperm size and shape in wet-mount 
preparations.82,83

The higher the quality of the hardware (microscope, lenses, and 
camera), the more reliable the analysis, at least for experimental 
work. At high magnification, lenses capable of providing a sharp, 
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aberration-free and bright image, and a camera capable of high 
resolution will reduce the errors of the CASA-Morph software and 
will allow a more reliable analysis.69,74 However, widespread use of 
CASA-Morph systems in clinical or production environments may 
require the use of cheaper equipment. In such cases, efforts should be 
directed at improving staining results and optimizing software to cope 
with the limitations due to the use of basic equipment.

Regarding software, automatic methods should be preferred, 
to save analysis time and to reduce operator errors. Goulart et al.69 
suggested using semi-automatic methods, with some operator 
intervention. When the interaction of the technician with the software 
is limited to removing misdigitized spermatozoa, the effect of the 
technician in the analysis is relatively low, compared with subjective 
morphology assessment.25,78,84

Replication and statistical procedures
Some authors have tried to establish the minimum number of 
spermatozoa necessary for obtaining reliable and stable morphometry 
parameter values. A  general recommendation is that at least 200 
spermatozoa should be analyzed per sample85 although some 
authors have suggested that lower numbers could be adequate 
for some species and experiments.25,68,70,72,84,86 If the aim of the 
analysis is to obtain a proportion, usually the percentage of normal 
spermatozoa, the confidence intervals vary with the value of that 
proportion. If the proportion of abnormal forms is close to the 
extremes of the range (0%–100%), a situation that is fairly common 
in animal reproduction, the coefficient of variation (CV%) increases 
considerably.85,87 Currently, the capabilities of computers, sophistication 
of CASA-Morph software, and availability of automatic acquisition 
systems  (e.g.,  microscopes with motorized stages and autofocus) 
allow the acquisition of large amounts of data with little operator 
time. Moreover, if the aim of CASA-Morph is subpopulation analysis, 
the number of spermatozoa analyzed needs to be high, because the 
total number analyzed (the sample size) must be divided among the 
subpopulations, thereby decreasing the statistical confidence of the 
statistics defining each population. This would be aggravated if there 
were subpopulations of relatively low size  (thus receiving a small 
percentage of the total number of spermatozoa analyzed).

In addition, it is also advisable to assess a high number of 
individuals, to have an adequate representation of the species, allowing 
conclusive results to be obtained. Thus, the main problem of most 
CASA-Morph studies so far is the use of a low sample size.23,26,88–91 
Only a few authors24,92–94 have conducted large-scale studies to assess, 
in the same species, the sperm head morphometry and also to study 
its relationship with sperm function.

It must be pointed out that most studies have used incorrect 
statistical techniques to compare protocols, not only regarding the 
number of spermatozoa analyzed but also technician effect, stains, 
etc. These statistics, generally based on a means comparison or 
correlations/regressions, are not appropriate for assessing differences 
between methods.95,96 Thus, the conclusions are usually limited and 
should be reevaluated using the appropriate methodology. Only a 
few studies84 have applied correct statistical methods (e.g. Bland and 
Altman agreement coefficients97).

Regarding the consistency and repeatability of analyses, 
laboratories should set up a quality assurance system for CASA-Morph. 
The use of latex beads of a determined size69 or standard sperm doses 
could be combined in a quality assurance protocol, which could also 
be used for assessing inter-laboratory variability.

As a final point, CASA-Morph protocols and software should 
be validated, a process that is not always straightforward. In 
general, protocols have been validated for reduced intra-slide and 
between-slide  (for the same sample) variability, while enhancing 
between-male or between-treatment variability and reducing 
digitization or analytical errors.66,68,78 Some studies have compared 
different protocols, describing their respective strengths and 
weaknesses. However, most validations lack the definition of a “gold 
standard” that would allow a broader comparison among studies and 
protocols. Examples of such a “gold standard” would be morphometric 
data obtained from electron microscopy (much more resolution and 
thus more reliable, although not fit for routine use) or a previously 
validated technique. Some authors have used other methods, such as 
measuring the heads directly on screen with calipers, and comparing 
these measurements with those provided by the CASA-Morph 
software.70

ASSESSMENT OF SPERM MORPHOMETRY II – FUNCTIONAL 
ASPECTS
Studies on the relationships between sperm design and sperm 
function have often yielded contradictory results.24,44,89,94,98–100 Most 
of the research made in this aspect has usually been conducted at an 
interspecific level44,101 since finding differences between species is easier 
than intraspecific or intra-male levels. Studies at the intraspecific level 
are quite limited and most of them have used a low sample size (fewer 
than 25 individuals)23,88,89,91 making robust conclusions difficult to 
obtain.

Recently, some authors have reported that some sperm 
characteristics are genetically determined,26,102 sperm morphometry 
being one of them. Thus, it is expected that sperm morphometry 
reflects differences in sperm function. Indeed, different sperm 
morphometric features have been identified between breeds103 but 
also between animals from the same breed belonging to different 
herds (i.e., reflecting their origin).92

Ignoring the differences between the morphometric dimensions 
of X- and Y-bearing spermatozoa due to their DNA content,104 most 
differences detected between spermatozoa are probably caused by 
changes in the media in which spermatozoa are suspended, which 
could modify the sperm volume. Some authors have explored the 
morphological response to diluting or washing the sperm sample,105,106 
to capacitation107 or to cryopreservation.26,108–110

Sperm cryopreservation and morphology
The effects of cryopreservation on sperm head morphometry have 
been studied in numerous species: humans,111 bulls,105,112 boars,113,114 
rams,26 goats,115,116 stallions,117 dogs,118 bears,119 and red deer.56,57 All these 
studies have reported a significant reduction in sperm head dimensions 
by cryopreservation of freshly extended samples. This reduction 
in sperm head dimension is reflected not only in the size of sperm 
head but also in its shape. Different hypotheses have been proposed 
to explain the reasons for the sperm head dimension decrease after 
cryopreservation, including osmotic changes,117,120 alterations of some 
cell compartments,25,117 damage or loss of the sperm acrosome,121,122 and 
over-condensation of sperm nuclear chromatin.74,119

The spermatozoa from different individuals may exhibit 
significantly different responses to the same freezing treatment.123–125 
Thus, males can be classified as “good” or “bad” freezers on the basis 
of their sperm cells’ resistance to the cryopreservation process, and 
sperm morphometry is a useful tool to this end. For example, Hidalgo 
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et  al.115 observed that in the goat, sperm morphometric changes 
after cryopreservation were lower in semen samples showing better 
quality in fresh semen, while a further reduction in sperm dimensions 
was observed for those semen samples with initial poor semen 
quality. Esteso et  al.126 observed that deer with better cryoresistant 
spermatozoa were characterized by a low sperm head area and a large 
sperm head shape factor  (defined as the length/width ratio). These 
authors also observed that semen samples with lower intravariability 
for sperm morphometric measurements showed smaller changes in 
their morphometry.56 Moreover, they reported that those males with 
no or small changes in sperm dimensions after freezing-thawing 
showed a low sperm head dimension in the extended samples. These 
authors thus suggested that in semen samples of better quality the 
sperm cryodamage was less and the effect of cryopreservation on the 
sperm head morphometry was also less. Ramon et al.26 have gone a 
little further on the prediction of sperm cryoresistance. Whereas a 
general study of the morphometric characteristics of the ram sperm 
head at each stage of the freezing process did not allow an adequate 
identification of the males with better sperm cryopreservation, the 
study of patterns of change throughout the cryopreservation process 
led to the identification of differently defined patterns clearly related to 
cryopreservation ability. Furthermore, these authors showed that each 
male retained its pattern of response for all ejaculates examined, and 
that those males sharing the same pattern of response were more closely 
related, suggesting the possibility of a genetic control of the response.

Therefore, the study of the morphological changes in response 
to cryopreservation may be presented as an opportunity to improve 
the reproductive ability of individuals. First, as a way to indicate what 
changes happen and how they occur, and second, as a tool to develop 
better ART methodologies to prevent undesirable response patterns, 
or for designing selection programs toward fitter sperm designs.

Despite most of the studies on the effect of cryopreservation on 
sperm morphology have been focused on the evaluation of sperm 
head features, Ros-Santaella et al.109 recently reported that stags not 
differing in sperm head dimensions showed significant differences in 
sperm cryoresistance that were strongly related to the volume of the 
sperm principal piece. This study indicates a key role of the sperm 
flagellum during cryopreservation and suggests new approaches for 
the characterization of those spermatozoa with good cryoresistance.

Sperm physiology and morphology
Other aspects of sperm physiology and morphology may be 
considered; spermatozoa actively migrate through the female genital 
tract. In many species, the first barrier is cervical mucus, which only 
allows the advance to the uterus of progressively motile sperm with 
normal morphology and through which they migrate (with the aid of 
myometrial contractions) to the oviduct, where fertilization will take 
place.127 In attempts to mimic this process of in vivo selection, different 
sperm selection methods are routinely used in in vitro protocols, such 
as in vitro fertilization (IVF) or sperm sorting, to enrich the sample 
with morphologically normal and motile spermatozoa.128 During this 
process, not only morphologically normal and progressively motile 
spermatozoa are selected, but also the male germ cells undergo 
physiological changes, termed capacitation, which are fundamental 
prerequisites for the acquisition of functional sperm competence 
to undergo the acrosome reaction and hence fertilize the oocyte.129 
However, it is not yet known in detail how these processes affect sperm 
morphology; more importantly, the morphometric characteristics of 
the cells that eventually fertilize the oocyte are unknown. Recently, 
García-Vázquez et al.130 reported how boar spermatozoa in the female 

reproductive tract are selected on the basis of their size and shape, 
with those with a larger head and longer tail being those reaching 
the fertilization site. For sperm morphometric changes during 
capacitation, García-Herreros and Leal107 reported that the induction 
of in vitro capacitation in bovine spermatozoa modified sperm head 
morphometry. As capacitated spermatozoa showed a decrease in all 
sperm head size and shape parameters, the authors concluded that 
sperm head morphometry is an objective diagnostic tool for sperm 
assessment during capacitation.

During the migration of spermatozoa through the female genital 
tract toward the fertilization site, sperm motility is essential.131 
Several studies have addressed how sperm morphology and sperm 
velocity may be related,23,44,51,99,109,132 and their impact on reproductive 
performance.23,98,133 However, results are contradictory on how sperm 
diversity translates into variation in sperm velocity.43,99,132 Only a few 
studies have been made in the same species to study directly sperm 
design and motility. Ramon et  al.23 reported, for the first time, the 
relationships between stag sperm design and velocity  (in the same 
sample) in a species with internal fertilization, and the role that both 
may play in male fertility. These researchers observed that males with 
ejaculates containing a high percentage of spermatozoa with fast and 
linear motility also had small and elongated heads and yielded higher 
fertility rates. These relationships were also reported by Fitzpatrick 
et al.134 in externally fertilizing species (fish). Sperm head elongation 
may play an important role by making sperm more hydrodynamically 
efficient, which, in turn, may influence sperm fertilizing ability. Indeed, 
other authors have reported that spermatozoa with elongated heads 
may be faster23,44,98 because of lower resistance to forward progression. 
This could compensate evolutionary constraints to increases in sperm 
length by allowing increased swimming efficiency, or for the same 
reason, it might increase sperm lifespan if energy reserves last longer 
or are used more efficiently, which would result in more spermatozoa 
reaching the fertilization site.43

In addition, because most of the sperm head is occupied by the 
nucleus, its compactness can influence sperm head shape. Some authors 
have presented evidence supporting the involvement of protamines 
in sperm head shaping, leading to smaller and more elongated sperm 
heads when they are present in high proportions.135,136 Similar results 
have been reported by Gómez Montoto et  al.137 who observed in 
rodents that an increase in sperm swimming speed is also associated 
with elongated sperm heads. On the other hand, they also found that 
an increase in total sperm size maximized the chances that sperm cells 
would reach the ova in a sperm competition context. On whether sperm 
shape and dimensions reflect defects in the structure and integrity of the 
sperm chromatin, Sailer et al. (1996) reported that variations in sperm 
head morphometry were related to abnormal chromatin structure in 
the bull. However, many researchers have not found these relationships 
in other species.103,138,139

There are few intraspecific studies on the role of sperm 
morphometry and reproductive performance, and they have provided 
contradictory results.23,24,94,100,112 For this reason, it is advisable to settle 
these questions using more sophisticated techniques that define which 
sperm morphometric parameters are crucial for breeding success.

PERSPECTIVES ON THE FUTURE OF SPERM 
MORPHOMETRIC STUDIES
Normal sperm morphology is a major criterion in sperm quality 
evaluation. However, although there is evidence of relationships 
between sperm morphometric characteristics and fertility, results 
vary widely and are sometimes contradictory. Future studies should 
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aim at understanding the causes of sperm design diversity and the 
mechanisms that generate them, with emphasis on intraspecific 
variability. In addition, more attention should be focused on other 
sperm structures besides the head. The implementation of scientific and 
technological advances could benefit the simultaneous examination of 
sperm phenotype and sperm function. Such technology could combine 
high-resolution optics and image analysis programs to increase 
the accuracy and precision of laboratory tests, and these should go 
hand-in-hand with the advance in new statistical methods that allow 
the analysis of large amounts of data given for these novel technologies.

Statistical approaches
Since the importance of sperm flagellar dimensions on sperm function 
has been demonstrated,98,109 CASA-Morph systems should be modified 
to incorporate new tools that allow an automatic and accurate 
evaluation of these sperm structures. These advances will allow the 
undertaking of basic studies of sperm morphometry since most of the 
research done so far has focused only on the sperm head. Therefore, 
future studies of sperm morphometry should not overlook the role of 
the flagellum as a modulator of sperm function.

Regarding the accuracy of the evaluation of the sperm shape, 
CASA-Morph systems only provide an approximation of head shape 
on the basis of sperm head linear dimensions.26,55,73,92 Elliptic Fourier 
analysis is one method, based on the use of successive points located 
by a coordinate system that fits the cell perimeter to a Fourier function, 
and that can identify more features of morphological variation in 
spermatozoa than manual methods.140,141 However, it has not been used 
by many researchers. Moreover, geometric morphometrics has been 
developed to avoid the shortcomings of CASA-Morph morphometric 
parameters and was recently used by Varea Sánchez et al.142 to evaluate 
sperm head morphometry in rodents. These authors obtained a better 
characterization of sperm shape, finding some regions in the sperm 
head that were not characterized by the linear descriptors, and which 
were nevertheless susceptible to change. Furthermore, geometric 
morphometrics should allow the assessment of size and shape 
separately, and the exact definition of where the main shape differences 
are located in the sperm head. Nevertheless, that study dealt with 
different mouse species, whose sperm heads have convoluted shapes 
and vary noticeably between species. However, it is possible that in 
species with spermatozoa of more simple shape (ungulates, primates, 
and humans), classical CASA-Morph systems can provide enough 
information to define sperm head shape adequately.

Sperm preparation
Other new methods have been developed to evaluate sperm 
morphometry without the need for sperm staining.143 These methods 
are focused on humans and allow the use of the observed spermatozoon 
to be used in assisted reproductive techniques such as ICSI after the 
measurement. However, since chromatin and DNA integrity are not 
always related to sperm head size or shape,103,138,139 further studies 
should be done to find phenotypic sperm parameters providing 
accurate information about sperm function, allowing the selection of 
spermatozoa which will generate healthy offspring. Along this line, the 
study of proteins associated with sperm head shape144 would offer an 
important new tool to deepen knowledge of sperm shape and sperm 
function.

The combination of flow cytometry with single quantitative 
image analysis will provide new and interesting capabilities. This 
type of analysis will couple the collection of high-throughput data 
with streamlined image analysis. Sperm features such as size and 

shape, granularity, intensity, radial distribution, and texture could be 
obtained145 in a large sperm population. In addition, the main advantage 
of this technique, which makes it unique, is the ability simultaneously 
to evaluate the morphometric and physiological parameters in the 
same sperm cell.
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