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Abstract

Rationale: Neuroimaging and clinical studies have defined human sporadic cerebral small vessel disease but the patho-

physiology remains relatively poorly understood. To develop effective therapies and preventative strategies, we must

better understand the heterogeneity and development of small vessel disease at a cellular level.

Hypothesis: Small vessel disease lesions as seen on neuroimaging have specific neuropathological correlates.

Methods and design: Standard histological samples are taken from strategic areas of the brain typically affected by

small vessel disease, in cases with a range of disease from mild to severe and controls. Tissue is formalin fixed, scanned

using 7-tesla magnetic resonance imaging and processed for histology. Histological slides are digitalized then registered

with the corresponding magnetic resonance image. Small vessel disease burden is assessed and lesions are precisely

identified on the ex vivo imaging and microscopy independently then compared. The tissue can be interrogated using

multiple magnetic resonance sequences and histological methods targeting the gliovascular unit.

Study outcomes: The primary outcome is identifying and defining the cellular characteristics of small vessel disease

lesions compared to imaging. Secondary outcomes are related to obtaining information about abnormalities of protein

expression in the gliovascular unit, defining groups of small vessel disease severity in our cohorts for future analysis and

developing a reliable, reproducible protocol for accurate radiological–histological lesion comparison, which can be

applied to other neurological diseases in the future.

Discussion: Comprehensive, precise pathological–radiological–clinical correlations in small vessel disease will provide

greater insight into associations and pathophysiology underlying magnetic resonance imaging findings in normal- and

abnormal-appearing tissue, ex vivo and in vivo.
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Introduction

Sporadic human cerebral small vessel disease (SVD) is
common, causing 25% of all ischemic strokes,1 85% of
all intracerebral haemorrhage2 and vascular dementia.
SVD is seen in at least 56.5% of Alzheimer’s disease3

and synergistically worsens symptoms.4 Although
the neuroradiological characterization of SVD lesions
has been standardized,5 similar approaches are needed
in pathological assessment of SVD, and the
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pathological basis of radiological lesions remains
poorly understood.

Pathological studies are not dynamic. They are
limited to tissue taken at the time of death. Much
of the pathological literature has focused on the
lacune, which is relatively easily identified at autopsy,
but is descriptive.6 Attempting to understand the
pathophysiology is difficult;7 pathological studies, espe-
cially with imaging correlations, are few,8,9 with little
information on histopathological changes in and
around SVD lesions seen on imaging and whether
lesions vary by brain region.10 Systematic reviews of
studies comparing post-mortem imaging and histology
appearances8,11 reveal just three studies correlating 79
microbleeds identified on magnetic resonance imaging
(MRI) with histopathology in SVD in 15 cases,12–14

while one other paper described three cases with at
least three microbleeds.15 Five papers studied lacunes:
2 with 59 lacunes in 18 cases,16,17 one with four
cases and at least four lacunes,18 one with two cases
and unknown numbers of lacunes19 and one study
describing lacune appearances without any details of
numbers of cases or lesions.20 There are greater num-
bers of studies looking at white matter hyperintensities
(WMH), but their pathophysiology has not yet been
fully eluciated.21,22

All previous post-mortem studies aiming to charac-
terize SVD lesion appearances image whole brains,
whole hemispheres or brain slices (manuscript in prep-
aration). Some studies have attempted to provide more
detailed localization by scanning both whole brains and
individual macroscopic coronal brain slices.10,23 This is
of value when assessing overall disease burden, but
lesion locations are typically approximated using gross
landmarks24 or tissue is sampled broadly from areas
identified on imaging, precluding accurate comparison
of individual lesions.25 As such these studies cannot con-
fidently correlate histology with imaging. This may, at
least partly, explain the limited understanding of SVD
pathogenesis, the lesion heterogeneity at a cellular level,
and the modest associations described so far between
imaging and clinical features.8

We developed a protocol to precisely compare the
histological and radiological features of SVD in human
post-mortem brain tissue, to test the hypothesis that
different SVD lesions identified and defined on MRI
represent specific histological, lesions. We aim to use
this information to define the histological lesions of
SVD and compare it to clinical and in vivo radiological
data. In the future we will further explore the patho-
physiological mechanisms using targeted genetic
studies, with the intention of ultimately being able to
refine SVD animal models and identify therapeutic tar-
gets and preventative strategies.

Methods

Design

This is a prospective observational study using tissue from
three cohorts representing severe SVD (Lothian study of
INtraCerebral Haemorrhage, Pathology, Imaging and
Neurological Outcome, LINCHPIN2), normal aging
(Lothian Birth Cohort 1936, LBC1936;26 range from
normal to severe SVD, including lesions in evolution)
and controls (no or only mild SVD) within the Medical
Research Council (MRC) Edinburgh Brain Bank.

Study population

Inclusion criteria

. LINCHPIN27 and LBC193628 defined by specific
cohort criteria.

. Controls: sudden, unexpected, non-suspicious deaths
with no known neurological disease in life.

Exclusion criteria

. Time from death to autopsy >5 days.

. Next of kin decline authorization.

Post-mortem neuropathological examination. A standard
neuropathological post-mortem examination is carried
out by at least one neuropathologist according to Brain
Bank protocols (unpublished), extended for this study
to include areas typically affected by SVD on MRI.
The brain is weighed, the cerebellum and brainstem
are removed and 1 cm thick coronal sections are
made. The cerebellum is sliced sagittally and the brain-
stem axially. Samples approximately 2� 2�1 cm are
taken from defined neuroanatomical areas (Table 1).
Tissue from the left cerebral hemisphere only is used,
as SVD is usually considered symmetrical.5 The right
hemisphere will also be studied in 10% of cases, ran-
domly chosen, to ensure this symmetry is true in
our population. Each sample is bisected in the same
plane as it was cut; one piece is placed in a plastic
cassette and fixed in 10% unbuffered formalin in a
plastic tube for 24–72 hours before MR scanning and
histology (Figure 1). The complementary sample is
frozen in nitrogen vapor for long-term storage at
�150�C to support future research applications.

Post-mortem magnetic resonance imaging. Through
pilot work, we developed the most practical approach
to satisfy both our requirements to make precise histo-
pathological comparisons and to obtain excellent
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quality images. To minimize air bubble artefact, the lid
of the container is secured under formalin cover and left
to stand for 5 minutes, it is tapped to release trapped air
and then the lid is re-secured under formalin. The

cassettes are held by pieces of plastic at the sides with
empty cassettes at each end to prevent movement.

The tissue is scanned overnight in a 7T small-bore
rodent MRI scanner (Agilent Technologies, Yarnton,
UK) equipped with a 400mT/m gradient insert with
sequences similar to those used in vivo to detect evi-
dence of SVD (Table 2). The long acquisition time
(135 minutes) increases sensitivity to small subtle
features. For all scans (except the scout), the field of
view is 60� 60mm, the slice thickness is 1mm with no
gap orientated axially, resolution 0.23� 0.23� 1.0mm,
30 slices are obtained across the cassettes containing
the tissue. For the scout scan, the field of view is
120� 120mm, slice thickness 2mm with a 2mm gap
in three planes. Shimming is done on the entire plastic
container using an automated routine for global shim-
ming followed by manual adjustment of the shim coils.
This optimizes the homogeneity of the magnetic field to
avoid artefact on images. Quality of shim was checked
by measuring the 50% linewidth of the H2O peak in an
unlocalized 1H spectrum. Typical values were 50–60Hz.

We are not aware of any established grading systems
for imaging tissue blocks and grading the SVD burden
therein. We have therefore adapted existing protocols
for assessing SVD in whole brain MRI5 which were
developed, validated and applied in our studies of
SVD including LBC1936 and LINCHPIN,29–31 and
have been tested in these studies over the past two dec-
ades. Our existing protocols for assessing SVD on MRI
are now included in international standard definitions.5

Figure 1. Small tissue samples are placed in plastic cassettes for standard histological processing (a). Eight cassettes are stacked in

a plastic container and fixed (b) before scanning in a small bore 7T MRI scanner (c) (gradient echo scout). Tissue is only placed in

the cassettes where the gradient coil is mostly linear, empty cassettes at each end and folded plastic along the length of the stack

prevent movement within the container.

Table 1. Areas affected by maximal radiological SVD in life

selected for MR-histology comparison

Areas studied

� Anterior frontal parasagittal cortex (BA9)

� Broca’s area (BA44/45)

� Temporal tip (BA38)

� Frontal, temporal, parietal, and occipital white matter

� Caudate nucleus

� Basal ganglia

� Hippocampus

� Hypothalamus

� Thalamus

� Cerebellum

� Pons

� Medulla

BA: Brodmann area.
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Disease burden assessment on MR and histology is per-
formed independently and blinded to clinical and all
other data.

Histology. After scanning, the formalin-fixed tissue is
paraffin-embedded in its entirety and sections are
stained based on previously published data from histo-
logical and imaging literature to assess the gliovascular
unit and general neuroinflammatory and glial responses
(Table 3). SVD burden,32 Alzheimer’s disease path-
ology,33,34 a-synuclein35 and amyloid angiopathy36 are
graded using published, validated systems. Slides are
digitally scanned using the Xeiss Axioscan system.

Image registration and analysis. The MR slice that best
matches the histology section is selected visually, and
the corresponding slice for each MR sequence is trans-
formed into NIfTI format.

The size of the histology image varies but is of the
order of 10–20 thousand pixels in each dimension.
To facilitate registration, they are rescaled by a factor
of 1/20 using a Mitchell–Netravali kernel37 and con-
verted to grey levels. To ensure successful registration,
the histology images need to be reoriented to match
roughly the position of MR images, which might
involve flipping the image around the x or y axis.
The histology samples are cut to be approximately rect-
angular in shape and kept in alignment with the rect-
angular cassettes. Due to the standardized nature of the
histological processing methods, there are only a

limited number of opportunities for it to be manipu-
lated and rotated away from the position in which it
was scanned. Therefore, there are only four possible
orientations of the histology sample. The reorientation
is done automatically by creating the four possible
orientations of the histology image (original, flipped
in x, flipped in y, flipped in x and y), registering each
to the T1-weighted image (detailed below) and calculat-
ing a similarity score (normalized mutual information)
between the histology and MR in each case. The high-
est similarity score corresponds to the best match
between histology and the T1-weighted and therefore
permits automatic selection of the correct histology
orientation. An image with the outline of the MR over-
laid on the histology is produced for each sample to
enable a rapid visual confirmation of whether the regis-
tration has been successful (Figure 2). The automatic
reorientation gives a satisfactory registration in >85%
of the cases, in the cases where it fails, the histology is
reoriented manually before registration, which then
completes successfully.

Automatic registration of MR to each histology
image is performed as follows. First, the T1-weighted
image is used to create a binary mask of the tissue using
k-means clustering38 with three clusters. The binary
mask was created by setting the pixels in the cluster
of the maximum center to 1 and the remaining pixels
in the image to zero. This mask is applied to all MR
images to exclude background signal and then cropped
to the minimum field-of-view containing the tissue.

Table 2. MR imaging sequences and their parameters

Sequence Scout T2 T2* T1 FLAIR

Type GE FSE GE FSE FSE

TE (ms) 3.9 53 22 9.2 40

TR (ms) 23.3 2500 801 700 8000

TI (ms) 1816

Flip angle (�) 20 90/180 20 90/180 90/180

Echo spacing (ms) 13.25 20

Echo train length 4 2

Band width (Hz) 52k 78k 50k 100k 50k

Matrix 256� 256 256� 256 256� 256 256� 256 256� 256

NEX 2 8 6 4 4

Acquisition time (minutes) 0.2 21.3 20.5 12 68.4

FLAIR: fluid attenuated inversion recovery; GE: gradient echo; FSE: fast spin echo; TE: echo time; TR: repetition time; TI: inversion time; NEX: number

of signal averages.
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Linear registration is then performed between the
T1-weighted and histology images using NiftyReg
over five levels of progressively finer resolution, with
default settings.39 The transformation obtained is
applied to the other MR modalities of the same
slice, to obtain their registered versions (Figure 2).
All registered MR images and the resampled histology

are then saved in NIfTI format for visualization
(MRIcro40). All processing is performed in R (v. 3.4)
within RStudio (v. 1.0), using the packages ‘‘jpeg’’,
‘‘divest’’, ‘‘mmand’’, ‘‘RNifti’’, and ‘‘RNiftyReg’’.41–45

The registered images are visualized and SVD lesions
identified and described during grading are selected in
one modality and automatically identified in the other,

Table 3. Special stains and immunohistochemical stains used for assessment of SVD, vascular and neurodegenerative pathology

Stains Concentration Antigen retrieval Manufacturer Feature assessed

Cut at 4 lm

BA4 1:100 Formic acid Dako, Glostrup, Denmark,

M0872

Amyloid plaques, cerebral

amyloid angiopathy

Tau 1:2500 None Thermo Fisher Scientific,

Illinois, US, MN1020

Neurofibrillary tangles

a-Synuclein 1:200 Pressure cooker

and citric acid

Thermo Fisher Scientific,

Illinois, US, AHB0261

Lewy bodies

Myelin basic protein 1:500 Formic acid Abcam, Ab77895 Myelin

Neurofilament heavy 1:500 Citric and formic

acid

Abcam, Ab8135 Axons

CD163 1:1000 Pressure cooker

and citric acid

Abcam, Ab87099 Macrophages

Claudin-5 1:250 Pressure cooker

and citric acid

Abcam, Ab15106 Endothelial tight junctions

Collagen-1 1:1000 Pressure cooker

and citric acid

Abcam, Ab90395 Vascular media

Platelet-derived

growth factor

receptor b

1:100 Pressure cooker

and citric acid

Abcam, Ab32570 Pericytes

Smooth muscle actin 1:1000 Pressure cooker

and citric acid

Dako, Glostrup, Denmark,

M0851

Vascular smooth muscle

CD68 1:100 Pressure cooker

and citric acid

Dako, Glostrup, Denmark,

M0876

Activated microglia

Glial fibrillary

acidic protein

1:800 None Dako, Glostrup, Denmark,

Z0334

Astrocytes

Cut at 6 lm

H&E General structure

Masson trichrome Connective tissue

Luxol fast blue Myelin

Perl’s Iron

H&E: hematoxylin and eosin.
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which allows accurate for characterization and com-
parison across all MR sequences and histological
stains (Figures 2 and 3).

Scanning is done overnight on two consecutive
nights, the registration is automated and lesion com-
parison takes several hours, depending on the number
of lesions identified. The whole process from autopsy
to lesions being compared takes about one week.

Both MR and histology quality are excellent; histology,
in particular is unaffected by the scanning process
(examples in Figures 2 and 3).

In establishing this protocol, we have carefully con-
sidered how to minimize bias. All consecutive cases
donated to the brain bank that meet the specific
cohort and brain bank criteria are coded and processed
using standardized procedures. Cases are batched until

Figure 2. A sample of frontal white matter, where the lack of anatomical landmarks can make comparison difficult. The digitalized

histology slide (a, H&E) is reoriented and registered (b) with the FLAIR (d), T2 (e), T1 (f) and T2* (g) MR sequences. An initial

‘‘quick check’’ image is produced with the MR outline overlaid on the registered histology (c) to confirm successful registration.

Features of interest are selected on any image using the blue crosshairs and the precise corresponding feature on the other images

is identified automatically. In this example, a prominent vessel on the MR sequences (d–g) and histology (b) has been identified.
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there are between 5 and 10, which are then rated at the
same time. MR and histology ratings are carried out
independently, blinded to cohort, clinical data and all
other diagnoses and are based on validated guidelines
as far as possible. A proportion of ratings will be carried
out by a second experienced reviewer, and after a period
of time repeated by the original reviewer, to allow inter-
and intra-rater scores, respectively, to be calculated.

Study outcomes

Primary outcomes

. Identify and define the pathological lesions of SVD
on tissue sections, in relation to the lesions seen on
neuroimaging.

Secondary outcomes

. Further understanding of gliovascular unit abnorm-
alities from protein expression studies using add-
itional stains and immunohistochemistry.

. Group cases by SVD severity as graded on MRI and
histology for future assessment of protein and gene
expression.

. Develop a reproducible protocol that can be adapted
to study clinical–radiological–pathological correl-
ations in other neurological diseases.

Estimates of likely numbers of cases. We estimate that
about 18 brains will be donated and can be scanned
per annum for all three cohorts in total, based on

Figure 3. The white matter vessel identified in Figure 2 is stained (Table 3) to interrogate the gliovascular unit and blood–brain

barrier (�40 magnification). As the course of the vessel is followed on consecutive histological sections the distribution and pattern

of pathology can also be described.
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previous years. We began scanning in 2015 and
have carried out this protocol in 53 cases so far; 21
severe SVD, 9 normal aging and 23 controls. Of
these, 25 have also had in vivo MRI or CT brain ima-
ging (17 severe SVD, 8 normal aging). In comparison
with existing literature, this sample is one of the largest
to date, and the only one to precisely and systematically
study the areas most affected by SVD on in vivo ima-
ging. It will allow for much greater depth of analysis
regarding, for example, spatial variation in lesions,
perilesional changes and severity of lesions. Numbers
will increase as we continue to scan cases and include
new cohorts; a population with symptomatic lacunar
stroke46 and a subgroup of the Scottish Dementia
Research Interest Register47 with Alzheimer’s disease
have recently been added.

Statistical analyses. Specific statistical analyses will
depend on the distribution of the data; they will include
descriptive statistics for lesion prevalence and appear-
ances, and regression analyses for differences between
groups. We will choose a number of relevant features to
study from the rich clinical, imaging and histological
data available.

For example, LBC1936 subjects have serial research-
standard MRI in life with detailed assessment of SVD
features including quantitative structural and func-
tional analysis, medical histories and cognitive informa-
tion from age 11 to the 8th decade.26,29 LINCHPIN
includes current cognition, medical history and recent
in vivo imaging. This will enable us to study associ-
ations where information is currently missing; such
as the burden of SVD lesions visible in life and the
prevalence of matrix protein abnormalities; the rela-
tionship between perivascular space visibility on
MRI and numbers of active microglia; and confirm if
the health of the myelin and axons in apparently
normal tissue varies with the severity of WMH as is
suggested by in vivo MRI.48 Control cases have medical
and social history available. However, by definition
they have had no neurological disease in life, have no
cognitive impairment and therefore do not have in vivo
imaging. We will be able to compare these data to the
extent and severity of SVD assessed on the ex vivo
imaging and histology. The extent of the analyses will
be decided based on the final number of cases obtained.
Inter-rater reliability will be assessed using weighted
Kappa statistics.

After MRI and histology images are fully assessed,
cases will be stratified into groups with and without
cognitive impairment, by medical history and SVD
burden, from none to severe. We will use the comple-
mentary frozen tissue to make targeted studies of gene
expression differences between the groups. In particu-
lar, the short tissue fixation period retains RNA and

DNA integrity supporting novel techniques such as
BaseScope, a modified, quantifiable in situ hybridization
technique identifying transcripts at a single cell level.49

Data monitoring body, study organization, funding

and ethics. CAH is funded by an Alzheimer’s Society
Clinical Training Fellowship, and pilot work was sup-
ported by a Princess Margaret Research Development
Fellowship through the Stroke Association. Post-
mortem MR scanning was supported by a pilot grant
from the MRC Centre for Cognitive Ageing and
Cognitive Epidemiology and the Scottish Imaging
Network (MRC Grant No. MR/K026992/1), A
Platform for Scientific Excellence (SINAPSE) Initiative.
JMW is supported by the EU H2020 PHC-03-15 project
no 666881, SVDs@Target and Fondation Leducq pro-
ject 16 CVD 05. IJD is supported by the Centre for
Cognitive Ageing and Cognitive Epidemiology, which
is funded by the MRC (Grant No. MR/K026992/1)
and Biotechnology and Biological Research Council.
The Lothian Birth Cohort 1936 is funded principally
by Age UK (Disconnected Mind programme), and also
the MRC (MR/M01311/1).

Informed consent is obtained from all participants in
the severe SVD (ethical approval from Scotland A
Research Ethics Committee ref. 10/MRE00/23) and
normal aging cohorts in life (Multi-Centre Research
Ethics Committee for Scotland MREC/01/0/56,
Lothian Research Ethics Committee LREC/2003/2/29
and Scotland A Research Ethics Committee 07/
MRE00/58, REC REF AM17, 07/MRE00/58/AM14).

Post-mortem authorization is also obtained from
next of kin for all cases. The MRC Edinburgh Brain
Bank has full ethical approval and consent for the use
of tissue in research (East of Scotland Research Ethics
Service, ref 16/ES/0084) and works within the frame-
work of the Human Tissue (Scotland) Act 2006. It has a
local management group and a steering committee,
both of which include lay representation.

Discussion

In our current study, two cohorts, LBC1936 and
LINCHPIN, have several important complementary
characteristics relevant to SVD; and other cohorts are
now being added. The MRC Edinburgh Brain Bank is
a responsive tissue resource, ensuring tissue is fit for
end-user needs, developed around existing clinical
cohorts, with high brain donation rates within the clin-
ical cohorts.27,50 We employ targeted sampling with all
residual tissue being returned to the body, as donation
of small tissue samples is less distressing to relatives
than whole organs.51 The Edinburgh Brain Bank is
part of the UK Brain Bank Network, a coordinated
group who have developed minimum diagnostic
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datasets, tissue handling protocols, and ethical and gov-
ernance standards across multiple UK brain banks.52

Data linkage is key to maximizing this resource, and
targeted post-mortem MRI adds to the data generated
from each individual case.

We encountered several issues while developing this
protocol. Air bubbles within the tissue and plastic cas-
settes cause MR artefact and may be mistaken for, or
mask, microbleeds on T2* sequences making it import-
ant to minimize their presence, as described. Previous
studies did not precisely match lesions on MR with
histological images due to differing slice thicknesses
and resolutions. We obtain serial 1mm MR slices
through each tissue block, although this is of a different
order of thickness to the histological sections (mm
versus microns). To make the most accurate compari-
son, the MR images are compared to corresponding
histological images and the most complementary are
registered. Formalin fixation of human brain tissue
alters the MR properties of the tissue with time as the
formalin diffuses into it.53 The use of small samples
minimizes the difference in fixation between the deep
and superficial tissue. T2 values of human brain tissue
change with duration of fixation but plateau between
10 hours and five weeks.53 We have standardized tissue
fixation to minimize fixation-induced variability
between MR images. At 7T, tissue is vulnerable to
overheating, which impairs tissue quality. Brain
absorbs more radiofrequency than other tissues and
our samples are in a relatively small amount of forma-
lin without in vivo mechanisms, such as vasodilation, to
dissipate heat. The scanner bore is cooled to 22.6�C but
this may not be sufficient. Our scanning protocols have
been designed to maximize anatomic resolution and
increase the signal to noise ratio while avoiding over-
heating. Temperature monitoring during scanning
showed a maximum 1.8�C rise within the plastic tube,
which would not affect tissue quality and heat artefact
has not been observed on histological examination.

As with many post-mortem studies, the number of
cases available for study are relatively small. However,
our study is one of the largest detailed post-mortem
studies of SVD, and benefits from detailed data linkage
and well-characterized cohorts. In addition, we employ
extensive sampling of each case, targeting areas particu-
larly affected by SVD and retaining complimentary
frozen tissue for further interrogation with genomic
technologies. The specific areas studied may be refined
in future depending on the specific disease or charac-
teristic under investigation. Pilot work within our lab
has shown that formalin fixed paraffin-embedded tissue
is not suitable for post-mortem imaging so retrospective
imaging of cases with paraffin-embedded tissue is not
possible. However, the histological protocol developed
from the combined radiological–histological assessment

could be applied retrospectively to appropriate tissue
within the Brain Bank with relevant clinical data,
thereby further extending the sample size for future
related work using biochemical and genetic methods.

SVD lesions are well characterized on neuroimaging5

and described on neuropathology (although not con-
sistently);54 however, attempts to correlate the appear-
ances have found only modest associations.8 This may
reflect variation in methodologies or true variation as
suggested in rodent models where it appears SVD may
result from multiple minor defects in different compo-
nents of the neurovascular unit55 which we aim to study
further with this protocol and future work. As a static
assessment of a dynamic disease process, histopathological
assessment may be limited; lesions at post-mortem in eld-
erly patients are often end-stage. However, longitudinal
assessments in life allow plotting of disease trajectories,
and our initial work shows a gradation from subclinical,
to lesions-in-evolution to severe lesions which will further
inform interpretation of SVD pathophysiology. WMH in
particular may be more dynamic than previously appre-
ciated.21 Histopathological studies in humans have found
protein expression abnormalities within the gliovascular
unit in subjects with WMH56 and in vivo imaging suggests
blood–brain barrier (BBB) dysfunction and leakiness.30

Alterations in the gliovascular unit are seen in an animal
model prior to the onset of recordable hypertension.57

Summary and conclusions

This protocol describes a new method to precisely
assess and compare lesion appearances between brain
MRI and histopathology to validate in vivo MRI find-
ings in and around SVD lesions, aiming to increase our
understanding of SVD pathophysiology and facilitate a
meaningful clinical and radiological diagnosis. These
methods and tissue may also be used in other condi-
tions where the pathophysiology is poorly understood
such as autism or the neurological effects of type 2 dia-
betes mellitus, and to validate clinical and radiological
assessments and diagnoses.
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