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Abstract 13 

Fifteen samples of semi-hard ripened cheeses, both spoiled (10) and unspoiled (5), 14 

and obtained from cheese factories located in Northwest of Spain, were analysed by 15 

a dilution plating technique and direct sampling. A total of 32 isolates were identified 16 

at species level by a polyphasic approach (phenotypic characterization, partial 17 

extrolite analysis and molecular identification). Most isolates (65.6%) belonged to 18 

the species P. commune; other species found were P. solitum, P. chrysogenum, P. 19 

nordicum, P. expansum and P. cvjetkovicii. All of the P. commune isolates were able 20 

to produce cyclopiazonic acid, while the P. nordicum and the P. expansum isolates 21 

were producers of ochratoxin A and patulin respectively. Despite this, the role of P. 22 

commune as beneficial fungi in cheese ripening should be investigated. Molecular 23 

identification based on BenA sequence analysis was able to identify the majority of 24 

isolates. The three mycotoxins investigated can be considered key for identification. 25 

The polyphasic approach seems to be a very valuable tool for identification of 26 

isolates of this complex genus. 27 

 28 

 29 

Keywords: Penicillium; mycotoxins; ripened cheese; polyphasic identification. 30 
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1. Introduction 35 

Cheese is an excellent substrate for mould growth. Aside from mould’s role in 36 

the production of some cheese varieties (i.e., Penicillium roqueforti in blue cheeses and 37 

P. camemberti in white coat cheese), some mould species are responsible for spoilage 38 

and impact overall product quality (Bullerman, 1981; Stark, 2007). This dairy product 39 

can deteriorate due to the presence of visible colonies on the surface or in small fissures 40 

close to it, producing off-flavours. This loss of quality has economic consequences in 41 

addition to its sensory effects. Moulds may originate from raw materials such as milk or 42 

may be introduced, mainly from the environment, during cheese making (Hymery et al., 43 

2014). Mould growth can be observed on cheese during ripening (this is quite common 44 

in some Spanish cheese factories), storage and distribution for retail, and even at the 45 

consumer level (Bullerman, 1981). In addition, the growth of fungi may also represent a 46 

health risk for the consumer, since many species are able to produce mycotoxins 47 

(Bullerman, 1981; Lund et al., 1995). 48 

Penicillium is considered to be the most frequent fungal genus to contaminate 49 

cheese (Bullerman, 1981; Frisvad et al., 2007a; Frisvad and Samson, 2004; Lund et al., 50 

1995; Pitt and Hocking, 2009). Identification of members of this genus at species level 51 

is a very complex task, as most species have very similar properties. Conventional 52 

identification is based on morphological studies (both macroscopic and microscopic) 53 

and phenotypic characterization (growth at different temperatures, presence of pigment 54 

and exudate, and cultivation methods) (Pitt, 1979). Recently, molecular identification 55 

has arisen to assist with identification. It offers the advantage of measuring stable 56 

genotypic characteristics and being independent of culture conditions and operator 57 
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interpretation (Perrone and Susca, 2017). Frisvad and Samson (2004) proposed a 58 

polyphasic approach to identify species of Penicillium subgenus Penicillium (which 59 

includes most species that cause cheese spoilage) based on morphological, chemical and 60 

molecular analysis. 61 

According to Frisvad and Samson (2004), Frisvad et al. (2007a) and Pitt and 62 

Hocking (2009), there are 15 species of Penicillium subgenus Penicillium associated 63 

with cheese spoilage; these belong to the five sections reviewed by Houbraken et al. 64 

(2016) (Table 1). They grow in colonies on Malt Extract Agar (MEA)that are some 65 

shade of green when they, with branched conidiophores (ter- to quater-verticillata) and 66 

flask-shaped phialides (subgenus Penicillium). Most of these species are mycotoxigenic 67 

(Table 1), with some producers of mycotoxins found in cheese by different authors 68 

(reviewed by Hymery et al. (2014) and Weidenbörner (2008) (Table 2). Very few 69 

species belonging to other subgenera are associated with cheese. This is the case of P. 70 

glabrum, or the recently described P. cvjetkovicii, both of which belong to the 71 

subgenera Aspergilloides, monoverticillata (Peterson et al., 2015; Pitt and Hocking, 72 

2009) and P. citrinum, subgenus Furcatum (Decontardi et al., 2017; Sinha and Ranjan, 73 

1991). 74 

 Some popular varieties of cheese (semi-hard cheeses such as Castellano) made 75 

in the Northwest of Spain with raw ewe’s milk have a variable ripening period, which 76 

can last several months under environmental conditions that allow the growth of moulds 77 

on the surface. This creates a blue-greyish coat that is periodically removed with a 78 

brush. In some similar varieties, the mould remains in the final product.  79 

 There are no previous studies on the fungal microbiota of Castellano cheese (the 80 

main variety included in our study). Thus, the purpose of the present study was to 81 

identify the fungi isolated from both spoiled and unspoiled ripened cheeses using 82 
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polyphasic identification, with a view to contributing to the knowledge of these 83 

contaminants, their potential toxigenicity and the usefulness of the current identification 84 

techniques. 85 

2. Materials and Methods 86 

2.1. Cheese samples and isolation of fungi 87 

 Fifteen samples of cheese (ten showing signs of spoilage, mostly blue, and five 88 

without spoilage but natural superficial mould growth, i.e., without the addition of any 89 

fungal culture) were obtained from seven different factories located in the Northwest of 90 

Spain (provinces of León and Zamora) during or at the end of the production process (3 91 

spoiled samples came from consumers) (Table 2). Most samples were of pressed semi-92 

hard cheeses made with raw ewe’s milk, and one sample was a soft cheese (Table 2). 93 

Isolation of the strains was carried out by different techniques: dilution plating (after 94 

homogenization of 10 g of cheese in 90 mL of 0.1% peptone water solution and further 95 

10-fold dilution), direct plating that involved the transfer of small cheese particles to 96 

agar plates, and use of adhesive tape to take a sample from the surface and place it on 97 

agar plates (Samson et al., 2010). Malt Extract Agar (MEA, Oxoid Thermo Fisher, UK) 98 

and Glucose Chloramphenicol Agar (GCA, Scharlab, Spain) were used as plating 99 

media. After incubation (25 °C/5-7 d), up to three colonies with different morphology 100 

per sample were selected and inoculated on MEA plates until pure cultures were 101 

obtained. Isolates were kept at 4 ºC on MEA slants until identification. 102 

2.2. Identification of fungi 103 

 Identification at genus level of selected isolates was done according to Samson 104 

et al. (2010) and to the macro- and microscopic characteristics. Identification at species 105 

level was carried out using a polyphasic approach (Frisvad and Samson, 2004; Visagie 106 

et al., 2014) consisting in a morphological characterization according to the keys and 107 
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descriptions of Frisvad and Samson (2004), Frisvad et al. (2007a), Pitt and Hocking 108 

(2009), and Westerdijkinstitute (2018), as well as in extrolite analysis (CPA, OTA and 109 

PAT, selected according to their relevance to the species associated with cheese) (Table 110 

1) and DNA barcoding. 111 

2.2.1. Morphological characterization 112 

Isolates were three-point inoculated onto the following media: Czapek Yeast 113 

Autolysate (CYA) agar, Yeast Extract Sucrose (YES) agar, MEA and Creatine Sucrose 114 

(CREA) agar (Frisvad and Samson, 2004). The plates were incubated for 7 d at 25 ºC 115 

and also at 30 ºC (CYA plates). After incubation, the following macromorphological 116 

characters were studied: colony diameter, texture, colour of conidia, obverse and reverse 117 

colours, soluble pigment, degree of growth and acid/base production on CREA.  118 

Microscope slides were prepared from MEA cultures using lactic acid (60%) as 119 

mounting fluid, and the following micromorphological characters were studied: degree 120 

of branching of the conidiophores; dimension, shape and texture of stipes; and 121 

ornamentation of stipes and conidia. 122 

2.2.2. OTA, CPA and PAT analysis 123 

All the strains were assessed for production of three mycotoxins (OTA, CPA and 124 

PAT). These are 3 of the 9 mycotoxins that can be found in cheese according to the 125 

literature (Frisvad and Samson, 2004; Hymery et al., 2014) and are particularly useful 126 

for differentiating species belonging to section Fasciculata (Table 1), and, in particular, 127 

P. commune. Detection by thin layer chromatography was carried out after incubation of 128 

the isolates on YES plates for 7 to 14 days using the agar plug technique described by 129 

Samson et al. (2010). Aluminium plates (silica gel 60 F254; Merck, Germany) were 130 

directly used for OTA and PAT analysis. For CPA detection the plates were previously 131 

submerged into 10% oxalic acid in methanol for 2 min and heated in an oven at 110 132 
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°C/2 min (Gqaleni et al., 1996). Inoculation of the plates was carried out using a Camag 133 

Nanomat 4 (Camag, Switzerland).The standards for CPA and PAT were obtained from 134 

Sigma (Sigma-Aldrich Merck, Spain) and for OTA from Cayman Chemical (Cayman 135 

Chemical Company, USA). In the case of a negative result, the whole content of an agar 136 

plate was extracted with 50 mL of dichloromethane/methanol (80:20 v/v), 137 

homogenized, and filtered, and the solvent was evaporated under vacuum to dryness 138 

(Gqaleni et al., 1996). The extract was dissolved in 1 mL methanol and 10 µL were 139 

inoculated on the TLC plates. The mobile phase was TEF (toluene/ethyl acetate/90% 140 

formic acid, 5:4:1) (Samson et al., 2010). After drying, plates were treated as follows: 141 

OTA (NH3 vapours for 2 min; fluorescent blue-turquoise spots were observed under 142 

ultraviolet light) (Frisvad et al., 1989); CPA (pulverization with Ehrlich reagent; a 143 

violet-blue spot was observed after some minutes) (Gqaleni et al., 1996); PAT 144 

(pulverization with 0.5% 3-methyl-2-benzothiazolinone hydrazone (MBTH) and heating 145 

in an oven at 105 °C/10 min.; a yellow spot appears in visible light) (Frisvad et al., 146 

1989). The detection limit was 10 µg/ml. 147 

2.2.3. Ehrlich test 148 

The Ehrlich test was conducted on all the strains via the filter paper method 149 

described by Lund (1995). Ehrlich reagent was prepared with 4-150 

dimethylaminobenzaldehyde (Sigma-Aldrich Merck, Spain), dissolved in 96% ethanol 151 

and 37% hydrochloric acid (both from Panreac Química, Spain). After 10 min, a violet 152 

ring appears in case of a positive result. Some fungi produce alkaloids that will react 153 

with the Ehrlich reagent to give pink to red or yellow rings (Frisvad and Samson, 2004). 154 

2.2.4. Molecular identification by DNA barcoding 155 

Penicillium isolates were cultured on slants of MEA at 25 °C for 7 days. The 156 

mycelium was collected with 5 mL of sterile 0.05% Tween 80. Then, 2 mL were 157 
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transferred to an Eppendorf vial and centrifuged at 16000 g/3 min. The pellet was 158 

washed twice with 1 mL bidistilled water, suspended in 250 µL of Instagene matrix 159 

(Bio-Rad, USA), and the DNA was extracted by heating for 3 h at 56 °C and 10 min at 160 

95 °C. After vortex mixing and centrifugation at 12000 g/3 min, the supernatant was 161 

transferred to a fresh tube and 5 µL were used for PCR amplification (Ciardo et al., 162 

2007). PCR was performed in 25 µL reactions in a Mastercycler Personal (Eppendorf 163 

Iberica, Spain). Amplification of ITS region, β-tubulin BenA gene, and calmodulin CaM 164 

gene was performed using the primers and conditions described by Visagie et al. (2014). 165 

PCR products were purified by NucleoSpin Gel and PCR Clean-up Kit (Macherey-166 

Nagel, Germany). Both strands were sequenced in a MegaBACE 500 sequencer (GE 167 

Healthcare Life Sciences, UK). Strain identification was done by BLAST search against 168 

the RefSeq database for ITS sequences and a verified database for β-tubulin BenA and 169 

calmodulin CaM sequences (Visagie et al., 2014). 170 

Phylogenetic trees were constructed using the UPGMA method, with the 171 

distances estimated by the Kimura 2-parameter model and a bootstrapping of 1000 172 

replications using MEGA7 software (Kumar et al., 2016). 173 

A collection strain of P. verrucosum CECT 20766 was included in the study, to 174 

help distinguish this species from P. nordicum. 175 

 176 

3. Results and Discussion 177 

A total of 32 isolates were obtained and identified as belonging to the genus 178 

Penicillium, 16 of which were isolated from cheeses showing signs of spoilage and 16 179 

of which were from non-spoiled cheeses (Table 2). Identification at the species level 180 

was achieved by morphological characterization and analysis of OTA, CPA and PAT, 181 

and DNA barcoding. Table 3 shows the results of the phenotypic and extrolite analysis 182 
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of the isolates compared to those of Frisvad and Samson (2004); Supplementary Table 1 183 

shows the results of the polyphasic identification, and Fig. 1 and Supplementary Fig. 1 184 

show the results of the phylogenetic analysis based on the sequences of the BenA gene 185 

and ITS, respectively. 186 

The species found in our study were P. commune (21 isolates, 65.6%), P. 187 

solitum (6 isolates, 18.8%), P. chrysogenum (2 isolates, 6.3%), P. nordicum (1 isolate, 188 

3.1%), P. expansum (1 isolate, 3.1%), and P. cvjetkovicii (1 isolate, 3.1%) (Table 2).  189 

Twenty-one isolates were identified as P. commune after polyphasic 190 

identification, nine obtained from spoiled cheeses and twelve from unspoiled cheeses 191 

(Table 2). They were all CPA producers, which is in accordance to the description of 192 

the species (Table 3) (this is one of the diagnostic features useful to differentiate 193 

Penicillium species related to cheese spoilage.). Five species of Penicillium are 194 

producers of CPA (Frisvad and Samson, 2004), but only P. commune and P. palitans 195 

are of importance as contaminants of cheese (Table 1). P. camemberti also produces 196 

CPA, but it is considered a non-contaminant. This species is used in the manufacture of 197 

soft cheeses and is rarely found outside the local environment of the manufacture of 198 

such varieties (Pitt and Hocking, 2009). It is not considered a spoilage agent. 199 

Furthermore, one of the diagnostic features of P. camemberti is the white or more rarely 200 

white-green floccose colour of the colonies on CYA (our isolates were all blue to blue-201 

green; see Table 3). All of our P. commune strains produced a violet reaction in the 202 

Ehrlich test and a moderate to good acid production on creatine; one exhibited the 203 

reaction only under the colony, an exception contemplated by Frisvad and Samson 204 

(2004). Microscopically they showed rough-walled stipes and globose to subglobose 205 

conidia (Table 3). All of this complies with the characteristics of two species (P. 206 

commune and P. palitans). P. palitans could be differentiated by the brown centre in the 207 
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reverse of the CYA plates, a feature that was not found in our isolates (nevertheless, this 208 

feature does not seem to be very consistent). Regarding identification by DNA 209 

barcoding, ITS sequencing was of limited use, as it was unable to differentiate P. 210 

commune from other species of Penicillium (Supplementary Fig. 1); however, BenA 211 

phylogenetic analysis allowed identification of all isolates, with a total agreement with 212 

the phenotypic approach (Supplementary Table 1 and Fig. 1). Differentiation between 213 

P. commune and P. camemberti and synonymised species such as P. fuscoglaucum or P. 214 

biforme was not possible with the molecular analysis, even using a third gene marker 215 

(CaM; Supplementary Table 1), and final identification was done according to 216 

phenotypic characteristics. The description of other genetic markers such as the 217 

microsatellite PC4 loci would be of help in the recognition of these closely related 218 

species (Giraud et al., 2010). 219 

The primary habitat for P. commune in foods is cheese, and it is a major cause of 220 

spoilage (Filtenborg et al., 1996; Frisvad and Samson, 2004; Pitt and Hocking, 2009). 221 

Lund et al. (1995) found it dominant in an extensive study of different European 222 

cheeses (42% out of 371 isolates) and regarded it a spoiler. Other authors found P. 223 

commune as a predominant spoiler, for example, Tzanetakis et al. (1987) in a traditional 224 

Greek cheese, Kure (2001) and Kure et al. (2004) in semi-hard cheese, Hayaloglu and 225 

Kirbag (2007) in Turkish Kuflu cheese and Panelli et al. (2012) in Taleggio cheese. In 226 

contrast, Decontardi et al. (2018) found P. commune only in 7% of samples of crusts of 227 

Italian grana cheese, with P. solitum being dominant (55%). Identification was based on 228 

the calmodulin CaM gene, which can be useful for identification of isolates of P. 229 

viridicatum but is unable to differentiate isolates of the section Viridicata such as P. 230 

solitum or P. commune, as was concluded by Prencipe et al. (2018). In addition, no 231 

extrolite analysis was performed, which could have been useful in the identification. P. 232 
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commune strains were isolated from different sources in cheese factories (equipment, 233 

plastic film and, principally, air) by Kure et al. (2002). 234 

Some authors consider this species a part of the essential microflora of cheese 235 

that possibly contributes to the ripening changes and flavour characteristics of the final 236 

product (e.g. Kopanisti cheese and Taleggio cheese) (Hymery et al., 2014; Panelli et al., 237 

2012; Tzanetakis et al., 1987). In the case of the samples of unspoiled cheese analysed 238 

in our study, they show a blue coat on the surface that could be due mainly to the 239 

presence of P. commune, according to our results (the cheeses had not been inoculated 240 

artificially and the mould that developed was part of a natural contamination). These 241 

cheeses are consumed and enjoyed by consumers, and therefore this fungus seemingly 242 

does not influence the organoleptic characteristics (flavour) of these varieties in a 243 

negative way. The prevalence of P. commune in cheeses is explained by its ability to 244 

grow at low temperatures, its low oxygen concentrations, its lipolytic activity and its 245 

resistance to the action of preservatives (Pitt and Hocking, 2009). 246 

P. commune is a mycotoxigenic species. The production of CPA is considered a 247 

definite trait, though probably one of minor risk for consumers (Pitt and Hocking, 248 

2009). In an extensive survey carried out on isolates obtained from cheese factories, it 249 

was found that 94% of P. commune isolates were CPA producers (Lund et al., 2003). 250 

CPA is a potent mycotoxin that in high concentrations produces focal necrosis in most 251 

vertebrate inner organs (Frisvad et al., 2007b; Perrone and Susca, 2017). It was also 252 

proposed that CPA was responsible for the severe effects on the muscles and bones of 253 

turkeys affected by the Turkey X disease, which was associated with peanuts that had 254 

been contaminated with aflatoxins (Jand et al., 2005). The target organs are kidneys and 255 

the gut tract in mammals; in humans, CPA is suspected to be responsible for acute 256 

mycotoxicosis (named “kodua”) that induces nerve troubles (Hymery et al., 2014). This 257 
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mycotoxin is considered stable in cheese (Sengun et al., 2008). CPA has been found in 258 

Camembert and Brie cheese (Ansari and Häubl, 2016; Le Bars, 1979; Schoch et al., 259 

1983), which is not unexpected, since P. camemberti, a domesticated species derived 260 

from P. commune, is a producer (Pitt et al., 1986), and it has also been found in other 261 

varieties, such as Kasar cheese (Aran and Eke, 1987) and Taleggio cheese (Finoli et al., 262 

1999). CPA is not under regulation in the European Union (European Commission, 263 

2006).  264 

Six isolates were identified as P. solitum (both from spoiled cheeses, three 265 

isolates, and unspoiled cheeses, three isolates; Table 2, Table 3 and Supplementary 266 

Table 1). P. solitum has been found in cheese by several authors (Decontardi et al., 267 

2018; Hocking and Faedo, 1992; Kure et al., 2004; Kure and Skaar, 2000; Lund et al., 268 

1995). Our isolates were not producers of any of the three mycotoxins assessed (Table 269 

3), which is in agreement with the characteristic of the species (production of 270 

mycotoxins unknown) (Frisvad and Samson, 2004). In addition, the Ehrlich reaction 271 

was negative, and the reaction on creatine was acidic. The reverse on YES agar was 272 

yellow-orange. Microscopically, the isolates had rough-walled stipes and globose to 273 

subglobose smooth-walled conidia. No growth at CYA/30°C was observed (Table 3). 274 

As already mentioned, ITS sequencing was of no use in differentiating between P. 275 

solitum and P. commune, but BenA barcoding clearly confirmed the identification 276 

(Supplementary Table 1 and Fig. 1 and Supplementary Fig. 1).  277 

Two isolates were identified as P. chrysogenum. The main features that led us to 278 

this identification were the ornamentation of the stipes (smooth; this is the only one 279 

with this characteristic among the species associated with food), the ability to grow well 280 

on CYA at 30°C and the inability to produce the three extrolites tested (CPA, OTA, and 281 

PAT) (Table 1 and Table 3). ITS sequencing identified the isolates as P. rubens 282 
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(Supplementary Table 1), a synonym of P. chrysogenum (Frisvad and Samson, 2004), 283 

and once again BenA sequence analysis correctly identified them, even though the use 284 

of this molecular marker with suspected isolates of P. chrysogenum should be carried 285 

out with care. It should be considered that P. chrysogenum is a regular cheese spoiler 286 

(Aran and Eke, 1987; Barrios et al., 1998; Frisvad and Samson, 2004; Hayaloglu and 287 

Kirbag, 2007; Hocking, 1994; López-Díaz et al., 1995; Lund et al., 1995). P. 288 

chrysogenum produces penicillin and several mycotoxins, some of which -for example, 289 

roquefortine- have been detected in cheese (Finoli et al., 2001; Kokkonen et al., 2005; 290 

López-Díaz et al., 1996). 291 

 In our study, isolate M32 was the only OTA producer and was identified as P. 292 

nordicum. There are only two species associated with cheese-spoiling producers of 293 

OTA, P. nordicum and P. verrucosum (Table 1). Phenotypically, they are differentiated 294 

from each other based on the cream/yellow reverse on YES agar for P. nordicum and on 295 

the red-brown reverse for P. verrucosum (Frisvad and Samson, 2004; Larsen et al., 296 

2001) (Table 3) (this difference was clearly seen between strain M32 and the reference 297 

strain of P. verrucosum CECT 20766). P. nordicum is generally associated with high-298 

protein foods such as cheese, while P. verrucosum is more common in cereal products 299 

and other plant sources, although it has been isolated from cheese as well (Hocking and 300 

Faedo, 1992; Larsen et al., 2001). The identification of M32 by ITS sequencing yielded 301 

an inconclusive result (Supplementary Fig. 1), whereas BenA analysis correctly 302 

identified it as P. nordicum, although it is very close to P. verrucosum (Fig. 1). 303 

OTA is a nephrotoxin that affects all tested animal species, though effects on 304 

humans have been difficult to establish unequivocally (Perrone and Susca, 2017). It is 305 

listed as a “possibly human carcinogen” (Class 2B) (IARC, 1993). OTA has been found 306 

in cheese by several authors (Anelli et al., 2019; Dall’Asta et al., 2008; El-Sawi et al., 307 
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1994; Engel, 2000; Jarvis, 1983; Sinha and Ranjan, 1991). This mycotoxin is fairly 308 

stable in cheese, and Coton et al. (2019) demonstrated its production and migration up 309 

to 1.6 cm in depth, but current regulation in the European Union excludes cheese from 310 

the foodstuffs with maximum levels of OTA (Bullerman, 1981; European Commission, 311 

2006). 312 

One isolate was identified as P. expansum. Morphologically, it is one of the few 313 

species of the subgenus Penicillium isolated from cheese with smooth stipes, and 314 

another of its characteristics is a strongly violet reaction with Ehrlich reagent and the 315 

ellipsoidal conidia (Table 2 and Table 3). Our strain was positive for production of 316 

patulin, which is also typical for this species (Table 3) (Pitt and Hocking, 2009) (Table 317 

3). Patulin has also been found in cheese (Lafont et al., 1979), but current regulation in 318 

the European Union excludes cheese from the foodstuffs with maximum levels of PAT 319 

(European Commission, 2006). 320 

Finally, one isolate was found to be P. cvjetkovicii. The species, belonging to 321 

section Cinnamopurpurea, subgenus Aspergilloides, has been described very recently 322 

(Peterson et al., 2015). Identification was performed initially by ITS and BenA 323 

sequencing, which led to inconclusive results, due to the low number of sequences 324 

available in genetic databases (Supplementary Table 1). Final identification was 325 

confirmed by morphological features and calmodulin CaM gene analysis. 326 

Morphologically, this fungus is characterized by the monoverticillata penicilli and the 327 

production of vinaceous to reddish-brown soluble pigments. A cheese isolate obtained 328 

from Spain (Marín et al., 2014) was identified by Peterson et al. (2015) as P. 329 

cvjetkovicii, although it had initially been considered to be P. chermesinum (Marín et 330 

al., 2014; Peterson et al., 2015). The isolate obtained in our work would be the second 331 

finding of it in cheese. In our case, the fungus produced a spoilage on the surface of 332 
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ripened cheeses (Castellano) that was characterized by small dark spots. The spoilage 333 

occurred in one factory, and the probable origin was the air (Peterson et al., 2015).  334 

According to the results of other authors and taking into account the results of 335 

our study, there are some secondary metabolites produced by the Penicillium isolates 336 

associated with cheese that would be worth investigating to help with identification—337 

for example, CPA. With a simple technique such as the agar plug described by Samson 338 

et al. (2010) and used in our study, it is possible to discard 12 out of 15 species 339 

associated with cheese, which is very useful in the absence of molecular techniques (as 340 

mentioned before, P. commune is the most frequent Penicillium in ripened cheeses and 341 

also found to be dominant in our study).  342 

Regarding the molecular analysis, the limitations of ITS as a species marker for 343 

differentiation of Penicillium species were clearly demonstrated, as no isolate, except P. 344 

expansum, was unequivocally identified by this procedure. The use of the secondary 345 

marker BenA, as proposed by Visagie et al. (2014), was useful for establishing the 346 

distinction between P. commune and P. solitum, which was not resolved by ITS 347 

(although they can easily be differentiated by testing CPA production), as well as that 348 

between some species that are very difficult to identify using just phenotypic 349 

characteristics (P. commune and P. palitans or P. nordicum and P. verrucosum). A third 350 

marker, the CaM gene, had to be used in this work to ensure the identification of the 351 

unexpected finding of the newly described species P. cvjetkovicii. 352 

In conclusion, the results of this study indicate the presence of spoilage and 353 

mycotoxigenic species dominated by P. commune on the surface of the cheeses 354 

investigated. The presence of mycotoxigenic moulds on the surface of cheese is of 355 

concern, as several authors have detected CPA, OTA, and PAT in cheese. Although it is 356 

unclear whether the levels of the mycotoxins found could be harmful for the consumer, 357 
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the fact is that the isolates found in our study are mostly mycotoxigenic, and their ability 358 

to contaminate cheese should be considered in order to define potential health risks.  359 

Nevertheless, the role of P. commune in cheese ripening remains to be 360 

determined, as some authors claim that it has a positive contribution to the sensory 361 

characteristics of cheese. This role is under study by the authors at present.  362 

 The GenBank accession numbers for the BenA gene and ITS sequences of the 363 

32 isolates used in this study are MK675757-MK615788 and MK660326-MK660357 364 

respectively, and those of the CaM gene sequences of the isolates Q2M7 and Q3M1 are 365 

MK660604-MK660605. 366 

The strains of P. commune M35 and P. nordicum M32 are available from the 367 

Spanish Type Culture Collection as CECT 20940 and CECT 20939, respectively. 368 
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Table 1 554 

Species of Penicillium (subgenus Penicillium) associated to cheese spoilage and mycotoxins associated to this food (according to Frisvad 555 

and Samson, 2004; Frisvad et al., 2007; Pitt and Hocking, 2009; Houbraken et al., 2016). 556 

Section Brevicompacta Section 
Roquefortorum 

Section Chrysogena Section Penicillium Section Fasciculata 

Series Olsonii Series Roqueforti Series Chrysogena Series Expansa Series Viridicata 

P. brevicompactuma
 P. roquefortiabch 

 
P. chrysogenumb 
P. nalgiovense 

 
P. expansumbd i 

 
P. viridicatume

 

    Series Verrucosa 

    P. nordicumf
 

    P. verrucosumf i
 

    Series Camemberti 
    P. solitum 

    P. discolor 

    P. echinulatum 

    P. communeg
 

    P. palitanscg
 

    P. crustosumb
 

    P. atramentosumb
 

a mycophenolic acid; b roquefortine C; c isofumigaclavine; d patulin; e penicillic acid; fochratoxin A; g cyclopiazonic acid; h PR toxin; i, 557 

citrinin. In bold, species found in this study. 558 

 559 

 560 

 561 
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Table 2.  562 

Origin of the Penicillium isolates identified 563 

Cheese Sample 

n=15 

Type S/NS Isolates 

n=32  

Identification 

n=32 

Q1, Q4, Q8, Q9, 
Q10, Q11, Q12, 
Q13, Q14, Q15 

Semi-hard, ripened without 
fungal culture added 
(cylindrical, “castellano” 
type). 

S P1, P2, P3, QLM1, 
QLM2, M35, M170, 
M30, M34, M32, M76, 
M123, M124, M57, 
M145, Q3M1 

n=16 

P. commune (9)  

P. solitum (3)  

P. chrysogenum (2)  

P. nordicum (1) 

P. cvjetkovicii (1) 

Q3, Q5, Q6, Q7 Semi-hard, ripened, blue coat 
without surface fungal culture 
added (mostly, rectangular, 
“pata de mulo”) 

US Q2M1, Q2M2, Q2M3, 
Q2M4, Q2M5, Q2M11, 

QP1, QP2, QP3, QPA3, 
QPA4, QZ1, Q2M7 

n=13 

P. commune (9)  

P. solitum (3)  

P. expansum (1) 

Q2 Soft cheese, with blue coat 
without surface fungal culture 
added 

US P4, P5, P6 

n=3 

P. commune (3) 

S, spoiled; US, unspoiled. 564 

 565 
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Table 3 566 

Main phenotypic and selected extrolite characteristics of the Penicillium subgenus Penicillium isolated from cheese compared to the 567 

description of the species by Frisvad and Samson (2004). 568 

Species Origina CYA 

(mm)

b 

CYA 

(mm)c 

YES 

(mm)b 

MEA 

(mm) b 

CREA (mm) b 

Growth/Acid-

base 

production 

CPA/ 

OTA/ 

PAT on 

YESb 

Ehrlich 

reactionb 

Conidium 

Color 

CYA b 

Reverse  

color CYA b 

Reverse 

color YES b 

Stipes Conidia 

P. commune A n=21 9-39 0-5.5 

(10) 

25-40 15-26 9-12.7 Good/ 

Acid 

CPA Violet, 

mostly 

strong 

Blue 

green to 

green 

Cream to 

cream yellow 

Cream/ 

yellow/light 

brownd 

Rough Subglobose, 

smooth 

B (15-) 

21-35 

0-4 29-50 (16-) 

20-37 

14-28 Very 

good/Strong 

acid 

CPA Strong 

violet  

Blue 

green to 

green 

Cream to 

beige or 

cream-yellow 

Cream to 

yellow 

Rough subglobose to 

ellipsoidal 

smooth 

P. 

chrysogenu

m 

A n=2 37-40 25-27 40-50 30-35 10-27 - yellow Blue 

green to 

green 

Pale 

yellow/yellow 

Pale yellow Smooth Smooth 

globose to 

subglobose 
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B 23-46 14-27 40-64 19-52 16-26 

Weak/None or 

poor acid, no 

base  

- None or 

yellow 

Blue 

green to 

green 

Cream, 

yellow, rarely 

brown 

Citrine 

yellow 

Smooth Globose to 

subglobose to 

broadly 

ellipsoidal 

smooth 

P. expansum A n=1 40 0 50 40 24 Good/ 

Good acid 

followed by 

base 

production 

PAT Violet Blue 

green to 

green 

Orange 

brown 

Cream 

yellow 

Smooth Smooth, 

ellipsoidal 

B 26-50 0-3 38-65 16-34 23-28 Very 

good (poor in 

few 

strains)/Good 

acid followed 

by base 

production 

PAT Strong 

violet 

Blue 

green to 

green 

Cream to 

yellow with 

brown center, 

orange brown 

or dark brown 

Cream 

yellow or 

orange 

Smooth 

(occasi

onally, 

rough) 

Smooth, 

ellipsoidal 

P. nordicum A n=1 11-13 0 15-20 12-13 12-13 None OTA Weak 

yellow 

Green Cream to 

light brown 

Cream 

yellow 

Rough Smooth, 

globose to 
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subglobose 

B 8-21 0 14-36 6-16 6-12 

Weak/None 

OTA Yellow 

green 

Green Cream often 

with brown 

center 

Cream 

yellow 

Rough Smooth-

walled, 

globose to 

subglobose 

P. solitum A n=6 11-28 0 24-38 13-25 8-15 

Good to very 

good/Good 

acid 

- None Green to 

blue 

green 

Pale/pale to 

orange 

Yellow to 

orangee 

Rough Smooth 

B 16-34 0 25-39 14-26 6-22 

Good to very 

good/Under 

colony or 

good, base 

production 

poor or 

delayed 

- None Dark blue 

green to 

green, 

cream-

yellow 

exudates 

often 

Cream to 

light beige 

Yellow to 

orange 

Rough Smooth to 

slightly rough 
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aA, cheese isolates; B, reference data; b, incubation at 25 ºC for 7 d; c, incubation at 30 ºC for 7 d; d, three isolates showed light brown 569 

color; e, one isolate yellow with brown centre.  570 
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Fig. 1. UPGMA tree obtained from the phylogenetic analysis of the BenA sequences. Verified 571 

sequences from species of Penicillium associated with cheese spoilage were included. 572 

Bootstrapping values are shown in branch nodes. 573 

574 
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• Mycotoxigenic moulds are found in cheese samples 

• Penicillium commune is dominant on cheese surface 

• Polyophasic approach is useful for identification of cheese isolates of Penicillium 


