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Abstract. Intrusion detection is essential for the security of the compo-
nents of any network. For that reason, several strategies can be used in
Intrusion Detection Systems (IDS) to identify the increasing attempts to
gain unauthorized access with malicious purposes including those base
on machine learning. Anomaly detection has been applied successfully to
numerous domains and might help to identify unknown attacks. However,
there are existing issues such as high error rates or large dimensionality
of data that make its deployment difficult in real-life scenarios. Repre-
sentation learning allows to estimate new latent features of data in a
low-dimensionality space. In this work, anomaly detection is performed
using a previous feature learning stage in order to compare these meth-
ods for the detection of intrusions in network traffic. For that purpose,
four different anomaly detection algorithms are applied to recent network
datasets using two different feature learning methods such as principal
component analysis and autoencoders. Several evaluation metrics such
as accuracy, F1 score or ROC curves are used for comparing their per-
formance. The experimental results show an improvement for two of the
anomaly detection methods using autoencoder and no significant varia-
tions for the linear feature transformation.

Keywords: Anomaly detection · Feature representation · Network in-
trusion detection.

1 Introduction

The great advances in network technologies entail a rise of the complexity of
network attacks. For this reason, network intrusion detection plays a key role
in the security of information systems and, therefore, it has become an active
research area [1,5]. In this context, intrusion can be considered as an attempt
to compromise the security of a computer or network elements. It can be of
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two types: external, where unauthorized users try to gain access to the system,
and internal, which are more frequent and users with different permission roles
could have access to resources of the system. Moreover, different situations can
be labelled as intrusions, ranging from worms that try to propagate through the
network without authorization to denial of service (DoS) which focus on disrupt-
ing the resources of a system on a network. Intrusion detection systems (IDS) are
devices that monitor a network in order to find any malicious activity. They are
commonly classified in different types: Host-based IDS (HIDS) that analyses the
internals of an individual system and Network-based IDS (NIDS) that monitors
traffic between the devices of a network trying to find suspicious patterns [3]. The
techniques for intrusion detection include misuse-based approaches that look for
known malicious activity mostly using signatures and anomaly-based approaches
which consider as an anomaly any intrusive action and would potentially detect
unknown intrusions. Although both techniques have been extensively studied
[5], misuse detectors are much commonly deployed in real systems.

Anomaly detection methods attempt to estimate a model of the normal be-
haviour of data according to a specific criteria and find patterns deviated from
the resulting model [6]. These methods have been extensively applied to net-
work intrusion detection [1,5,3]. However, their application in real scenarios has
traditionally been unusual because it implies to deal with some issues [25]. For
instance, network traffic presents large variability so anomalous behaviour can
sometimes be related to performance, or high false positives also involve the
evaluation of potential alarms which are actually normal situations.

Besides, there are other different aspects such as labelling or scaling the
data that improve the success of these techniques. In addition, feature selection
helps to reduce complexity and understand data interpretation. Although there
are different existing strategies, representation learning and deep learning have
provided enormous advances in several areas [2] such as computer vision or
natural language processing.

In this work, a comparison of anomaly detection tasks is made using a feature
representation of data for network intrusion detection. For that purpose, different
methods of anomaly detection are compared in order to evaluate how feature
transformation affects them, using four recent network datasets that provide real
situations. The organization of the paper is structured as follows: in section 2,
different anomaly detection approaches are described and some examples for
their application in intrusion detection are mentioned; in section 3, the method
used is illustrated; in section 4, the datasets, the configuration of the experiments
and the results are discussed and, finally, the conclusions are summarized in
section 5.

2 Related work

There have been numerous efforts to survey available techniques for the im-
plementation of anomaly detection tasks [6], specifically applied to network in-
trusion detection [5,3,1]. Common approaches can be grouped into categories
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depending on how the method detects outliers. Next, they are briefly reviewed
and some related works about network intrusion detection are mentioned.

Generally statistical-based approaches assume normal data points are gen-
erated from a Gaussian distribution. The estimation of their parameters can be
sensitive to outliers so that robust estimators were proposed, like minimum co-
variance determinant [22]. There are examples that use statistical approaches for
intrusion detection systems such as HIDE [29] which uses statistical modelling
along with neural network classifiers or PAYL [28] that computes statistical
parameters of the application payload, estimated from normal behaviour using
a 1-gram model and then evaluated in terms of Mahalanobis distances. Other
strategy to detect anomalies is based on distance-based approaches considering
data instances with N features as a N -dimensional vector. For instance, One-
Class Support Vector Machines (OC-SVM) constructs a hyperplane that aims
to separate with a maximum margin the normal instances from the anomalous
ones. Moreover, clustering methods [10] like K-means can also be used where
the anomaly score is evaluated using the distance between new data points and
computed centroids. Related examples for intrusion detection include Khan et
al. [12], who proposed a combination of a hierarchical clustering with a SVM
classification or Muda et al. [20] that computes initially K-means cluster cen-
troids and then applies Naive Bayes classification in the final stage to distinguish
between five different classes. Other proposals use ensemble-based methods such
as bootstrap aggregation (bagging) or boosting that combine individual results
of multiple classifiers to achieve a final decision. Similarly, Isolation Forest [15]
creates an ensemble of decision trees isolating anomalies instances.

Since the performance of machine learning methods is generally affected by
the number of the data dimensions, there are algorithms to select and transform
data features providing another representation of the data. On one hand, irrele-
vant features can be eliminated in terms of information redundancy removal and
accuracy improvement. Several feature selection methods have been proposed in
the intrusion detection domain [7]. Some algorithms use an optimization crite-
ria (wrapper), others compute independent features (filter) and hybrid methods
try to combine both approaches for a better performance. On the other hand,
feature transformation algorithms estimates a latent space that provides a new
representation of the data. Dimensionality reduction techniques can be used for
that purpose, like Principal Component Analysis (PCA) which computes lin-
early the principal components with largest variance. The use of autoencoders
as dimensionality reduction tool was proposed in [9] whose low-dimensional rep-
resentation can improve the performance of different tasks. Although there are
other dimensionality reduction techniques, for instance those based on neighbour
embeddings or spectral methods [14], the active recent research in deep learn-
ing has provided an increasing interest in approaches related to representation
learning [2].

There are similar works that propose approaches related to neural networks,
deep learning and anomaly detection. Previous examples include the combi-
nation of deep belief network with linear one-class SVM [8] for unsupervised
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anomaly detection of high-dimensional data, discussing the performance of the
hybrid model. On the other hand, a model composed by a deep autoencoder and
a variant of one-class SVM using random Fourier features is introduced in [21].
An ensemble of autoencoders, called Kitsune [18], is proposed for network in-
trusion detection to differentiate between normal and abnormal traffic patterns.
Finally, a NIDS is proposed in [11] that uses two-stage process with a sparse
auto-encoder for learning features and soft-max regression, using labelled data
for classification. Although these methods use networks not only for anomaly
detection but also for dimensionality reduction of data features, in this work the
performance of auto-encoder is studied with respect to different approaches for
anomaly detection to evaluate which one is more suitable and it also uses recent
datasets to test more realistic scenarios.

3 Proposed method

In this work, a feature learning stage is combined with well-known anomaly
detection methods to detect network intrusions. Taking into account the com-
plexity of the application area, real traffic data should be considered in order
to provide more realistic scenarios for the analysis. The variables included in
data are usually essential features such as protocol, service, flags, bytes between
source and destination or their IP addresses and, in some cases, additional ones
including statistical or aggregation measures like sum of connections or mean
values. In this case, an intrusion is considered as an individual point labelled in
data which is a simplification of the consequences provoked by a network attack.

A preparation stage for preprocessing data should be done. In that stage, the
transformation of categorical attributes like protocol type into numeric values
is performed and also normalization of data provides scaling of the features so
that they are between similar ranges of values. Besides, the variables with a few
unique values can be transformed into binary values using one hot encoding.
Finally, data are split into train, validation and test sets.

The feature representation estimates a reduced latent space of the data by
means of unsupervised learning, that is, without using data labels of the status
of the network. As a baseline, the widely-used method PCA is used for reducing
the dimensionality of the input data by computing a feature representation.
Also, a deep auto-encoder is used with training data to compute the latent
representation in the bottleneck so that the encoder provides the representation
of new data. The number of the low-dimensional space is considered taking
into account a trade-off between a significant reduction of the dimensionality of
data without an excessive loss of information. The same number is used in the
transformation of the reduced features for comparison purposes of the methods.

Once the feature transformation is done, the anomaly detection methods are
trained using normal instances from the labels of the data for train and validation
sets. Then the prediction of test data is performed after a data transformation
into the resulting latent space. A flowchart diagram for the architecture of the
method is represented in Fig. 1.
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The comparison of the resulting performance is evaluated with several mea-
sures commonly used for binary classification. The well-known evaluation metrics
are accuracy, precision, recall, F1 score, and Receiver Operating Characteristic
(ROC) curves. The accuracy measures the fraction of the instances correctly
categorized; precision denotes the proportion of true positives between all the
positive predicted ones, and recall refers to the ratio of true positive between the
real positive instances. Furthermore, F1 score helps to consider both precision
and recall to evaluate a model computing their harmonic average. ROC curve
shows false positive rates between true positive rates for several thresholds and
area under curve (AUC) measures the capacity of distinguish between the two
classes.

Preprocessing
- Numerization
- Scaling 
- One hot encoding 
- Split into several sets

Data
- Traffic network
- Real scenarios
- Public
- Labelled 

Feature learning

- PCA      - Autoencoder 

Anomaly detection

- Different approaches 
- Trained using normal data 

Evaluation
- Accuracy 
- Precision and Recall
- F1 score
- ROC curves (AUC) 

Fig. 1. Description of the architecture for the proposed method.

4 Experimental methodology

Several experiments were performed using publicly available datasets based on
real traffic for network intrusion detection. A previous feature learning stage
was applied and various evaluation metrics were used in order to compare the
performance.
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4.1 Datasets

In the majority of the previous works reviewed (see section 2) about network
intrusion detection, only a couple of datasets are widely used for the assesss-
ment of the detection systems [1,3], i.e. DARPA 98 and 99 from MIT’s Lincoln
Laboratory and KDDCup’99. However, these datasets have several shortcom-
ings which have already been identified in the literature [17,16,27]. This leads
to consider that other datasets might be more suited to evaluate the detection
of contemporary network attacks. For that reason, the following recent datasets
have been used in the experiments in order to consider more realistic situations:

– UNSW-NB15 [19] possess a hybrid of the real modern normal traffic and
synthesized attack activities. It was generated using an attack automatic
generation tool called IXIA PerfectStorm.

– NSL-KDD [27] was created in order to improve the KDDCup’99 dataset.
Although the dataset still suffers some problems to be considered a com-
plete representative of modern networks, it can be used as a reference for
comparison purposes because of its wide use.

– CIC-IDS-2017 [24] covers updated attacks with more than 80 features
and labelled for benign and intrusive flows. Concretely, the data used here
correspond exactly to working hours of Wednesday.

– Kyoto [26], built on 3 years of real traffic data (Nov. 2006–Aug. 2009) which
were obtained from different kinds of honeypots.

All datasets include labels about normal and different types of attacks oc-
curred in the network which are used for training and evaluation of anomaly
detection tasks. A description of the datasets such as number of instances, the
attributes or dimensions obtained after one hot encoding of some of the features
and the percentage of anomalies is detailed in Table 1.

Table 1. Description of the network datasets.

Data Instances Attributes Dimensions % of anomalies

UNSW-NB15 257673 45 230 63.9
NSL-KDD 148517 43 143 48.1
CIC-IDS-2017 691695 83 83 36.4
Kyoto 364725 24 46 82.9

Preprocessing The categorical features included in data were transformed to
numerical values, in some cases using a one hot encoding to obtain a set of binary
variables for those features with few categories. For that reason, the number of
dimensions can be augmented with respect to original attributes of data. The
transformed features depend on the dataset, but there are some in common for
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the majority of datasets, for example service, protocol type or flag. Additionally,
a min-max scaling were made so that each feature is scaled to a range of values
between [0,1] on the training set and then also transform the validation and
test data. Despite the variety of the intrusions labelled in data, they are all
grouped only into one category, that is, are considered only two classes (normal
and anomaly) in the analysis.

4.2 Experiments

First, four methods are applied for anomaly detection where only normal in-
stances are used for training the different methods. These methods that were
used are:

– Local Outlier Factor (LOF): [4] assigns to each object a degree about how
it is isolated with respect to a specific neighbourhood. The number of the
k-nearest neighbours selected after several tests is set to 60 for all datasets
used in the experiments.

– One-Class Support Vector Machine (OC-SVM): only uses one class
for estimating a model and detects new data different from that class as
outliers [23]. The kernel used in this work is a radial basis function (RBF)
with γ = 0.1, fixed experimentally.

– Isolation Forest (IF): creates an ensemble of trees that isolate anomalies
instead of fitting normal instances, which is a different approach for outlier
detection [15].

– Robust Covariance (RC): implements a minimum covariance determi-
nant which is a highly robust algorithm for estimating covariance matrix in
multivariate data [22].

For computing the latent representation, the dimensionality of data is re-
duced using either Principal Component Analysis (PCA) as the linear baseline
method and the encoder obtained from an autoencoder. The design of the neural
network can be esentially considered as a common deep autoencoder. The input
layer has a size equal to the dimensionality of input data which is reduced using
several hidden layers using rectifier linear unit (ReLU) as activation functions
except for the last layer where a sigmoid function is used. The optimization stage
is performed using the Adam algorithm [13]. The selected batch size is 256 and
epochs for training have been set to 700, they are experimentally fixed accord-
ing to the datasets used. The details for the representation learning stage are
described in Table 2. The latent dimension computed using PCA has the same
dimension of the bottleneck of the autoencoder for comparison purposes. The
layers of the encoding were selected in order to obtain a significant reduction of
the dimensionality of data.

4.3 Results and discussion

The results of the experiments are presented in this section. The evaluation
measures of the anomaly detection methods applied to the network datasets are
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Table 2. Details of the feature transformation.

Data Encoding layers PCA dim.

UNSW-NB15 {230, 120, 60, 20} 20
NSL-KDD {143, 100, 80, 20} 20
CIC-IDS-2017 {83, 80, 40, 20} 20
Kyoto {46, 40, 20, 5} 5

detailed in Table 3. In this table, the accuracy, precision, recall and F1 score
indicate the performance of the corresponding method for each dataset, also in-
cluding the previous feature learning stage using PCA and encoder network. The
best resulting F1 score for each dataset is highlighted between all the methods
used. Furthermore, area under curve (AUC) and ROC curves are shown in Fig. 2
in a matrix form where the rows correspond to each dataset and the columns
the method applied. In case of equal F1 scores, the AUC value is considered for
selecting the best one.

Several changes can be observed in the performance of anomaly detection
tasks as a result of feature learning stage. The most significant improvement is
produced using One-Class SVM method, where the use of the auto-encoder com-
puting a feature representation shows better evaluation metrics for all datasets
used in the experiments. In addition, the auto-encoder representation also pro-
duces small enhancements in the results using Local Outlier Factor, as it is shown
in the Fig. 2.

However, the feature representation barely affects the effectiveness for anomaly
detection using the Isolation Forest and Robust Covariance methods. There are
only improvements for both methods using CIC-IDS-2017 dataset, shown by the
values of F1 scores (see Table 3). Moreover, in some cases it is preferable the
application of these two methods using the original data without any feature
learning.

On the other hand, PCA transformation produces generally similar results to
original data and, in some cases even worse than original features. There are only
a few cases where the representation computed by PCA overcomes the rest. In
these cases, the method used is Robust Covariance which seems to be the most
suitable one to a previous PCA feature learning. This can reflect that linear
techniques could only work in specific scenarios and they might be insufficient
for a general type of analysis. Finally, it is remarkable that results from the
experiments show in some cases a poor performance, for example Kyoto data
using Local Outlier Factor.

5 Conclusions

Network intrusion detection is an active research area in a continuous develop-
ment. Although there have been numerous efforts to address several challenges,
anomaly-based approaches are sometimes difficult to be applied in real systems
for intrusion detection.
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In this work, feature learning is used for network intrusion detection through
its application as a previous stage to four different anomaly detection techniques
applied to recent datasets. The methods used for computing the latent represen-
tation of data are PCA and the encoder part of an auto-encoder that introduces
non-linearity. The main improvement for the datasets is shown for One-Class
SVM method using the latent space computed by the auto-encoder. In contrast,
PCA transformation does not show relevant enhancement in order to be applied
as a previous feature learning stage.

Future work includes the study of other types of auto-encoders and techniques
including different feature selection methods combined with more algorithms for
anomaly detection that can help to improve the identification of intrusions.

References

1. Ahmed, M., Mahmood, A.N., Hu, J.: A survey of network anomaly detection tech-
niques. Journal of Network and Computer Applications 60, 19–31 (2016)

2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence
35(8), 1798–1828 (2013)

3. Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network anomaly detection:
methods, systems and tools. IEEE Communications Surveys & Tutorials 16(1),
303–336 (2014)

4. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. In: ACM sigmod record. vol. 29, pp. 93–104. ACM (2000)

5. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods
for cyber security intrusion detection. IEEE Communications Surveys & Tutorials
18(2), 1153–1176 (2015)

6. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection – a
survey. ACM Computing Surveys 41(3), 15:1–15:44 (July 2009).
https://doi.org/10.1145/1541880.1541882

7. Chen, Y., Li, Y., Cheng, X.Q., Guo, L.: Survey and taxonomy of feature selection
algorithms in intrusion detection system. In: International Conference on Informa-
tion Security and Cryptology. pp. 153–167. Springer (2006)

8. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and
large-scale anomaly detection using a linear one-class SVM with deep learning.
Pattern Recognition 58, 121–134 (2016)

9. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality
of data with neural networks. Science 313(5786), 504–507 (2006).
https://doi.org/10.1126/science.1127647

10. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM computing
surveys (CSUR) 31(3), 264–323 (1999)

11. Javaid, A., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network in-
trusion detection system. In: Proceedings of the 9th EAI International Conference
on Bio-inspired Information and Communications Technologies (formerly BIO-
NETICS). pp. 21–26. ICST (Institute for Computer Sciences, Social-Informatics
and (2016)

12. Khan, L., Awad, M., Thuraisingham, B.: A new intrusion detection system using
support vector machines and hierarchical clustering. The VLDB journal 16(4),
507–521 (2007)

https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1126/science.1127647
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