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Abstract
Aim: To evaluate the transferability between fire recurrence scenarios of post-fire 
vegetation cover models calibrated with satellite imagery data at different spatial 
resolutions within two Mediterranean pine forest sites affected by large wildfires in 
2012.
Location: The northwest and east of the Iberian Peninsula.
Methods: In each study site, we defined three fire recurrence scenarios for a refer-
ence period of 35 years. We used image texture derived from the surface reflectance 
channels of WorldView-2 and Sentinel-2 (at a spatial resolution of 2 m × 2 m and 
20 m × 20 m, respectively) as predictors of post-fire vegetation cover in Random 
Forest regression analysies. Percentage vegetation cover was sampled in two sets 
of field plots with a size roughly equivalent to the spatial resolution of the imagery. 
The plots were distributed following a stratified design according to fire recurrence 
scenarios. Model transferability was assessed within each study site by applying the 
vegetation cover model developed for a given fire recurrence scenario to predict 
vegetation cover in other scenarios, iteratively.
Results: For both wildfires, the highest model transferability between fire recur-
rence scenarios was achieved for those holding the most similar vegetation com-
munity composition regarding the balance of species abundance according to their 
plant-regenerative traits (root mean square error [RMSE] around or lower than 15%). 
Model transferability performance was highly improved by fine-grained remote-
sensing data.
Conclusions: Fire recurrence is a major driver of community structure and composi-
tion so the framework proposed in this study would allow land managers to reduce 
efforts in the context of post-fire decision-making to assess vegetation recovery 
within large burned landscapes with fire regime variability.

K E Y W O R D S

image texture, megafire, model transferability, random forest regression, satellite imagery, 
Sentinel-2, vegetation cover, WorldView-2
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1  | INTRODUC TION

Wildfires are one of the main disturbances in forest ecosystems 
around the world (Collins et al., 2018), having a significant effect on 
their biological productivity and composition (Calvo et al., 2008), as 
well as on their dynamics (Lozano et al., 2008). Particularly in the 
Mediterranean Basin, large forest fires are becoming more recurrent, 
mainly due to global climate change (Quintano et al., 2015), which 
implies more adverse ecological effects (Pausas et al., 2008). These 
large and more recurrent fires may lead to severe post-fire environ-
mental conditions (e.g., increased incident solar radiation), partial 
or total removal of vegetation cover and shifts in plant community 
structure and composition (Pausas et al., 2008; Taboada et al., 2017), 
due to induced variation in plant species fitness (Keeley et al., 2011).

In this sense, plant-regenerative traits are key in plant species 
fitness and, therefore, in community resilience against disturbances 
(Lloret et al., 2005; Keeley et al., 2011). In the western Mediterranean 
Basin, post-fire vegetation recovery relies on two plant-regenerative 
traits: (a) resprouting from above-ground or below-ground surviving 
tissues (Pausas & Keeley, 2014; Moreira et al., 2012); and (b) seed-
ling recruitment from canopy or soil banks (Pausas & Keeley, 2014). 
Additionally, some species present both types of regeneration mech-
anisms and are referred to as facultative seeders (Pausas & Keeley, 
2014; Lloret et al., 2005). In general, the species assemblage of a 
single community presents both regeneration mechanisms (Pausas, 
2001; Calvo et al., 2008), although the proportion of obligate re-
sprouters, obligate seeders and facultative seeders is affected by 
fire regime (Lloret et al., 2005). For instance, it has been proposed 
that, under recurrent wildfires, obligate seeders could be hindered 
before they have accumulated a canopy or soil bank viable for per-
sistence, obligate resprouter species being promoted (Pausas, 2001; 
Pausas & Keeley, 2014; Lloret et al., 2005; Knox & Morrison, 2005; 
Taboada et al., 2017; Taboada et al., 2018).

Due to the influence of fire recurrence on the balance between 
resprouter and seeder abundance and, therefore, on the commu-
nity structure and composition, it should be possible to achieve 
vegetation recovery models transferable between different fire 
recurrence scenarios of a burned landscape. The development of 
transferable models is very important as they may reduce the cost of 
gathering data within mega-fires (burned area >10,000 ha; Stephens 
et al., 2014), in the context of post-fire decision-making (Latif et al., 
2016), and also support management decisions when large data de-
ficiencies exist in some portions of the area being surveyed (Clark 
et al., 2001). Model transferability can be assessed by determin-
ing whether a model calibrated under a given set of conditions 
(reference system) can successfully provide accurate predictions 
under different conditions (target system; Sequeira et al., 2018). 
Nevertheless, model transferability may be hindered by different 
constraints such as study design, species traits, model type and/or 
input data (Yates et al., 2018; Werkowska et al., 2017; Jiménez-Alfaro 
et al., 2018; Sequeira et al., 2018). Particularly relevant are: (a) sam-
pling bias in the reference system (Barnes et al., 2014; Tsalyuk et al., 
2017); (b) non-appropriate model algorithm and model overfitting 

(Wenger et al., 2011; Sequeira et al., 2018); (c) non-stationarity of the 
ecological relationships (Osborne, Foody, & Suárez-Seoane, 2007; 
Whittingham et al., 2007; Suárez-Seoane et al., 2014; Fernández-
Guisuraga et al., 2019a); or (d) non-analogous conditions in the target 
system (Thuiller et al., 2004). The evaluation of model transferability 
must deal with these constraints in order to improve analysis perfor-
mance and provide a reliable tool to support resource management 
(Yates et al., 2018; Sequeira et al., 2018).

Recent developments in geospatial technologies have promoted 
the use of remote-sensing-derived products (Poursanidis et al., 
2017), which represent a great opportunity, together with field data 
gathering, to evaluate vegetation recovery in large burned land-
scapes (Fernández-Manso et al., 2016; Fernández-Guisuraga et al., 
2019b). The use of high or very high spatial resolution imagery pro-
vided by space-borne sensors, such as Sentinel-2 (spatial resolution 
of 10–20–60 m) or WorldView-2 (spatial resolution of 2 m), rep-
resents a great advance in vegetation recovery monitoring in areas 
of high spatial heterogeneity (Meng et al., 2017). In this sense, image 
texture analysis applied to remote-sensing data (Pu & Cheng, 2015) 
has been proven to be a useful proxy of vegetation structure param-
eters in heterogeneous burned landscapes, such as species richness 
(Viedma et al., 2012) or vegetation biomass (Kelsey & Neff, 2014), 
height (Fernández-Guisuraga et al., 2019b) and cover (Fernández-
Guisuraga et al., 2019a). Since the horizontal and vertical structure 
of vegetation influences canopy reflectance (Thenkabail et al., 2011; 
Buchhorn et al., 2013), the performance of post-fire recovery models 
is expected to vary across burned areas where different fire recur-
rence scenarios coexist and, therefore, where community composi-
tion may differ according to species regenerative traits.

Although the transferability of ecological models is a subject 
of particular research interest in fire ecology (Yates et al., 2018; 
Werkowska et al., 2017), only a few studies have addressed the 
transferability of either burn severity models (Fernández-García 
et al., 2018) or post-fire vegetation recovery models (Fernández-
Guisuraga et al., 2019a) based on remote-sensing products. The 
transferability of post-fire vegetation cover models between fire 
recurrence scenarios in burned ecosystems can fill knowledge gaps, 
providing reliable insights to support post-fire decision-making in 
the most efficient way (Yates et al., 2018; Sequeira et al., 2018).

In this study, we aim to evaluate the transferability of re-
mote-sensing-based recovery models between fire recurrence sce-
narios at different spatial resolutions within two fire-prone pine 
ecosystems of the western Mediterranean Basin with different 
environmental characteristics. In particular, we aim to answer the 
following questions: (a) could model transferability be influenced 
by fire regime and, therefore, by community species composition 
within two burned landscapes with different environmental charac-
teristics; and (b) does the spatial resolution of the remote-sensing 
products used to feed the models constrain model transferabil-
ity between fire recurrence scenarios? We expect that fire recur-
rence would modify the community composition given the species’ 
adaptive traits to fire regime (Pausas & Keeley, 2014; Lloret et al., 
2005; Taboada et al., 2018). Therefore, model transferability would 
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perform better between fire recurrence scenarios with more sim-
ilar community composition (Thomas & Vesk, 2017). Furthermore, 
we hypothesize that fine-grained remote-sensing products would 
offer a better performance than coarser products under hetero-
geneous recovery patterns of fire-prone ecosystems (Schoennagel 
et al., 2008). In these ecosystems, we expect that high-resolution 
products would capture at best ground local variations and complex 
ecological processes (Heinänen et al., 2012), improving model trans-
ferability (Sequeira et al., 2018).

2  | METHODS

2.1 | Study area

The study sites are located within the perimeter of two full stand-
replacing mega-fires which occurred in summer 2012 in Spain 
(Figure 1).

The first site (Sierra del Teleno wildfire; Figure 1, A) is located 
in NW Spain within a burned area of 11,602 ha predominantly 
covered by a Pinus pinaster forest stand. The pine canopy was al-
most consumed by fire and the burned stands were salvage-logged 
(Taboada et al., 2018). The study site is located at an average alti-
tude of 1,063 m a.s.l. The relief is dominated by quartzite crests, 
large valleys with moderate slopes and sedimentary plains. It is an 
Atlantic–Mediterranean transition climatic zone with an average an-
nual rainfall of around 650 mm and an average annual temperature 
of 10°C, with a moderate summer drought (<2 months). Soils are pre-
dominantly acidic with a sandy texture. Vegetation cover in post-fire 
conditions is mainly constituted by Pinus pinaster Aiton seedlings, 
obligate seeder shrub species, such as Halimium lasianthum subsp. 
alyssoides (Lam.) Greuter, Erica umbellata L. and Calluna vulgaris (L.) 
Hull, as well as resprouter shrubs, such as Pterospartum tridentatum 

(L.) Willk. and Erica australis L. In the study area, these evergreen 
species reach the peak of their above-ground biomass in June and 
July.

The second site (Cortes de Pallás wildfire; Figure 1, B) is located 
in eastern Spain, within a megafire of 29,752 ha that completely con-
sumed a Pinus halepensis Mill. and a Pinus pinaster stand. The altitude 
in the study site ranges between 114 and 995 m a.s.l. with steep 
slopes being present. Soils are predominantly basic with a sedimen-
tary origin. The conditions in the region are typically Mediterranean, 
with an average annual rainfall of around 280 mm, an average annual 
temperature of 16°C and three months of summer drought. Post-fire 
vegetation cover is constituted by Pinus pinaster and Pinus halepen-
sis regeneration stands in a seedling growth stage, obligate seeder 
shrubs, such as Ulex parviflorus Pourr. and Rosmarinus officinalis L., 
as well as resprouter shrubs, such as Quercus coccifera L. The peak 
of the growing season of these evergreen species is reached in May 
and June in the study area.

In both study sites, fire recurrence (number of wildfires) was es-
timated using a temporal series of Landsat imagery for the period 
1978–2012. Recurrence values ranged between one and three (R1, 
R2 an R3; Fernández-García et al., 2019; Figure 1).

See Appendix S1 for a detailed list of tree and shrub species of 
each study site, including their growth form, regenerative traits and 
cover by fire recurrence scenario.

2.2 | Field data sampling

Four years after the wildfires, in spring–summer 2016, we defined 
a framework of 3,000 ha in each study site, where we established 
two independent sets of field plots of 2 m × 2 m (60 in Sierra del 
Teleno and 33 in Cortes de Pallás) and 30 m × 30 m (56 in Sierra del 
Teleno and 30 in Cortes de Pallás). This framework was used to focus 

F I G U R E  1   Location (ESRI, 2019) (a) and fire recurrence (b and c) for the period 1978–2012 of Sierra del Teleno (A) and Cortes de Pallás 
(B) wildfires. Fire recurrence maps were computed through visual interpretation of Landsat imagery covering the study period
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the field sampling in areas dominated by pine ecosystems within the 
study areas (Fernández-García et al., 2019). Plots were distributed 
following a stratified design using the fire recurrence scenarios as 
strata. Thus, the number of plots for each recurrence scenario was 
proportional to the relative area affected by each class of fire recur-
rence in each study framework. In each plot we assessed, at different 
spatial scales, the vegetation cover during the peak above-ground 
biomass as one of the parameters of the community structure. In 
particular, we used a visual estimation method (Calvo et al., 2008) to 
quantify: (a) total vegetation cover percentage; (b) cover percentage 
of pine seedlings; (c) cover percentage by shrub species to obtain 
the cover of vegetation regenerative traits (obligate resprouters, ob-
ligate seeders and facultative seeders); and (d) woody debris cover 
percentage. Each field plot was georeferenced with a GPS receiver 
with X, Y accuracy higher than 0.50 m in post-processing mode.

2.3 | WorldView-2 and Sentinel-2 imagery and 
spectral products

WorldView-2 scenes were acquired for the Sierra del Teleno wildfire 
on 23 June 2016 at 11:38:02 UTC and for Cortes de Pallás on 15 
June 2016 at 11:12:48 UTC. Cloud cover was lower than 0.3% in 
both scenes. The spatial resolution of the WorldView-2 multispec-
tral sensor at nadir is 1.84 m, but the image was resampled to 2 m 
by the image provider. This sensor captures data along eight bands 
in the visible and near infrared (NIR) region: B1, coastal blue (400–
450 nm); B2, blue (450–510 nm); B3, green (510–580 nm); B4, yellow 
(585–625 nm); B5, red (630–690 nm); B6, red edge (705–745 nm); 
B7, NIR1 (770–895 nm) and B8, NIR2 (860–1,040 nm; Appendix S2). 
WorldView-2 scenes were orthorectified with rational polynomial 
coefficients delivered with the image metadata, as well as with a 
Digital Elevation Model (DEM) with a spatial resolution of 5 m and 
an accuracy higher than 20 cm in Z, provided by the Spanish National 
Center of Geographic Information (http://www.cnig.es/). The 
scenes were atmospherically corrected to surface reflectance with 
the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes 
algorithm (FLAASH; Matthew et al., 2003) implemented in ENVI 5.3 
software (https://www.harri sgeos patial.com/).

Sentinel-2 MSI Level 1C imagery was acquired for Sierra del 
Teleno wildfire from the Copernicus Open Access Hub (https://sci-
hub.coper nicus.eu/) on 5 August 2016 at 11:12:45 UTC and for Cortes 
de Pallás on 30 July 2016 at 10:53:38 UTC, both scenes being cloud 
cover-free. Sentinel-2 has thirteen bands at different spatial resolution 
over the visible, NIR and short wave IR (SWIR) regions: 10-m spatial 
resolution bands (B2 blue, 458–523 nm; B3 green, 543–578 nm; B4 
red, 650–680 nm and B8 NIR, 785–899 nm); 20-m spatial resolution 
bands (B5 red edge 1, 698–713 nm; B6 red edge 2, 733–748 nm; B7 
red edge 3, 773–793 nm; B8a narrow NIR, 855–875 nm; B11 SWIR1, 
1,565–1,655 nm and B12 SWIR2, 2,100–2,280 nm); and 60-m spatial 
resolution bands (B1 coastal blue, 432–453 nm; B9 water vapor, 935–
955 nm, B10 cirrus, 1,358–1,389 nm; Appendix S2). Sentinel-2 bands 
were resampled to 20 m using a nearest neighbor rule. Sentinel-2 MSI 

Level 1C imagery was already orthorectified by the supplier and the 
scenes were then only atmospherically corrected to surface reflec-
tance with the FLAASH algorithm.

We computed two second-order texture features (mean and 
variance; Appendix S3) for each surface reflectance band of the 
processed WorldView-2 and Sentinel-2 imagery using a moving 
window of 3 × 3 pixels and the Gray Level Co-Occurrence Matrix 
(GLCM; Haralick et al., 1973). The texture features and window size 
were chosen based on previous research carried out in burned land-
scapes of high spatial heterogeneity (Fernández-Guisuraga et al., 
2019a). Each texture was averaged for the four spatial directions to 
gather directionally invariant texture measures (Zhang & Xie, 2012). 
Texture values were extracted for each field plot location to be used 
as predictors of vegetation cover.

2.4 | Data analysis

A permutational multivariate analysis of variance (PERMANOVA) 
and a principal components analysis (PCA) were used to explore, 
within each study site, the multivariate associations between veg-
etation community composition (cover of vegetation regenerative 
traits, pine seedlings and woody debris) and fire recurrence. Then, 
the effects of fire recurrence on each specific community variable 
were analyzed through an analysis of variance (ANOVA) followed by 
a pairwise multiple comparison of means (Scheffe test). These analy-
ses were performed using R (R Core Team, 2017) and the ‘vegan’ 
package (R Core Team, R Foundation for Statistical Computing, 
Vienna, Austria).

For its part, a correlation analysis was conducted in order to 
discard potential multicollinearity problems among the spectral pre-
dictors (second-order texture features, mean and variance) of vege-
tation cover. Bivariate Pearson correlations allowed for identifying 
groups of strongly correlated predictors (rPearson > |0.7|). The pre-
dictor with the highest biophysical meaning within each group was 
preserved for further analyses (Fernández-Guisuraga et al., 2019b).

Vegetation cover model transferability between fire recurrence 
scenarios was assessed by means of Random Forest (RF) regression 
models (Breiman, 2001) based on WorldView-2 and Sentinel-2 spec-
tral predictors. RF is a machine-learning algorithm based on classifica-
tion and regression trees (CART; Oliveira et al., 2012). It is insensitive 
to noisy datasets and makes no assumptions about the distribution of 
the response variable (Iqbal et al., 2018). For each site, fire recurrence 
scenario and spatial resolution, we built a model of total vegetation 
cover. RF fits an ensemble of random binary trees to the data, each 
tree being generated by bootstrap samples (Breiman, 2001; Hong 
et al., 2018; Iqbal et al., 2018). Each split of the tree is defined using 
a random subset of the predictors at each node or sample (Oliveira 
et al., 2012). The final output is the average of the results of every tree 
(Breiman, 2001). The value of the model parameter mtry (number of 
variables for each tree split) was set using the function tuneRF (Liaw 
& Wiener, 2002). This function searches below and above the de-
fault value of mtry (number of predictors/3) to find the value with the 

http://www.cnig.es/
https://www.harrisgeospatial.com/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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minimum error estimate (Liaw & Wiener, 2002; Oliveira et al., 2012). 
The value of the model parameter ntree (number of trees) was set 
to 1,000 to obtain stable predictions (Oshiro et al., 2012; Probst & 
Boulesteix, 2018). Predictor importance in the model was evaluated 
by means of the percentage increase in mean square error (%IncMSE), 
which represents the decrease in model accuracy if a variable is 
dropped from the model. The final model was obtained by averaging 
one hundred replicate RF models in order to produce stable model 
outputs (García-Llamas et al., 2019). A parsimonious subset of predic-
tors for each fire recurrence scenario, spatial resolution and site was 
selected through a forward model selection technique (see Kane et al., 
2015 and García-Llamas et al., 2019 for more details). The variance 
explained by the models (pseudo-R2) was calculated using the internal 
out-of-bag error rate (Liaw & Wiener, 2002).

Vegetation cover models calibrated in a particular fire recurrence 
scenario (reference system) were validated in the other scenarios 
(target systems) within each study site, iteratively. For instance, the 
spatial output of a model calibrated in scenario R1 was validated 
using data from scenarios R2 and R3 across the same wildfire. Model 
transferability performance was assessed using the root mean 
square error (RMSE; Equation 1) in percent cover.

where Oi are observed vegetation cover values in the target system, 
Pi are the predicted vegetation cover values obtained by applying 
the RF model of the reference system to the target system, and n 
corresponds to the number of field plots in the target system.

Random Forest (RF) regression was applied using R (R Core Team, 
2017) and the ‘RandomForest’ package (Liaw & Wiener, 2002).

3  | RESULTS

The community species composition showed a non-stationary re-
sponse regarding the species’ regenerative traits between fire re-
currence scenarios in the Sierra del Teleno (PERMANOVA F = 95.94; 
p < 0.01) and Cortes de Pallás (F = 32.02; p < 0.01) wildfires. The first 
(Dim1) and second (Dim2) PCA axes explained 64.3% and 17.6% re-
spectively of the variance in the Sierra del Teleno wildfire and 42.7% 
and 23.2% respectively in Cortes de Pallás. In the Sierra del Teleno 

wildfire, resprouter shrub species dominated over obligate seeder 
shrubs under high fire recurrence (R2 and R3). The opposite pattern 
was observed for the lowest recurrence scenario (R1), characterized 
by a higher cover of obligate seeders (shrubs and pine seedlings) and 
woody debris. Meanwhile, in the Cortes de Pallás wildfire, R1 and R2 
fire recurrence scenarios were associated with a high cover of obli-
gate seeders, the resprouters being the dominant shrub species in 
fire recurrence scenario R3 (Figure 2). In both study sites, resprouter 
cover tended to increase significantly (p < 0.01) with fire recurrence 
(R2 and R3 in the Sierra del Teleno wildfire and R3 in Cortes de 
Pallás), the seeder shrubs exhibiting the inverse pattern. For its part, 
there was a significant reduction (p < 0.01) in pine seedling regenera-
tion within high fire recurrence scenarios (R2 and R3) in both study 
sites. Furthermore, the accumulation of woody debris was signifi-
cantly higher (p < 0.01) under the low fire recurrence scenario (R1) in 
both wildfires (Figure 3).

The highest variance of total vegetation cover was explained by 
RF models under high fire recurrence scenarios (R2 and R3) for both 
study sites and sensors (Table 1). Model performance was better in 
the Sierra del Teleno wildfire than in Cortes de Pallás. The explained 
variance of the total vegetation cover was higher using WorldView-2 
than Sentinel-2 textures as predictors (Table 1). For their part, the 
most parsimonious models were calibrated with four or less predic-
tors. Mean texture features, especially those computed from the 
red-edge region of the spectrum (B6 for WorldView-2 and B5, B6 
and B7 for Sentinel-2), were selected in almost all models (Table 1).

Model transferability error ranged between 5% and 35% in the 
Sierra del Teleno wildfire and between 13% and 32% in the Cortes 
de Pallás wildfire. Models calibrated with fine-grained satellite 
image texture exhibited the lowest transferability error. The best 
model transferability in the Sierra del Teleno wildfire was achieved 
between the areas affected by two and three fires (RMSE around 
5%, using WorldView-2 textures as predictors). By contrast, in the 
Cortes de Pallás wildfire, the areas affected by one and two fires fea-
tured the lowest error in the transferability approach (RMSE around 
15% for both remote sensing data; Figure 4).

4  | DISCUSSION

Predictive models have become essential tools in fire ecology 
(Pausas & Lloret, 2007; Canelles et al., 2019) due to increasing social 

(1)
RMSE (%cover)=

�

∑n

i=1

�

Pi−Oi

�2

n

F I G U R E  2   Principal components 
analysis (PCA) biplots of vegetation 
community composition, showing the 
distribution of the field plots under 
different fire recurrence scenarios (one, 
two and three fires) for Sierra del Teleno 
(a) and Cortes de Pallás (b) wildfires
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and scientific awareness about the consequences of global change 
regarding fire regime parameters (Fernández-García et al., 2019). 
There is a growing interest in the attainment of transferable eco-
logical models to support anticipatory predictions instead of ex-
planatory models (Yates et al., 2018) to enhance the efficiency of 
post-fire management actions, which are broadly context-dependent 

(Taboada et al., 2017; Fernández-Guisuraga et al., 2019a). The main 
novelty of this study lies in the evaluation of the remote-sensing po-
tential at different spatial scales together with field measurements 
using a machine-learning approach to obtain transferable vegetation 
recovery models between areas affected by different fire recurrence 
for the case of two large burned areas with different climatic con-
ditions. Our results highlighted the relevance of choosing the ap-
propriate spatial resolution of remote-sensing products to be used 
as predictors in the proposed scheme. Models were transferable 
between fire recurrence scenarios in both study sites (RMSE lower 
than 35%), although the best results were obtained between scenar-
ios with more similar community composition (RMSE of around 15% 
or lower) owing to the species’ regenerative traits in responce to the 
disturbance regime and therefore have a stronger spectral similarity.

4.1 | Fire recurrence influence on community 
structure and composition

The relative abundance of woody understorey species, grouped ac-
cording to their regenerative traits, and pine seedlings, varied with fire 
recurrence both in the Sierra del Teleno and Cortes de Pallás wildfires. 
We found that resprouter abundance tended to increase under high 
fire recurrence scenarios in both study sites. This could be attributable 
to the maximization of resprouter fitness by the resource allocation 
to above-ground or below-ground fire-resistant structures (Pausas & 
Vallejo, 1999; Knox & Morrison, 2005). In addition, the relative abun-
dance of obligate seeder shrubs decreased under high fire recurrence 
scenarios, since they may not have become reproductively mature 
to produce a viable canopy or soil seed bank in the fire-free period 
(Pausas & Keeley, 2014; Lloret et al., 2005). For its part, the domi-
nance of obligate seeder shrubs in the Mediterranean site, especially 
in areas of low recurrence, could be attributed to their seed germi-
nation stimulated by fire (Pausas & Vallejo, 1999; Pausas & Keeley, 
2014; Taboada et al., 2018) and more tolerance to water deficit than 
resprouter shrubs during summer droughts (Pausas et al., 2004).

F I G U R E  3   Mean cover and standard deviation of the 
community assemblage under one (R1), two (R2) and three (R3) 
number of fires in Sierra del Teleno (A) and Cortes de Pallás (B) 
wildfires. The letters located above the standard deviation bars (a, 
b and c) denote statistically significant differences between means 
(p < 0.05). Data were collected in 2 m × 2 m field plots
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R2 Mean(B1,B3) 50.32 Mean(B8A,B12) 34.76

R3 Mean(B3,B6) 41.44 Mean(B5,B12) 30.57

The standard deviation of the explained variance of the RF iterations for each model was <1%. 
WV-2 bands B1, B3 and B6 correspond to coastal blue, green and red edge spectral regions, 
respectively. Accordingly, S-2 bands B1, B3, B5, B8A and B12 correspond to coastal blue, green, 
red edge, NIR and SWIR spectral regions.

TA B L E  1   Mean explained variance 
of the one hundred Random Forest (RF) 
iterations for the most parsimonious 
models of vegetation cover for Sierra 
del Teleno and Cortes de Pallás wildfires 
using WorldView-2 (WV-2) and Sentinel-2 
(S-2) mean and variance (var) textures as 
spectral predictors for areas burned one 
(R1), two (R2) and three (R3) times
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4.2 | Predictive performance of remote-
sensing data

It has been demonstrated that woody debris accumulation decreased 
with increasing fire recurrence (Taboada et al., 2018; Fernández-
García et al., 2019). The highest model performance under high 
fire recurrence scenarios could be explained, in both wildfires, by 
the lower background influence of non-photosynthetic vegetation, 
such as woody debris, on the spectral signature of healthy vegeta-
tion (Montandon & Small, 2008; Schile et al., 2013) in comparison to 
areas burned once. Fernández-Guisuraga et al. (2019b) also found 
the same pattern using a different modeling approach in a fire-
prone ecosystem. Despite both study sites presenting heteroge-
neous post-fire recovery patterns of the vegetation, the narrower 
environmental variation and, therefore, the more homogeneous 
landscape of Sierra del Teleno, in comparison with Cortes de Pallás 
(Fernández-Guisuraga et al., 2019a), may have led to improved model 
performance in the former site. In this regard, the high spatial varia-
tion of ground cover in both study sites requires the use of remote-
sensing data at very high spatial resolution, such as those captured 
by WorldView-2, to obtain the best modeling results (Meng et al., 
2017). The ground heterogeneity of fire-prone ecosystems cannot 
be captured properly by coarse spatial resolution satellite imagery 
(Wood et al., 2012) containing single pixel spectra from different 

ground features (Stefanov & Netzband, 2005; Xiao & Moody, 2005), 
which is known as the land cover aggregation effect (Munyati & 
Mboweni, 2013). For their part, texture features have been proven 
to be adequate remote-sensing products to model post-fire vegeta-
tion structure in fire-prone landscapes, as observed in several stud-
ies (Viedma et al., 2012; Gu et al., 2013; Fernández-Guisuraga et al., 
2019b). In areas of high spatial heterogeneity, texture analysis opti-
mizes the spatial information characterization, since it accounts for 
both the pixel reflectance values and the spatial variation of these 
values between adjacent pixels (Fernández-Guisuraga et al., 2019a, 
2019b). Accordingly, image texture is highly sensitive in these areas 
to variations in vegetation structural parameters, such as leaf area 
index, canopy cover, height and density or vertical and horizontal 
heterogeneity (Sarker & Nichol, 2011; Wood et al., 2012) than other 
satellite products, such as raw reflectance data or spectral indices 
(Sarker & Nichol, 2011; Eckert, 2012; Fernández-Guisuraga et al., 
2019b). Therefore, vegetation cover could be characterized by tex-
ture metrics in each fire recurrence scenario, with explained the 
variances around or higher than 40% using WorldView-2 texture 
predictors. The contribution of textures from the red-edge region 
of the electromagnetic spectrum to the vegetation cover modeling 
in both wildfires is worth mentioning. In areas with heterogeneous 
ground cover, high red-edge sensitivity to shifts in vegetation bio-
physical parameters, such as chlorophyll content or biomass density 
(Xie et al., 2018), have led to a better model performance within each 
study site. Additionally, the red-edge region is quite efficient to dis-
criminate the vegetation spectral signal from background features 
(Schumacher et al., 2016).

4.3 | Transferability

Despite the potential of remote-sensing data to predict vegetation 
structure parameters at individual sites (Foody et al., 2003; Cutler 
et al., 2012; Fernández-Guisuraga et al., 2019b), the attainment of 
transferable models as a cost-effective tool for land management 
decision-making remains challenging (Tsalyuk et al., 2017; Sequeira 
et al., 2018). The spatial variability of vegetation responses, along 
with field data collection and uncertainties related to satellite im-
agery pre-processing, may hinder the transferability of remote-sens-
ing-based vegetation models between different areas (Tsalyuk et al., 
2017; Regos et al., 2019).

Our results supported the hypothesis that species’ regenerative 
traits had a significant impact on model transferability performance 
because these traits reflect the species’ response to the disturbance 
regime and, therefore, their distribution and abundance (Syphard & 
Franklin, 2010; Street et al., 2015; Regos et al., 2019). A specific spe-
cies assemblage as a result of plants’ regenerative traits features a 
characteristic spectral profile arising from the phenology and physi-
ological characteristics of the species (Ustin & Gamon, 2010), as well 
as from the structural layering and multiple scattering between dif-
ferent species (Verrelst et al., 2009). Hence, vegetation cover mod-
els for both wildfires exhibited the highest transferability between 

F I G U R E  4   Mean model transferability performance (root 
mean square error [RMSE]) of the one hundred Random Forest 
(RF) iterations between one (R1), two (R2) and three (R3) fire 
recurrence scenarios in the Sierra del Teleno and Cortes de Pallás 
wildfires using WorldView-2 (WV-2) and Sentinel-2 (S-2) as spectral 
predictors. The thickest arrows correspond to model transferability 
errors of around 15% or lower. The standard deviation of the RMSE 
of the RF iterations for each model was less than 1%
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burned areas with a more similar vegetation community composition 
(regarding the relative abundance of seeder and resprouter species) 
and spectral response. These scenarios corresponded to areas burned 
two and three times in the Sierra del Teleno wildfire and areas burned 
once and twice in Cortes de Pallás during the considered time period. 
Under these scenarios, the stationary vegetation responses enabled 
the modeled relationships between plant community composition 
and remote-sensing data to be kept relatively constant (Fernández-
Guisuraga et al., 2019a), therefore obtaining a good performance 
(RMSE of around 15% or lower, and even as low as 5%) of the model 
transferability approach (Maguire et al., 2016; Osborne & Suárez-
Seoane, 2002; Sequeira et al., 2018). In less favorable transferability 
schemes, the performance was still acceptable (RMSE lower than 
35%), probably because the spectral response dissimilarity between 
the reference and target systems (non-analogous conditions) arising 
from vegetation non-stationary responses was not high enough to 
produce truncation in the model calibration (Yates et al., 2018; Regos 
et al., 2019; Fernández-Guisuraga et al., 2019a).

The spatial resolution of remote-sensing data had a significant 
impact on model transferability performance in both study sites. As 
expected, vegetation cover models calibrated with WorldView-2’s fine-
grained satellite texture exhibited the lowest transferability error. In 
landscapes with great spatial heterogeneity, the use of remote-sens-
ing data at very high spatial resolution is advisable because it captures 
better the variability of the ground cover pattern, allowing better 
transferability of the modeled relationships between sites (Fernández-
Guisuraga et al., 2019b). Another probable explanation for the satis-
factory results in the transferability approach could be related to the 
use of parsimonious models calibrated from few predictors (Wenger 
& Olden, 2012), since complex models could lead to model overfitting 
and, therefore, predictions cannot be adequately transferred to the tar-
get area (Yates et al., 2018; Bell & Schlaepfer, 2016). Likewise, modeled 
relationships must be transferred to the target area using remote-sens-
ing data acquired during the same phenological stage of the vegetation 
in which the relationships were calibrated in the reference area. In both 
study sites, the field-sampling campaign and, consequently, the model 
calibration in the reference areas were conducted during the peak of 
green biomass in spring/summer to minimize the effect of non-pho-
tosynthetic vegetation to the modeled relationships (Wehlage et al., 
2016; Jansen et al., 2018). Although only the RF regression modeling 
approach was tested in our study, it has been reported to provide a 
good performance in ecological modeling transferability (Cutler et al., 
2007). However, the inability of RF regression to predict beyond the 
data range used for model calibration (Iqbal et al., 2018; Sequeira et al., 
2018) may require the collection of field data covering a wider variabil-
ity range to avoid non-analogous conditions.

5  | CONCLUSIONS

1. Fire recurrence is a major driver of both community structure 
and composition in fire-prone ecosystems of the Mediterranean 
Basin with different environmental characteristics.

2. Species responses to the disturbance regime have a large impact 
on the performance of vegetation cover model transferability 
analysis. The best transferability results are achieved between 
fire recurrence scenarios driving to similar vegetation community 
composition regarding the balance of plants’ regenerative traits. 
Under these scenarios, the relationship between community 
composition and remote-sensing data is consistent because of the 
stationarity of the species responses.

3. The ground spatial heterogeneity of fire-prone ecosystems severely 
affects vegetation cover modeling based on remote-sensing data. In 
these ecosystems, the vegetation spectra may be highly influenced 
by background signal, requiring the use of very high spatial reso-
lution instead of coarse satellite imagery to properly characterize 
the vegetation cover. Also, the performance of model transferabil-
ity analysis is highly influenced by the spatial resolution of remote-
sensing data used as predictors of vegetation cover.

4. The framework proposed in this research paper would presuma-
bly allow land managers to reduce efforts in data collection in the 
context of post-fire decision-making to assess vegetation recov-
ery within large burned ecosystems with fire regime variability.
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We evaluate transferability between fire recurrence scenarios of post-fire vegetation cover models calibrated with satellite imagery data. The 
best transferability results were obtained between areas with more homogeneous community composition arising from the species regener-
ative traits. The use of fine-grained satellite imagery for model calibration exhibited the lowest transferability error. 4




