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Featured Application: Improved training of engineers in the industrial branch and instruction of
students in fluid simulation tools.

Abstract: Simulation activities are a useful tool to improve competence in industrial engineering
bachelors. Specifically, fluid simulation allows students to acquire important skills to strengthen
their theoretical knowledge and improve their future professional career. However, these tools
usually require long training times and they are usually not available in the subjects of B.Sc.
degrees. In this article, a new methodology based on short lessons is raised and evaluated in the
fluid-mechanical subject for students enrolled in three different bachelor degree groups: B.Sc. in
Mechanical Engineering, B.Sc. in Electrical Engineering and B.Sc. in Electronic and Automatic
Engineering. Statistical results show a good acceptance in terms of usability, learning, motivation,
thinking over, satisfaction and scalability. Additionally, a machine-learning based approach was
applied to find group peculiarities and differences among them in order to identify the need for
further personalization of the learning activity.

Keywords: Computational Fluid Dynamic (CFD); fluid-mechanics; teaching-learning; engineering
education; computer applications; classification problem; machine learning

1. Introduction

Computational strategies such as Computational Fluid Dynamic (CFD) are usually applied to
simulate fluids (gas and liquids) to obtain different physical variables such as pressure, velocity,
mass rate, turbulence energy, temperature, turbulence intensity, vorticity, and others. Based-on
CFD applications work over a computational domain using partial differential equations (PDE) and
ordinary differential equations (ODE) to describe the relationship among different physical variables
to understand the characteristics of fluid flow. The specific applications of the method can be very
diverse, depending on the objectives of the analysis, the required accuracy and other factors, such as
computing times (which can be high, namely, from hours to days) [1]. The main applications of CFD
encompass aerodynamic analyses, multi-phase flows, transport, compressible flows, phenomena and
chemical processes involving transfer heat phenomenon, dissipative phenomenon, rotary, mixing of
different fluids and chemical reactions [1–5].
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Furthermore, specific CFD software can be difficult to handle and, sometimes, unintuitive for
students without previous experience. Carrying out processing tasks using CFD can become a long,
hard and intense work when it is performed for specific applications [1], for example, optimization [3,6],
model calibration [7], sensitivity analysis and consequence analysis [8]).

As it is established in [9], within the CFD context, the Finite Volume Method (FVM) is a
specific numerical iterative technique that involves partial differential equations (mainly representing
conservation laws) applied over differential volumes. This discretization process is similar to the
Finite Element Method (FEM) [9]. The meshing procedure is highly important in the FVM method
because it strongly affects the accuracy and stability of the flow predictions [10]. The meshing consists
of the generation of a grid over the fluid computational domain. This grid can be generated for the
computational model with different typologies (mainly structured, non-structured and hybrid) being a
quality mesh essential for a quality simulation [11]. Through the mesh, the discretization of the volume
is obtained and the partial differential equations are discretized into algebraic equations by integrating
them over each discrete volume element. As a result, a discrete number of algebraic equations are
established over a finite number of volumes from application of the meshing process to the whole
study volume. These algebraic equations are solved as an algebraic equation system to calculate and
compute the values of the dependent variable of each discrete volume element. An adequate mesh
design is critical, since the accuracy of the results of the simulation process highly depends on how
well the equation system or the mathematical model captures the flow physics [1].

1.1. CFD Method in the Learning Context

The CFD method has been used as a teaching resource for university studies, specifically,
for undergraduate courses in engineering [12–14]. Nevertheless, simulation methods such as CFD
and FEM are frequently offered as specific elective course in many academic institutions around the
world for the acquisition of competence in simulation [1]. However, the assimilation of the learning
of these types of tools involves long training times and it could be an impediment in the context of
basic courses in engineering programs, considering the usual intensity of the scholarship for students
and professors [15]. In this way, specific strategies can be used to integrate CFD in basic courses in
engineering, specifically in the fluid-mechanics course [15].

The calculation of energy losses in pipes is an important skill which students must achieve in
the fluid-mechanical course. Pressure drop in a pipe system is caused by fluid rising in elevation,
shaft work, friction, and turbulence from sudden changes in direction or cross-sectional area [16].
Specifically, the calculation and application of pressure loss coefficients for different pipe sizes is
important to calculate the energy loss and pressure drop in pipes and specific hydraulic elements
installed in the line and, in this way, determine important parameters for engineering tasks, such as
determining the correct pump size [17]. A summary of the published literature about pipes fitting in
the learning context is established in [1]. When the pipe has a complex internal geometry or specific
elements are installed in the pipelines (nozzles, valves, elbows, filters, etc.), the energy losses can be
obtained experimentally or through simulation tools such as CFD. However, pressure drop in singular
elements can be also calculated using empirical tables and/or graphics, available in the literature
(e.g., [11]). Unfortunately, the casuistry of this method based on the literature is reduced for several
reasons: Limited number of head loss elements and also limited since ideal conditions are considered
as ideal geometries for the elements, single-phase flow, Newtonian fluids, no consideration of the
material type of the solids, etc. [15]. However, fluid-mechanical industry problems are sometimes
more complex, including multiple phases, complex boundary conditions and complex geometry of the
volume. These problems cannot be addressed using only the classic equations and empirical tables
and/or graphics; nevertheless, they can be addressed using computer methods based on CFD. Thus,
it is important that students, as future professionals, understand the scope and significance of this
issue and the limitations of theoretical methods explained in the classroom [15].
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Students tend to identify pressure drop with the concept of pressure drop “in line” (caused by
friction with respect to the pipe). However, pressure drop is a wider concept which includes the local
pressure loss caused by specific elements located in the fluid line, such as contractions or expansions,
valves, etc. Due to this simplification of a complex reality, students sometimes ignore the fact that
pressure drop can be caused by apparently insignificant anomalies in the geometry of the pipeline.

Teaching this concept in a laboratory using experimental equipment is often expensive because
some sophisticated stations and instruments are required [1]. Taking into account the high economic
cost of the specific instrumentation, the amount of time spent doing the experimental tasks with
the students, and operational limitations (e.g., presence of large groups of students) justifies the
creation of virtual laboratory resources to support teaching activities [18]. These initiatives share many
objectives with respect to simulation activities, insofar as they replace or complement experimental
laboratory lessons. Besides, CFD could be an adequate tool to explain concepts that complement
the theoretical classes to understand the pressure drop phenomenon, while we are providing the
student with very useful software skills which can be important for their future professional career.
The fluid-mechanical course is a subject common to all engineering degrees in the industrial teaching
program, but, as has been mentioned, learning times for the CFD method of the tool are normally
long. Concurrently, machine-learning based methodologies have shown great potential for pattern
recognition and predicting results for multiple types of datasets, in spite of the field using supervised
algorithms for most of these works. The results of these methods can be incorporated into the
decision-making process [19], even for strategic decision making at higher educational institutions [20],
predicting the performance of the students in blended learning [21] or prediction of early dropout [22].

1.2. Research Question

The research question can be divided in two parts: First, we want to know if the specific use of
short practical activities using the CFD module of Solidworks® [23] is appropriate for the goals raised.
Mainly, we want to know whether its use is adequate in terms of usability, satisfaction scalability,
learning, thinking over and motivation, which are the most analyzed issues in education [24–26].
Please note that we study the activity’s motivation since it is linked with academic performance [27]).

Secondly, by means of a machine-learning approach, we want to know whether the response to
the activity is independent of the bachelor’s degree of origin or, on the contrary, there are questionnaire
response patterns. The presence of a pattern that differentiates the activity’s response depending on
the bachelor degree will justify future modification to adapt the learning activity.

2. Academic Context of the Research and Sample

This research was implemented in the fluid-mechanical subject. This subject is established as
mandatory in the second year for the following three bachelor degrees: Mechanical Engineering,
Electrical Engineering and Electronical and Automatic Engineering, at the Higher Technical School of
Industrial Engineering of Béjar of the University of Salamanca (Spain).

The specific competences (Table 1) of the subject are based on the Spanish regulation [28] which
derives from the regulations of the European Higher Education Area (EHEA). The three degrees
belong to the industrial engineering field (Figure 1), so the first two courses are common for the three
bachelor’s degrees while the last two courses are considered as specialization courses and they are
different for each one. Some colleges offer double degrees. In this case, students enrolled in the double
degree in Electrical and Mechanical Engineering are contemplated in the sample. According to Spanish
regulations for the engineers, some engineering tasks can be done indistinctly by any of the engineers
of the industrial field, while other more specialized tasks can be done specifically by only one of them
(e.g., under Spanish regulation, electrical low voltage projects can be carried out by any industrial
engineer, but high voltage projects can only be carried out by electrical engineers). Please note that
the B.Sc. in Chemical Engineering is not offered by the High School of Industrial Engineering of the
University of Salamanca, so it was not analyzed in the present work.
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Figure 1. Different bachelor degrees belonging to the industrial engineering field. The studies B.Sc are
marked in green.

Table 1. Competences for the fluid-mechanical subject, common for the three bachelor
degrees addressed.

Competence Type Code [29]

Knowledge of the basic principles of fluid-mechanics and their application to
solving problems in the field of engineering. Calculation of pipes, channels and

fluid systems.
Specific CC2

Knowledge and skills for calculating, designing and testing machines. Specific CE2
Applied knowledge of the fundamentals of fluid-mechanical systems and

machines. Specific CE6

Capacity for analysis and synthesis. Basic GI1
Basic knowledge of the profession. Basic IG4

Problem solving. Basic IG8
Ability to apply knowledge in practice. Basic GS1

Ability to plan and organize personal work. Transversal CT1
Capacity for analysis, criticism, synthesis, evaluation and problem solving. Transversal CT6

The research was addressed over a sample of 59 students of the fluid-mechanical subject. In spite
of the fact that the students came from different grades, they were grouped together in the same
classroom since it is a common subject. The distribution of the sample is shown in Table 2.

Table 2. Distribution of the sample of 59 students.

Degree Program ECTS
Students

Number Percentage of Study Case

B.Sc. in Mechanical
Engineering. 240 27 45.8%

B.Sc. in Electrical
Engineering. 240 15 25.4%

B.Sc. in Electronic and
Automatic Engineering 240 12 20.3%

Double Degree. 276 5 8.5%

3. Materials and Methods

3.1. Materials

In [15], a previous requirement and potentialities study about the learning activity was raised. As a
result, Solidworks® [23] was chosen as teaching software. It is a CAD/CAM/CAE commercial package
software with extensive functionalities within the context of mechanical engineering. In summary,
this software was chosen for three reasons: (i) Ease of use of the CFD module compared to other CFD
software alternatives. The simplicity of use was established as a critical factor to reduce the time
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assigned for the activity (please note that one of the factors which will be evaluated is the usability);
(ii) the object’s geometry can be modeled using the same software in an easy way without the need
to use other applications, saving time; (iii) the software can be used in other subjects and by other
professors in their teaching. Solidworks® was installed in one of the computer classrooms of the Higher
Technical School of Industrial Engineering, which is equipped with individual work station posts.

Additionally, to distribute the different activity materials to the students, the documents and files
were uploaded to the institutional Learning Management System (LMS) of the University of Salamanca
(Studium).

3.2. Methods

A specific methodology to evaluate the performance of the activity in different terms was raised
for this research in an ad hoc manner (Figure 2). The different phases of the methodology will be
described in the following paragraphs.
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3.2.1. Activity Design and Completion

The learning activity was designed through a deep reflection under three important criteria, which
were established as a reference for the creation of the learning resources and virtual models for the
activity: Quality, economy and reality criteria [15]. These were established in the literature for the virtual
environments [18,29,30] and, as has been previously indicated, the authors consider that simulation
tasks share objectives and needs with respect to virtual laboratories: The common mission to provide
to the student a practical vision about the physical phenomena without using, or complementing,
a real laboratory for experimental tasks. According to the reality criterion, the activity is intended to be
clear enough to simulate a real behavior of the fluid with adequate visualization results, based on the
study of trajectories or particles, as well as maps of the distribution of different variables. The economy
criterion refers to the balance between available resources and needs. In this respect, it is required
for the simulation process to be as short as possible, so there is no wasted time in computation tasks.
This is due to the high concentration of activities that must be completed in the subject and the fact
that the simulation process has to be carried out entirely using the available workstations, without
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acquiring new ones. Toward this goal, various preliminary tests were carried out by the authors to
find the simulation case that balanced processing times and results accuracy and met these conditions
without affecting the other criteria. The processing times obtained for an adequate accuracy were
between 180 and 350 s. Finally, the quality criterion implies that the results have an acceptable accuracy
for learning tasks, and all the resources and documents necessary for the activity and for its evaluation
can be distributed in LMS (please note that the upload file size limitation is a considered constraint
parameter for the activity design).

Due to the proposed reflection, the activity was designed in four phases. Students were divided
into two heterogeneous groups in order to achieve a better teacher-student ratio. The same activity
was carried out with each of the groups in consecutive weeks. The first three phases (Figure 2) were
oriented to the explanation of the activity and the basic concepts: Firstly, a short theoretical lesson
about the CFD method was explained; next, students downloaded from the LMS the archives and
documents for the activity; and finally, a simulation of an irregular conduit (Figure 3) was presented by
the professor while the students were following the steps at the same time.

The fourth phase (Figure 2) was oriented to the autonomous work of the student (practical case),
which consisted of the simulation of two hydraulic nozzle models: Smooth and obstructed ones.
The obstructed hydraulic nozzle model was designed with respect to the smooth one to compare the
obtained results for the two simulations and to compare those with the theoretical results obtained
with the Bernoulli equation.

A hydraulic nozzle is really a single hydraulic device used to increment the velocity of the
incompressible fluid through a reduction of the effective section. When the nozzle is smooth and
clean, the fluid flows in the usual way, following a behavior close to the Bernoulli equation, which is
established under ideal flow conditions in the absence of dissipative phenomena. Nevertheless, if the
nozzle has an obstructed zone, a significant pressure drop is generated and, in this way, the velocity,
pressure, turbulence and other parameters of the fluid differ from the results obtained using the
Bernoulli equation for the same initial parameters. Therefore, this situation allows the students to think
about the limitations of theoretical methods with respect to experimental methods. Please note that the
design of the obstructed nozzle model does not respond to a real case but is an example that has been
generated so that the simulation activity would meet the criteria indicated above. The parameters for
the simulation indicated to the students in the problem statement are shown in Table 3 and all of them
have been established to accomplish the established criteria for the creation of learning resources.

Table 3. Simulation setting established for the autonomous work of the students.

Simulation Setting

Parameter Value/Description

Fluid Water (Solidworks Newtonian fluid library)
Temperature (K) 293.2

Static pressure inlet (Pa) 301,325
Static pressure outlet (Pa) 101,325

Solid material Steal Stainless 302 (Solidworks® material library)
Roughness (µm) 15

Mesh Structured (tetrahedral)
Mesh refinement level 5
Turbulence intensity 2%

Turbulence length (mm) 38

Simulation configuration Heat transfer consideration
Automatic type flow (laminar/turbulent)

The activity was implemented in the classroom following the established plan for four hours,
of which 200 min were used in the students’ autonomous work. Two professors were present
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during the activity, observing the behavior of the students and resolving any doubts they may have.
The professor–student rate was 15 students per professor.
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3.2.2. Data Gathering

Once the activity was implemented in the classroom, the data gathering process was carried out
to obtain the results to evaluate the suitability and acceptation of the learning activity. An anonymous
online questionnaire, which can be fulfilled in 5 min, was designed. The questions are shown in
Table 4. The response type is yes/no for the three first questions and for the rest a Likert scale is
used [18,29,30]. For the analysis, each question was grouped into one of the categories described in
Table 5. The complete pattern of responses for each student was obtained anonymously.

Table 4. Questionnaire items.

ID Response Category Question

P1 Yes/No Pretest Have you used any CFD tools before?

P2 Yes/No Pretest Have you used mechanical design tools like Solidworks,
Inventor or similar before?

P3 Yes/No Pretest Did you previously know the CFD method for fluid analysis?
Q1 1–5 Previous (informatic) I consider that my level of computer knowledge is high.

Q2 1–5 Satisfaction I believe that the practice with CFD software has
been satisfactory.

Q3 1–5 Usability I think it is a good practice to explain the use of CFD tools in
the classroom.

Q4 1–5 Previous (perception) Before activity, I had the idea that handling such applications
was complicated.

Q5 1–5 Usability I think the software handling is easy.

Q6 1–5 Learning The information provided by the program is enough to know
the behavior of fluids.

Q7 1–5 Learning This practice has helped me to strengthen the theoretical
knowledge taught in class.

Q8 1–5 Learning This practice has helped me to strengthen the practical
knowledge taught in the laboratory.
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Table 4. Cont.

ID Response Category Question

Q9 1–5 Thinking over The activity has made me realize that the theoretical equations
do not always correspond to reality.

Q10 1–5 Learning I believe that after doing this practice I have learned more
about fluid mechanics.

Q11 1–5 Motivation I would like to do more activities of this kind in class.

Q12 1–5 Scalability I think that activities like this, based on simulation, should
also be applied in other subjects.

Table 5. Categories evaluated through the questions and the description for each of them.

Categories Description

Pretest Students’ previous knowledge about the tools to be use.

Previous (informatic) Knowledge of the level of ability and experience with the computer applications
that the student believes he/she has.

Previous (perception) Knowledge of the perception of the difficulty of the tools used.
Satisfaction Conformity of the student with the activity carried out.

Usability Perception of the level of difficulty of the program and whether its use in class is
considered appropriate.

Learning Level of academic achievement the student considers about the activity.

Thinking over
Measures whether the activity has awakened critical thinking in the student with
respect to the contents explained in class, especially with respect the theoretical

methods and their limitations.
Motivation Student’s intention to return to this type of activity in class.
Scalability Student’s perception of the use of similar tools in other subjects.

3.2.3. Descriptive Statistical Analysis

The instrumentation applied was an online short questionnaire (Table 4) with two response types:
A yes/no answer and a Likert scale. Twelve of the fifteen items of the questionnaire were designed
based on a 5-point Likert scale [31]. All answers were raised in terms of the level of agreement
(1-Strongly disagree, 2-Disagree, 3-Neither agree or disagree, 4-Agree, and 5-Strongly agree). The scale
was chosen to seek simplicity and homogeneity in the answers so as not to generate erroneous or
confused answers while making an accurate interpretation of the data.

The results for each question whose response is yes/no was statistically computed using the
frequency of each response. The results for each question that used the Likert scale were statistically
analyzed through the mean and standard deviation values. Parametric statistics were chosen as they
are sufficiently robust to yield correct results when Likert scale answers are analyzed [32]. The same
process was applied for the results obtained for the different categories: Average of the questions’
answers for each category. For this analysis, the response of each student for each question was
analyzed individually by means of a classic statistical approach; therefore, questionnaire response
patterns are not taken into account in the descriptive analysis.

3.2.4. Based on ML Approach to Detect Group Characteristics

Once the descriptive analysis was addressed, differences of the mean values for each question
among the different groups were identified. A machine-learning classification strategy was implemented
to corroborate if there were differences between the responses to the activity for each group (Table 3).
For this, the individual questionnaire response pattern of each student was included in the analysis.

The results obtained for each student are classified in function of the B.Sc. degree (mechanical,
electrical and electronic, and automatic engineering) in order to analyze if the machine-learning
classifier would be able to detect a significant pattern that allows us to classify each student to their
degree in function of the questionnaire responses. The set of students’ responses for each bachelor
degree will be two-to-two compared using four different classification learners. These methods have
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been chosen based on the literature for similar cases [33] and also considering the adequacy of success
indicators: Support machine vectors (SVM), logistic regression (habitually used in social sciences),
random forest, and Bayesian network.

Firstly, SVMs are algorithms built on the theory of statistical learning aimed at minimizing
structural risk. In pattern recognition, classification and regression analysis, it is expected that
SVMs outperform other machine-learning methodologies [34]. An SVM is a discriminative classifier
that looks for the optimal hyper plane that categorizes the training data. Secondly, the classifier
based on logistic regression identifies specific parameters of the logistic function linked features with
respect to binary target variables [33]. Its prediction function (logistic/sigmoid function) depicts the
curvilinear relationship between the inputs and outputs. Therefore, the output’s coefficients provide
the relationship between a binary variable and several independent variables. Thirdly, random forest
is an ensemble classifier that produces many classification and regression-like trees where each tree is
generated from different bootstrapped samples of training data [35]. Random forest enables many weak
or weakly-correlated classifiers to form a strong classifier [36]. Finally, the Bayesian network is one of
the most effective classifiers [37] and is very useful tool to define logical relationships among variables
in complex models. It is a probabilistic graphical model that expresses the relationships among a
set of variables that quantify the links between variables based on their conditional probabilistic
relationship [38].

For the machine learning analysis, the open software Weka [39] was used. Different training
experiments were implemented in order to choose the most adequate prediction features and the
optimum machine learning parameters. For the assessment of the classification k-fold cross-validation
was employed, which splits the training data into k equal-sized partitions [40]. If the applied machine
learning algorithm can classify successfully, this implies that there is a questionnaire response pattern
for each group (mechanical, electrical or electronic engineering). Namely, it will be possible to predict
the student’s degree as a function of the different measured characteristics.

The machine learning classification results are evaluated in terms of the overall accuracy,
the Cohen’s Kappa index and the receiving operating characteristic (ROC) curve area. The Kappa
statistic measures the degree of agreement of categorized data [41]. It is defined in the range of
−1–1, with zero being the expected value for a random classification, 1 being a perfect agreement,
and negative values indicating no agreement, although they are unlikely in practice. The area under
the ROC curve (AUC) provides a comparison between the predicted and actual instance values in a
classification by measuring the precision and the recall [42]. It measures the probability that randomly
chosen instances will be correctly classified. It is widely used for model comparison, since it describes
the model performance for a complete range of classification thresholds. The ROC area is defined in
the range 0–1, with 0.5 being the expected value for a random classification. Therefore, AUC values
equal to or less than 0.5 imply that the classifier has an efficiency that is not superior to randomness,
not being effective in this case.

4. Results

4.1. Descriptive Analysis

As the reader can see in Table 6, the 54.2% of students have worked previously using a parametric
design application as Solidworks® or similar CAD tools, but only 10.2% of students had used a CFD
method before. This means that for the majority of the sample, it is the first time that they used this
technology, which excludes biases due to possible previous experiences. Considering the results of the
previous answer, approximately half of students have used CAD/CAM/CAE tools for 3D design, but not
for fluid simulation, although 91.5% of the students knew about the existence of CFD applications.
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Table 6. Results of the pretest questions.

Pretest Question Yes No

P1 6 (10.2%) 53 (89.8%)
P2 32 (54.2%) 27 (45.8%)
P3 54 (91.5%) 5 (8.5%)

The statistical results (mean and standard deviation) for each question are shown in Figure 4
and Table 7. It can be seen that the main values for all of the questions are above 3 out of 5, while the
standard deviation values shows a low dispersion with respect to the mean value (close to 1 in all
cases). This assessment is supported by the Z-test of the 66 possible combinations for the 12 questions,
with a p-value always higher than 0.05 (95% confidence). Namely, there is no significant difference
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Table 7. Statistical results of the rest of the questions.

Question Mean Standard Deviation

Q1 3.22 0.892
Q2 3.81 1.181
Q3 4.27 0.784
Q4 3.25 1.240
Q5 3.14 0.937
Q6 3.83 0.894
Q7 3.53 1.006
Q8 3.44 1.005
Q9 3.93 0.907
Q10 3.73 0.962
Q11 4.08 1.005
Q12 4.27 0.887

Additionally, the analysis will be carried out from the characteristics extracted from each question
(Table 4). In this manner, eight important characteristics are extracted from the results of the questions
for each student. Mean and standard deviation of the distribution are show in Figure 5 and Table 8.
All the results for the eight characteristics have a mean value above the 3 over 5. In global terms,
it points outs a good acceptance of the activity in all the measured aspects. Furthermore, the standard
deviation is also close to 1 for each case, which indicates that the dispersion tend in the responses are
low. Motivation and scalability are the results which higher mean values while the usability result is
slightly lower than the rest. This last issue was predictable due to the usual difficulty to handle CFD
software; even though the software chosen for the learning activity has an easy handling compared to
other CFD alternative applications.

When the results are analyzed by groups (from each B.Sc. degree) the reader can observe both
differences and trends in the results. For all the groups, the scalability is the characteristic that
achieves the greatest mean value (greater than 4 for all the groups). The second characteristic which
greater results obtain is the motivation for Mechanical Eng., Electrical Eng. and double degree but for
Electronic and Automatic Eng., the second place is for the thinking over. However, the mean values
for Mechanical are slightly lower than the rest, especially in learning (3.17).

Table 8. Statistical results of the categories.

B.Sc.
Parameters

Previous
(Level)

Previous
(Complexity
Perception)

Satisfaction Usability Learning Thinking
over Motivation Scalability

Global
Mean 3.22 3.25 3.81 3.70 3.63 3.93 4.08 4.27

Std. dev. 0.892 1.240 1.181 0.644 0.805 0.907 1.005 0.887

Mechanical Eng. Mean 3.07 3.11 3.70 3.50 3.17 3.56 3.89 4.00
Std. dev. 0.781 1.450 0.993 0.693 0.693 0.934 1.086 1.000

Electrical Eng. Mean 3.27 3.27 3.60 3.70 3.92 4.13 4.20 4.40
Std. dev. 0.961 1.163 1.502 0.528 0.777 0.834 1.146 0.828

Electronical &
automatic Eng.

Mean 3.17 3.33 4.25 4.00 4.04 4.33 4.25 4.42
Std. dev. 1.030 0.985 1.138 0.477 0.638 0.651 0.754 0.669

Double degree Mean 4.00 3.80 4.00 4.10 4.30 4.40 4.40 5.00
Std. dev. 0.707 0.837 1.225 0.742 0.447 0.894 0.548 0.000
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4.2. Machine Learning Classification Approach

The machine learning approach aims to analyze whether the answers provided by the students
are conditioned or not by their particular degree. The comparison is carried out for each two degrees as
shown in Figure 6. If the classifier provided an adequate classification on the basis of success indicators
(precision, overall accuracy, Kappa index and AUC), there is an effective different response pattern for
each of the degrees.
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Machine learning algorithms are trained using different variables to obtain the best results using
the prediction features stated in Table 9, which showed better indicators of success. The most effective
parameter to evaluate the prediction capacity of each method is the AUC. If this value is 0.5 or less,
the algorithm is making predictions with an accuracy close to randomness. It means that a classification
is not possible for the algorithm.
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As is shown in Table 10, based on features applied (Table 9), the AUC is above 0.5 for the
comparison between the B.Sc. degrees in electrical engineering and the B.Sc. degree in mechanical
engineering. For the comparison between the B.Sc. degree in electronic and automatic engineering
with respect to the B.Sc. degree in mechanical engineering.

However, for the comparison between the B.Sc. degree in electrical engineering with respect to
the B.Sc. degree in electronic and automatic engineering. Therefore, the classifier could not predict
successfully (lowest values for the four indicators of Table 9).

Please note that the data collection is limited, and very different subjective parameters are being
evaluated, so the AUC and Kappa values do not show the high accuracy typical of other applications of
machine learning [43,44]. However, this analysis is not oriented to establish a high accuracy predictive
algorithm, but this approach is oriented to demonstrate differences in the questionnaire response
patterns for each student. If it is possible to predict the degree, then it is demonstrated that degree
conditioning factors to the activity in a non-homogeneous sample with students from different B.Sc.
degrees who carried out the same activity at the same time. Different experiments were carried out in
order to find the predictor features which provide better Kappa and AUC results.

When the questionnaire answers are compared between the B.Sc. degrees in electrical engineering
and the B.Sc. degree in mechanical engineering, the best results are obtained with the Bayesian
network classifier, achieving an overall accuracy of 80.9% and a Kappa index of 0.530. These results
are significant for the quality of the success of the classification between the two groups. Regarding the
AUC, for all four tested classifiers the value obtained is higher than 0.5, being the most optimal AUC
result (0.768) obtained for the random forest classifier.

In the comparison between the B.Sc. degrees in mechanical engineering and the B.Sc. degree in
electronic and automatic engineering, the Bayesian network classifier achieved the best results, with
an overall accuracy of 84.6%, a Kappa index of 0.581 and an AUC of 0.728. The rest of the classifiers
achieve lower performance results, but always higher than the randomness threshold (0 for Kappa,
and 0.5 for AUC).

While for the two comparisons mentioned above the algorithm test can classify with acceptable
accuracy the response patterns (results parameters with a success rate higher than randomness),
when the same classifier algorithms are trained and applied between the B.Sc. degree in electrical
engineering and the B.Sc. Degree in electronic and automatic engineering, all classifications cannot
classify satisfactorily the degree based on the chosen features. More specifically, three of the classifiers
show a negative Kappa index, and the highest AUC is 0.44 (lower than the 0.5 threshold). In this case,
we cannot demonstrate that there are differences between both groups based on the questionnaire
response pattern.

Using the predictors features applied, we can indicate that, studying the questionnaire response
patterns of responses for each student, there are differences among the response to the activity.

Table 9. Prediction features applied for the training.

Predictor Features Applied

P2 (yes/no)
P3 (yes/no)

Previous (informatic) (1–5)
Satisfaction (1–5)

Usability (1–5)
Learning (1–5)
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Table 10. Training quality indicators for the based-on classification learner approaches.

Electrical
Engineering

Electronical
Engineering

Electrical
Engineering

vs. vs. vs.
Mechanical
Engineering

Mechanical
Engineering

Electronical
Engineering

SVM linear

Kappa 0.222 0.210 −0.200
Precision 0.685 0.694 0.407

Overall Acc. 69.0% 71.8% 40.7%
AUC 0.596 0.588 0.400

Logistic regression

Kappa 0.421 0.446 −0.050
Precision 0.735 0.764 0.481

Overall Acc. 73.8% 76.9% 48.1%
AUC 0.738 0.713 0.406

Random forest

Kappa 0.412 0.369 −0.286
Precision 0.735 0.734 0.364

Overall Acc. 73.8% 74.4% 37.0%
AUC 0.768 0.671 0.444

Bayes network

Kappa 0.530 0.581 0.195
Precision 0.853 0.874 0.607

Overall Acc. 80.9% 84.6% 59.3%
AUC 0.659 0.728 0.447

5. Conclusions

In global terms, analyzing the results for each individual question, it is demonstrated that students
think that it is a good practice to explain the use of CFD tools in the classroom and that the activity has
made them realize that the theoretical equations do not always correspond to reality (thinking over).
The indicators associated with them are particularly high, which confirms that the initial objectives of
the learning activity were met.

If the results are analyzed by groups according to the bachelor degree, the answers indicated a
good acceptance of the activity regardless of the bachelor degree. In relation to this, the most widely
accepted characteristic is scalability, indicating that students want to do more of this type of activity.
However, there are slight differences for the activity: The second characteristic in terms of score is
the motivation for the B.Sc. degree in Mechanical Engineering, in Electrical Engineering, and double
degree. Motivation results for the activity are clearly positive, as was the case for research on virtual
laboratories and virtualization of materials [18,30]. On the contrary, for the B.Sc. degree in Electronic
and Automatic Engineering, the second place was for the thinking over. It is of note that the mean
values for the B.Sc. Degree in Mechanical Engineering was slightly lower than the rest, especially
in learning. This could be hypothetically justified from the affinity of the studies, since mechanical
engineering is most related to fluid mechanics and hydraulic systems, which is why the learning
obtained after the activity the knowledge acquired might be less novel to them.

Using the questionnaire response pattern given by each student, we can detect differences between
the response sequence pattern given by the B.Sc. degree in mechanical engineering students with respect
to both electricity engineering and electronics and automatic engineering students. The machine
learning algorithms applied were capable of classifying the students as groups according to the
predictor variables. This is an indication that there are peculiarities in the results that differentiate
some groups from others, as far as the response pattern to the activity is concerned, extracted from
the sequences of responses given for the six prediction features. In other words, it is shown that the
response to the learning activity from the questions raised is different for students of B. Sc. degree in
mechanic engineering with respect to those of electronic and automatic or electricity engineering, but
the existence of these differences could not be demonstrated between the latter two. Namely, the same
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analysis is not successful when the classification algorithm is applied to classify between B.Sc. degree in
electrical engineering students and B. Sc. degree in electronic and automatic engineering. This behavior
is justified from the curriculum similarity between both B.Sc degrees (especially in comparison with
the B.Sc. degree in mechanical engineering). The aforementioned group’s results are compatible with
the differences observed in the descriptive statistical results. However, please note that the machine
learning approach was implemented over a small dataset; therefore, we can obtain hints and/or
indications to generate new hypotheses but not scientific statements derived solely from the machine
learning analysis. This would require a much larger sample, on which the possible inter-relationships
of the different intervening variables could be drawn. Nevertheless, since the proposed methodology
is adapted to the student, a larger sample could be operationally unapproachable in this context.

In conclusion, the learning activity has been satisfactory, and the results show that there has been
a good acceptance on the part of the students in terms of usability, learning, thinking over, motivation
and scalability.

There are indications of a different group response that could justify similar learning activities
aimed exclusively at the group in order to adapt the activity to the specialty as much as possible.
Futures works will address this issue and new research will be conducted to continue proposing new
methodologies oriented to the acquisition of competence in subjects of high complexity and abstraction,
like fluid-mechanical learning.
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