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Abstract

The aim of this paper is to provide a reduced Routley-Meyer seman-

tics for the logics characterized by all natural implicative expansions of

Kleene’s strong 3-valued matrix (with two designated values, as well as

with only one) susceptible to be interpreted in Routley-Meyer semantics.
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1 Introduction

Given a matrix semantics, a conditional is natural if it fulfills the three following

conditions: (1) it coincides with the classical conditional when restricted to the

classical values  and  ; (2) it satisfies theModus Ponens; and (3) it is assigned

a designated value when the value assigned to its antecedent is less than or equal

to the value assigned to its consequent (cf. [18]). In [14] and [15], it is presented

a “bivalent” Belnap-Dunn semantics (cf. [3], [4], [7] and [8]) for all natural

implicative expansions of Kleene’s strong 3-valued matrix (cf. [10]) with two

designated values (cf. [14]) as well as with only one designated value (cf. [15]).

Well then, the aim of this paper is to provide a Routley-Meyer semantics for

the logics characterized by all natural implicative expansions of Kleene’s strong

3-valued matrix (with both only one and also two designated values) susceptible

to be interpreted in this type of semantics.

Routley-Meyer type ternary relational semantics (RM-semantics) was intro-

duced in the early 70s of the past century (cf. [5], [16] and references therein).

It was particularly defined for interpreting relevance logics, but it was soon no-

ticed that an ample class of logics not belonging to the relevance logics family

could also be characterized by this semantics. RM-semantics is a relational

type semantics. It can be distinguished from standard Kripke semantics in two

aspects: on the one hand, the accessibility relation between worlds (points, set-

ups or whatever the name is preferred) is a ternary relation instead of a binary
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one and, on the other hand, negation formulas are interpreted by the “Routley

operator” (or “Routley star”) in each possible world w.r.t. its so-called “star-

image world”, instead of being interpreted in each possible world in function of

the argument’s value of the negation formula in that same possible world.

There are essentially two types of RM-semantics: (1) RM-semantics with

a set of designated points w.r.t. which validity of formulas is decided (RM1-

semantics) and (2) RM-semantics without a set of designated points, where

validity of formulas is decided w.r.t. the set of all points (RM0-semantics).

These two type of semantics can also be found in standard Kripke semantics. As

for RM1-semantics, we have reduced RM1-semantics, where the set of designated

points is reduced to a singleton, and unreduced RM1-semantics.

It is to be remarked that it is not possible to give an RM-semantics to logics

weaker than (not containing) Sylvan and Plumwood’s minimal logic BM (cf.

[17]). Therefore, the aim of this paper is to provide a reduced RM1-semantics

for the logics characterized by all natural implicative expansions of Kleene’s

strong 3-valued matrix (with both one and also two designated values), which

are representable in RM-semantics (i.e., logics containing BM).

The present paper pursues previous work by the author on RM-semantics

for 3-valued logics. In [12], a reduced RM0-semantics for Łukasiewicz’s 3-valued

logic Ł3 is presented, whereas the same type of semantics is given for both

Gödelian 3-valued logic G3 and its paraconsistent variant G3Ł in [11]. Never-

theless, and in addition to the fact that more basic 3-valued logics are given an

RM-semantics, the results here presented suppose an advance w.r.t. those just

recalled in the two following aspects. (1) Generality: all the logics investigated

are interpreted from a unified and general point of view (Ł3 and G3Ł are to be

found among these logics); (2) the type of RM-semantics used in the present pa-

per : on the one hand, RM1-semantics (the RM-semantics used in what follows)

is more general than RM0-semantics in the sense that in most significant cases

the latter can be defined from the former, but not conversely. On the other

hand, reduced RM-semantics are preferable to unreduced RM-semantics when

it is possible to define the former (cf. [5], [16]). (In this second aspect, the RM-

semantics developed in this paper is similar (but more general) to the reduced

RM1-semantics supplied for Brady’s 4-valued logic of the relevant conditional

BN4 and its accompanying 4-valued logic (of relevant) entailment E4 in [13].)

The structure of the paper is as follows. In §2, we firstly state some pre-

liminary basic notions as used in the paper. Then, Kleene’s strong 3-valued

matrix MK3 (our label) is defined. In §3, the notion of a “natural conditional”

(according to [18]) is introduced and all natural implicative expansions of MK3

(with both one and also two designated values), defined in [14] and [15], are

recalled (we remark that there are stricter notions of “natural” in the litera-

ture; cf., e.g., [2]). It develops that only six of these implicative expansions of

MK3 verify all axioms and rules of Sylvan and Plumwood’s minimal logic BM.

Consequently, only the six logics (let us name them Lt-logics) determined by

each one of the aforementioned six implicative expansions of MK3 can be given

an RM-semantics. In §4, the six Lt-logics are defined in a general and unified

way as extensions of Routley and Meyer’s disjunctive basic logic B (cf. [16],
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Chapter 4). In §5, a reduced RM1-semantics is provided for each one of the six

Lt-logics and the (strong) soundness theorems are proved. In §6, the extension

and primeness lemmas are noted (cf. [16] and also [6]). In §7, we prove a series

of preliminary lemmas to the completeness theorem. Finally, in §8, the (strong)

completeness theorems are proved. We have added three appendices: Appendix

1, on the natural implicative expansions of MK3, and Appendices 2 and 3, on

the Lt-logics.

2 Kleene’s strong 3-valued matrix

In this section, Kleene’s strong 3-valued matrix is recalled. Firstly, we state

some preliminary definitions where we recall some basic notions as used in the

present paper. Then, Kleene’s strong 3-valued matrix is defined.

Definition 2.1 (Language) The propositional language consists of a denu-

merable set of propositional variables 0 1    and the following connec-

tives → (conditional), ∧ (conjunction), ∨ (disjunction), ¬ (negation). The

biconditional (↔) and the set of wffs are defined in the customary way. 

etc. are metalinguistic variables.

Definition 2.2 (Logics) A logic L is a structure (L, `L ) where L is a propo-
sitional language and `L is a (proof-theoretical) consequence relation defined on
L by a set of axioms and a set of rules of derivation. The notions of ‘proof’ and
‘theorem’ are understood as it is customary in Hilbert-style axiomatic systems

(Γ `L  means that  is derivable from the set of wffs Γ in L; and `L  means

that  is a theorem of L).

Definition 2.3 (Extensions and expansions) Let L be a logic formulated

with axioms a1 a and rules of derivation r1 r. A logic L0 includes L
iff a1 a are theorems of L0 and rules r1 r are provable in L0. We shall
generally refer to logics including L by EL-logics. Notice that an EL-logic can be

an extension of L (a strengthening of L in the language of L) or an expansion

of it (a strengthening of L in an expansion of the language of L). An extension

L0 of L is a proper extension if L0 is not included in L.

Definition 2.4 (Logical matrix) A (logical) matrix is a structure (V F)
where (1) V is a (ordered) set of (truth) values; (2)  is a non-empty proper

subset of V (the set of designated values); and (3) F is the set of -ary functions
on V such that for each -ary connective  (of the propositional language in

question), there is a function  ∈ F such that V → V.

Definition 2.5 (M-interpretation, M-consequence, M-validity) Let M be

a matrix for (a propositional language) L. An M-interpretation  is a function

from F to V according to the functions in F. Then, for any set of wffs Γ and
wff , Γ ²M  ( is a consequence of Γ according to M) iff () ∈  whenever
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(Γ) ∈  for all M-interpretations  ((Γ) ∈  iff () ∈  for each  ∈ Γ).
In particular, ²M  ( is M-valid;  is valid in the matrix M) iff () ∈  for

all M-interpretations . (By ²M we shall refer to the relation defined in M).

Definition 2.6 (Kleene’s strong 3-valued matrix) The propositional lan-

guage consists of the connectives ∧∨¬. Kleene’s strong 3-valued matrix, MK3
(our label), is the structure (V F) where (1) V = {0 1 2} and it is ordered
as shown in the following diagram

(2)  = {1 2} or  = {2}; (3) F = {∧ ∨ ¬} where ∧ and ∨ are defined
as the glb (or lattice meet) and the lub (or lattice joint), respectively, ¬ is an
involution with ¬(2) = 0 ¬(0) = 2 and ¬(1) = 1. We display the tables for
∧, ∨ and ¬:

∧ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

∨ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

¬ 0
0 2
1 1
2 0

The notions of an MK3-interpretation, MK3-consequence and MK3-validity

are defined according to the general Definition 2.5.

The notion of a logic determined by a given matrix can be understood as

stated in the following definition.

Definition 2.7 (Logics determined by matrices) Let L be a propositional
language, M a matrix for L and `L a (proof theoretical) consequence relation
defined on L. Then, the logic L (cf. Definition 2.2) is determined by M iff for

every set of wffs Γ and wff , Γ `L  iff Γ ²M . In particular, the logic L

(considered as the set of its theorems) is determined by M iff for every wff ,

`L  iff ²M  (cf. Definition 2.5).

The logic determined by MK3 can be named here K31 (only one designated

value) or K32 (two designated values) (cf. [8], §3.4 on these logics).

3 Natural implicative expansions of MK3

Following Tomova [18], we define “natural conditionals” as follows.
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Definition 3.1 (Natural conditionals) Let L be a propositional language with
→ among its connectives and M be a matrix for L where the values  and  rep-
resent the supremum and the infimum in V. Then, an →-function on V defines

a natural conditional if the following conditions are satisfied:

1. → coincides with (the →-function for) the classical conditional when
restricted to the subset { } of V.

2. → satisfies Modus ponens, that is, for any   ∈ V, if  →  ∈  and

 ∈ , then  ∈ .

3. For any   ∈ V, →  ∈  if  ≤ .

Proposition 3.2 (Natural conditionals in 3-valued matrices) (a) Two des-

ignated values: Let L be a propositional language and M be a 3-valued matrix

where V is defined exactly as in MK3 and  = {1 2}. Now, consider the 24 →
functions defined in the following general table:

TI

→ 0 1 2
0 2 1 2
1 0 2 3
2 0 1 2

where  (1 ≤  ≤ 3) ∈ {1 2} and 1 ∈ {0 1 2}. The set of functions

contained in TI is the set of all natural conditionals definable in M.

(b) One designated value: Now, let M and V be as above but  = {2}.
Consider the 6 → functions in the following general table:

TII

→ 0 1 2
0 2 2 2
1  2 2
2 0  2

where  ∈ {0 1 2} and  ∈ {0 1}. The set of functions contained in TII is
the set of all natural conditionals definable in M.

Proof. It is obvious (cf. [14], [15]).

Next, the notion of a natural implicative 3-valued matrix is defined and all

natural implicative expansions of MK3 are collected in Proposition 3.4.

Definition 3.3 (Natural implicative 3-valued matrices) Let L be a propo-
sitional language with the connective →. And let M be a 3-valued matrix where

V and  are defined as in Definition 2.6. Moreover, let → be one of the func-

tions (defining one of the conditionals) in TI or TII (in Proposition 3.2). Then,

it is said that M is a natural implicative 3-valued matrix. (Notice that we are

supposing that V is ordered as stated in Definition 2.6.)

Proposition 3.4 (Natural implicative expansions of MK3) (a) Two des-

ignated values: There are exactly 24 natural implicative expansions of MK3,
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Mt1, Mt2,..., Mt24, which are defined as follows. Each Mt (1 ≤  ≤ 24)
is the structure (V F) where V ∧ ∨ and ¬ are defined exactly as in
MK3 (cf. Definition 2.6, with  = {1 2}), whereas → is defined according to

the table t. Tables t1, t2, ..., t24 are displayed in Appendix 1; the notions of

an Mt-interpretation, etc. are defined according to the general Definition 2.5.

(b) Only one designated value: There are exactly 6 natural implicative expan-

sions of MK3, Mt25, Mt26,..., Mt30, which are defined as follows. Each Mt

(25 ≤  ≤ 30) is the structure (V F) where V ∧ ∨ and ¬ are defined
exactly as in MK3 (cf. Definition 2.6, with  = {2}), whereas → is defined

according to the table t. Tables t25, t26, ..., t30 are displayed in Appendix 1;

the notions of an Mt-interpretation, etc. are defined according to the general

Definition 2.5.

Proof. Immediate by Proposition 3.2 and Definition 3.3.

However, there are only six implicative expansions of MK3 verifying all ax-

ioms and rules of Sylvan and Plumwood’s minimal logic BM. These six expan-

sions are displayed in the following proposition.

Proposition 3.5 (The six natural implicative expansions of MK3) The

logic BM is defined in Definition 4.4 below. The six natural implicative expan-

sions of MK3 verifying all axioms and rules of Sylvan and Plumwood’s BM are

defined by adding to MK3 each one of the → functions in the truth tables below

(designated values are starred).

t1

→ 0 1 2
0 2 2 2
1 0 2 2
*2 0 0 2

t2

→ 0 1 2
0 2 2 2
1 1 2 2
*2 0 1 2

t3

→ 0 1 2
0 2 2 2
1 0 2 2
*2 0 1 2

t4

→ 0 1 2
0 2 2 2
1 1 2 2
*2 0 0 2

t5

→ 0 1 2
0 2 2 2
*1 0 1 2
*2 0 0 2

t6

→ 0 1 2
0 2 2 2
*1 0 2 2
*2 0 0 2

Proof. Consider the lists of conditional tables in Appendix 1. (1) Two desig-

nated values: All tables except t1, t4, t7, t10, t13, t16, t19 and t22 falsify the

rule Con. On the other hand, t1, t4, t7 and t10 falsify the rule Pref; and t13

and t19 falsify the rule Suf. Thus, we are left with t16 and t22 (i.e., t5 and

t6 above). (2) Only one designated value: Tables t25 and t26 falsify the rule

Con. Thus, we are left with t27, t28, t29 and t30 (i.e., t1, t2, t3 and t4 above,

respectively). (In case a tester is needed, the reader can use that in [9].)

The aim of this paper is to provide a reduced RM1-semantics for each one

of the logics determined by these six implicative expansions of MK3.
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4 The logics determined by the six natural im-

plicative expansions of MK3 verifying all ax-

ioms and rules of BM

In this section, we define the logics Lt1, Lt2,..., Lt6 determined by the natural

implicative expansions of MK3, Mt1, Mt2,..., Mt6, verifying all axioms and

rules of Sylvan and Plumwood’s minimal logic BM. We will generally refer by

Lt-logics to these six logics. We have tried to axiomatize the Lt-logics with a

common basis as wide as possible. In this sense, the six Lt-logics are formulated

as extensions of Routley and Meyer’s disjunctive basic logic B, which is defined

as shown in Definition 4.1 below (cf. [16]).

Definition 4.1 (The logic Bd) The logic Bd is Routley and Meyer’s disjunc-

tive basic logic B. It is formulated as follows:

Axioms:

A1. ( ∧)→  / ( ∧)→ 

A2. [(→ ) ∧ (→ )]→ [→ ( ∧)]
A3. → ( ∨) /  → ( ∨)
A4. [(→ ) ∧ ( → )]→ [( ∨)→ ]

A5. [ ∧ ( ∨ )]→ [( ∧) ∨ ( ∧ )]
A6. → ¬¬
A7. ¬¬→ 

Rules of inference:

Adjunction (Adj):  &  ⇒  ∧
Modus Ponens (MP): →  & ⇒ 

Disjunctive Modus Ponens (dMP):  ∨ &  ∨ (→ )⇒  ∨
Disjunctive Suffixing (dSuf):  ∨ (→ )⇒  ∨ [( → )→ (→ )]

Disjunctive Prefixing (dPref):  ∨ ( → )⇒  ∨ [(→ )→ (→ )]

Disjunctive Contraposition (dCon):  ∨ (→ )⇒  ∨ (¬ → ¬)
We note the following proposition.

Proposition 4.2 (Some theorems and rules of Bd) The following theorems

and rules are provable in Bd.

T1. → 

T2. ¬( ∨)↔ (¬ ∧ ¬)
T3. ¬( ∧)↔ (¬ ∨ ¬)
Suf. →  ⇒ ( → )→ (→ )

Pref.  →  ⇒ (→ )→ (→ )

Con. →  ⇒ ¬ → ¬
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Proof. Cf. [16], Chapter 4.

Next, we note how Routley and Meyer’s B and Sylvan and Plumwood’s BM
are defined.

Definition 4.3 (Routley and Meyer’s B) Routley and Meyer’s basic logic

B is axiomatized with A1-A7, Adj, MP, Suf, Pref and Con (cf. Definition 4.1

and Proposition 4.2).

Definition 4.4 (Sylvan and Plumwood’s BM) Sylvan and Plumwood’s min-

imal logic BM is axiomatized with A1-A5, Adj, MP, Suf, Pref, Con (cf. Defin-

ition 4.3) and, in addition, the axioms A60, (¬ ∧ ¬) → ¬( ∨ ) and A600,
¬( ∧)→ (¬ ∨ ¬).
Thus, notice that BM is a sublogic of B (cf. [17]), but it is important to note

that B and Bd are different logics.

Proposition 4.5 (B and Bd are different logics) B and Bd are different

logics, the former being included in the latter.

Proof. Consider the following set of truth-tables where 3 is the only designated
valued:

→ 0 1 2 3 ¬
0 3 3 3 3 3
1 1 3 1 3 2
2 1 1 3 3 1
3 1 1 1 3 0

∧ 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

∨ 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

These tables verify all axioms and rules of B but falsify the rule dMP ( ∨
 &  ∨ ( → ) ⇒  ∨ ).(Let  and  be the propositional variables

  and , respectively, and consider any interpretation  with () =
1 () = 0 and () = 2). On the other hand, B is a sublogic of Bd, as

shown in Proposition 4.2 and Definition 4.3.

In what follows, the Lt-logics are defined. In addition to A1-A7, the follow-

ing list of axioms will be used.

A8. → (→ )

A9. ¬→ [ ∨ (→ )]

A10.  → [¬ ∨ (→ )]

A11. [(→ ) ∧]→ (¬ ∨)
A12. [(→ ) ∧ ¬]→ (¬ ∨)
A13. ( ∨ ¬) ∨ (→ )

A14. [(→ ) ∧ ( → )]→ (→ )

A15. [(→ ) ∧]→ 

A16. [(→ ) ∧ ¬]→ ¬
A17.  ∨ ¬
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A18. (¬ ∧)→ (→ )

A19. → [ ∨ ¬(→ )]

A20. ¬ → [¬ ∨ ¬(→ )]

A21. ¬(→ )→ ( ∨ ¬)
A22. ¬(→ )→ ( ∧ ¬)
A23. ¬(→ )→ ¬
A24. ¬(→ )→ 

A25. ( ∧ ¬)→ ¬(→ )

A26. [¬(→ ) ∧ (¬ ∧)]→ 

Now, we begin by defining two basic extensions of Bd, b3 and b3Ecq (the label

b3 is intended to abbreviate “basic logic contained in the six natural implicative

expansions of K31 and K32 –cf. the last paragraph in section 2– considered

in this paper”. The system b3Ecq is the result of adding the rule Ecq (cf.

Definition 4.7 below) to b3.

Definition 4.6 (The logic b3) The basic logic b3 is the result of adding the

following axioms to Bd:

A8. → (→ )

A9. ¬→ [ ∨ (→ )]

A10.  → [¬ ∨ (→ )]

Definition 4.7 (The logic b3Ecq) The basic logic b3Ecq is the result of adding

to b3 the rule dEcq (“Disjunctive Ecq”, where Ecq is “E contradictione quodli-

bet” –“Anything (follows) from a contradiction”).

dEcq:  ∨ ( ∧ ¬)⇒  ∨

We note some theorems provable in b3 and b3Ecq.

Proposition 4.8 (Some theorems provable in b3 and b3Ecq) The follow-

ing theorems are provable in b3 and b3Ecq. In addition, the rule Ecq is provable

in b3Ecq.

T4. → [ → ( ∨)]
T5. [¬(→ ) ∧ ¬]→ 

T6. → [¬ ∨ (¬→ )]

T7. ( ∧ ¬)→ [ ∨ [( ∧)→ ]]

T8. [¬(→ ) ∧]→ ¬
Ecq.  ∧ ¬⇒ 
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Proof. T4 is provable by BM and A8; T5 and T6, by B and A9; T7, by B and

A9 in the form ¬( ∧ ) → [( ∧ ) ∨ [( ∧ ) → ]]; T8, by B and A10;
finally, Ecq is immediate by dEcq.

Next, two more basic logics are defined b31 and b
3
2. They are two mutually

independent extensions of b3. The former is contained in Lt1, Lt2, Lt3 and Lt4;

the latter, in Lt5 and Lt6.

Definition 4.9 (The logics b31 and b
3
2) (a) The logic b

3
1 is axiomatized when

adding the following axioms to b3Ecq:

A11. [(→ ) ∧]→ (¬ ∨)
A12. [(→ ) ∧ ¬]→ (¬ ∨)
A13. ( ∨ ¬) ∨ (→ )

(b) The logic b32 is axiomatized when adding the following axioms to b
3:

A14. [(→ ) ∧ ( → )]→ (→ )

A15. [(→ ) ∧]→ 

A16. [(→ ) ∧ ¬]→ ¬
A17.  ∨ ¬
A18. (¬ ∧)→ (→ )

We note some theorems of b31 and b
3
2.

Proposition 4.10 (Some theorems of b31 and b
3
2) The following are prov-

able in b32:

T9. → [ ∨ ¬(→ )]

T10. ¬ → [¬ ∨ ¬(→ )]

T11.  ∨ (→ )

T12. ¬ ∨ (→ )

On the other hand, T13 below is provable in b31

T13. ( ∧ ¬)→ [¬ ∨ ¬(→ )]

Proof. T9, T10 and T13 are derivable by B and A16, A15 and A11, respec-

tively; then, T11 and T12 follow by BM and A17 together with A9 and A10,

respectively.

Finally, the Lt-logics can be defined. (More conspicuous formulations of

these logics can be found in Appendix 3.)

Definition 4.11 (The six implicative expansions of K31 (K32)) The six

implicative expansions of K31 or K32, as the case may be, containing Bd can be

defined as follows.
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(a) Extensions of b31: The logics Lt1, Lt2, Lt3 and Lt4 are axiomatized by

adding the following axioms to b31:

Lt1:

A19. → [ ∨ ¬(→ )]

A20. ¬ → [¬ ∨ ¬(→ )]

A21. ¬(→ )→ ( ∨ ¬)

Lt2:

A22. ¬(→ )→ ( ∧ ¬)

Lt3:

A20. ¬ → [¬ ∨ ¬(→ )]

A23. ¬(→ )→ ¬

Lt4:

A19. → [ ∨ ¬(→ )]

A24. ¬(→ )→ 

(b) Extensions of b32: The logics Lt5 and Lt6 are axiomatized by adding the

following axioms to b32:

Lt5:

A25. ( ∧ ¬)→ ¬(→ )

Lt6:

A26. [¬(→ ) ∧ (¬ ∧)]→ 

Notice that A210, (¬∧)→ (→ ) (i.e., A18 of b32) is immediate in Lt1
by B and A21 (clearly, A22, A23 or A24 can be used instead of A21 to derive

A210).
On the other hand, in Appendix 2, it is proved that the axiomatizations of

Lt1, Lt2, Lt3, Lt4, Lt5 and Lt6 given in the present section are (deductively)

equivalent (cf. Definition 2.3) to the original ones provided in [14] and [15].

Finally, the relations these logics maintain to each other are summarized in

the following diagram, where the arrow is to be read as follows. Let L, L0 be
two logics in the diagram. L→L0 means that L is included in L0. More precisely,
it means that, for any set of wffs Γ and wff , if Γ `L , then Γ `L0 .
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On the other hand, that there are not other relations between the logics

in the diagram than those recorded (and, of course, those following from the

transtivity of the relation expressed by →) can be proved as follows (in case
a tester is needed, the reader can use that in [9]; we can suppose that the

soundness and completeness theorems in Sections 5 and 8 have been proved).

1. b3 is not included in Bd: A9 and A10 are not theorems of relevant logic

R.

2. b3Ecq is not included in b
3
2: Ecq is not validated in Mt5 and Mt6.

3. b31 is not included in b
3
2: Immediate by 2.

4. b32 is not included in b
3
1:  ∨ ¬ is not valid in Mt1, Mt2, Mt3 and Mt4.

5. Lt5 and Lt6 are not included in Lt1, Lt2, Lt3 and Lt4: Immediate by 4.

6. Lt1, Lt2, Lt3 and Lt4 are not included in Lt4 and Lt5: Immediate by 2.

7. Lt5 and Lt6 are independent logics:  → [( → ) → ] is not valid in
Mt6;  → (→ ) is not valid in Mt5.

8. Lt1, Lt2, Lt3 and Lt4 are independent logics: (a) [( → ) ∧ ¬( →
)] → , valid in Mt1, is not valid in Mt2, Mt3 and Mt4. (b) ¬( →
) → ( ∧ ¬), valid in Mt2, is not valid in Mt1, Mt3 and Mt4. (c)
[ ∧ ( → )] → , valid in Mt3, is not valid in Mt2 and Mt4;  →
( → ), valid in Mt3, is not valid in Mt1. (d) [( → ) ∧ ¬] → ¬,
valid in Mt4, is not valid in Mt2 and Mt3; ¬→ (→ ), valid in Mt4,
is not valid in Mt1.
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5 Reduced Routley-Meyer semantics for the Lt-
logics

In this section a reduced Routley-Meyer semantics with a set of designated

points (a reduced RM1-semantics) is provided for each one of the Lt-logics.

Given that the Lt-logics are formulated as extensions of Routley and Meyer’s

disjunctive basic logic Bd, we begin by presenting a reduced RM1-semantics for

extensions of this last logic.

Definition 5.1 (EBd-models) An EBd-model, M, is a structure with at least

the following items: (a) a set  and an element of it, ; (b) a ternary relation 

and a unary operation ∗ defined on  subject at least to the following definitions

and postulates for all     ∈ :

d1.  ≤  =df 

d10.  =  =df  ≤  &  ≤ 

d2. 2 =df ∃ ∈ ( & )

P1.  ≤ 

P2. ( ≤  & )⇒ 

P3.  ≤ ⇒ ∗ ≤ ∗

P4.  = ∗∗

(c) a valuation relation ² from  to the set of all formulas such that the

following conditions (clauses) are satisfied for every propositional variable ,

formulas  and  ∈ :

(i). ( ≤  &  ² )⇒  ² 

(ii).  ²  ∧ iff  ²  &  ² 

(iii).  ²  ∨ iff  ²  or  ² 

(iv).  ² →  iff for all   ∈ , ( &  ² )⇒  ² 

(v).  ² ¬ iff ∗ 2 

Additional elements of M are (semantical) postulates Pj1  Pj.

Structures of the form ( ∗²) satisfying d1, d10, d2, P1, P2, P3,
P4 and clauses (i), (ii), (iii), (iv) and (v) are the basic structures and in fact

characterize the logic Bd (they are labelled Bd-models). Introduction of addi-

tional postulates serve to determine extensions of Bd interpretable in reduced

RM1-semantics.

Next, the notions of consequence and validity are defined. Then, we remark

two lemmas which are useful in the soundness proofs to follow.

Definition 5.2 (EBd-consequence, EBd-validity) Let a class of EBd-models

M be defined and M ∈M. For a non-empty set of formulas Γ and formula ,

13



Γ ²M  iff  ²  if  ² Γ ( ² Γ iff ∀ ∈ Γ,  ² ). In particular, if Γ = ∅,
²M  ( is true in M) iff  ² . Then, Γ ²M  ( is M-consequence of Γ)
iff Γ ²M  for each M ∈M. In particular, ²M  ( is valid in M) iff ²M 

for each M ∈M.

Lemma 5.3 (Hereditary Lemma) For any EBd-model,   ∈  and for-

mula , ( ≤  &  ² )⇒  ² .

Proof. Induction on the length of . The conditional case is proved with P2

and the negation case with P3.

Lemma 5.4 (Entailment Lemma) Let a class of EBd-modelsM be defined.

For any formulas , ²M →  iff ( ² ⇒  ²  for all  ∈ ) in all M
∈M.

Proof. From left to right (⇒) by P1; from right to left (⇐), by Lemma 5.3.
Let L be an EBd-logic and L-models be defined. Below, it is proved that all

theorems of Bd are L-valid. Then, soundness of Bd is a corollary of this fact.

Proposition 5.5 (All theorems of Bd are EBd-valid) For any formula ,

if `Bd , then  is EBd-valid (i.e., valid in any class of EBd-models).

Proof. It can be found in [16], Chapter 4.

Corollary 5.6 (Soundness of Bd) For any wff , if `Bd , then ²Bd .
Proof. Immediate by Proposition 5.5, since a Bd-model is an EBd-model.

In what follows, we proceed to the soundness proofs of the Lt-logics. The

basic notion is “corresponding postulate” (cf. [16], Chapter 4). We give a

corresponding postulate to each one of the axioms A8 through A26 and the rule

dEcq. Then, in order to prove soundness, these postulates are used as shown in

Lemma 5.8. The section is ended with the proof of soundness of the Lt-logics.

Firstly, Lt-models are defined. Then, (strong) soundness follows immediately

from Definition 5.5 and Lemma 5.8.

Definition 5.7 (Postulates corresponding to A8-A26 and dEcq) Below,

we provide postulates corresponding to each one of the axioms A8-A26 and the

rule dEcq

PA8. ⇒ ( ≤  or  ≤ )

PA9. ⇒ ( ≤  or  ≤ ∗)
PA10. ⇒ ( ≤  or ∗ ≤ )

PA11.  or ∗
PA12. ∗∗ or ∗
PA13. ⇒ (∗ ≤  or  ≤ )

PA14. ⇒ ∃ ∈ ( & )

PA15. 

14



PA16. ∗∗

PA17. ∗ ≤ 

PA18. ⇒ ( ≤ ∗ or  ≤ )

PA19. ∗
PA20. ∗∗∗

PA21. ∗⇒ ( ≤  or ∗ ≤ )

PA22. ∗⇒ ( ≤  & ∗ ≤ )

PA23. ∗⇒ ∗ ≤ 

PA24. ∗⇒  ≤ 

PA25. ∗∗

PA26. ∗⇒ ( ≤  or  ≤ ∗)
PdEcq.  ≤ ∗

Lemma 5.8 (EBd-validity of A8-A26 and dEcq) LetM be a class of EBd-

models and M ∈ M. Then, for any  (8 ≤  ≤ 26), A is true in M if PA

holds in M. Moreover, dEcq (disjunctive Ecq) preserves truth in M if PdEcq

holds in M.

Proof. The proof is similar to that given in [16], Chapter 4, for extensions

of Routley and Meyer’s basic logic B. So, it will suffice to prove some selected

items (we lean upon the Entailment and Hereditary Lemmas, Lemma 5.3 and

Lemma 5.4, respectively. By i, ii, etc., we refer to the clauses (i), (ii), etc., in

Definition 5.1).

(a) A11, [( → ) ∧ ] → (¬ ∨ ), is true in M : For reductio, suppose
that there are wffs  and  ∈  in M such that (1)  ² (→ )∧ but (2)
 2 ¬∨. By 1 and ii, we have (3)  ² →  and (4)  ² ; by 2, iii and v,

we have (5) ∗ ²  and (6)  2 ; and by PA11, (7)  or (8) ∗ follows.
Suppose 7 is the case, then we have (9)  ²  (by 3, 4, 7 and iv), contradicting

6. On the other hand, suppose 8. Then, (10)  ²  follows (by 3, 5, 8 and iv)

contradicting again 6. Consequently, A11 is true in M.

(b) A13, ( ∨ ¬) ∨ ( → ), is true in M : Suppose that there are wffs
 such that (1)  2 ( ∨ ¬) ∨ (→ ). By iii and v, we have (2)  2 ,

(3) ∗ ²  and (4)  2 → ; and by 4 and iv, there are   ∈  in M such

that (5) , (6)  ²  and (7)  2 . By PA13 and 5, either (8) ∗ ≤  or

(9)  ≤ . Suppose 8. Then, (10)  ²  follows by 3 and 8, contradicting 7. On

the other hand, suppose 9. Then, we have (11)  ² , by 6 and 9, contradicting

2.

(c) A17,  ∨ ¬, is true in M : Suppose that there is a wff  such that (1)

 2  or (2) ∗ ² . By PA17, (3) ∗ ≤ , whence (4)  ²  follows (by 2),

contradicting 1.

(d) A26, [¬(→ )∧ (¬∧)]→ , is true in M : Suppose that there are

wffs  and  ∈  in M such that (1) ∗ 2 → , (2) ∗ 2 , (3)  ² 

and (4)  2 . By 1 and iv, there are   ∈  in M such that (5) ∗, (6)
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 ²  and (7)  2 . By PA26 and 5, either (8)  ≤  or (9)  ≤ ∗. But by 3
and 8, (10)  ²  follows, contradicting 7; and by 6 and 9, we have (11) ∗ ² ,

which contradicts 2.

(e) dEcq, if  ∨ (∧ ¬), then  ∨, preserves truth in M : Suppose that
there are wffs  such that (1)  ²  ∨ ( ∧ ¬) but (2)  2  ∨ . By
2 and iii, we have (3)  2  and (4)  2 ; and by 1, 3 and iii, we get (5)

 ² ∧¬, whence (6)  ²  and (7)  ² ¬ follow by ii. But, by 7 and v, we
have (8) ∗ 2 , which contradicts (9) ∗ ² , immediate by PdEcq ( ≤ ∗)
and 6.

Finally, once the notion of an Lt-model defined, we prove soundness of the

Lt-logics.

Definition 5.9 (Lt-models) An Lt-model is defined when adding to Bd-models

the semantical postulates corresponding to the axioms added to Bd for axioma-

tizing Lt. For example, Lt3-models are structures ( ∗²) where , ,
, ∗ and ² are defined exactly as in Definition 5.1, save for the addition of
the postulates PA8, PA9, PA10, PA11, PA12, PA13, PA20 and PA23. (The

notions of Lt3-consequence and Lt3-validity are defined according to the general

Definition 5.2).

Theorem 5.10 (Soundness of the Lt-logics) For any  (1 ≤  ≤ 6), set of
formulas Γ and formula , if Γ `Lt , then Γ ²Lt .
Proof. By Proposition 5.5 and Lemma 5.8, given Definition 5.9.

6 Extension and primeness lemmas

In this section, the extension and primeness lemmas are remarked (cf. [16];

cf. also [6]). These lemmas are essentially used in the completeness proofs in

section 8.

Definition 6.1 (EBd-theories) Let L be an EBd-logic. An L-theory is a set

of formulas closed under Adjunction (Adj) and L-entailment (L-ent). That is,

 is an L-theory if whenever  ∈ , then ∧ ∈ ; and if whenever → 

is a theorem of L and  ∈ , then  ∈ .

By the term EBd-theory, we will generally refer to any theory defined upon

an EBd-logic as just indicated. The classes of EBd-theories of interest in the

present paper are remarked in the following definition.

Definition 6.2 (Classes of EBd-theories) Let L be an EBd-logic and  an

L-theory. We set:

1.  is prime iff whenever  ∨ ∈ , then  ∈  or  ∈ .

2.  is empty iff it contains no formulas.
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3.  is regular iff  contains all theorems of L.

4.  is trivial iff every formula belongs to it.

5.  is a-consistent (consistent in an absolute sense) iff  is not trivial.

6.  is n-consistent (consistent according to the standard concept of consis-

tency) iff  ∧ ¬ ∈  for any formula .

Definition 6.3 (Disjunctive EBd-derivability) Let L be an EBd-logic and

ΓΘ sets of formulas. Θ is disjunctively derivable from Γ in L (in symbols,
Γ `dL Θ) iff 1 ∧ ∧ `L 1 ∨ ∨ for some formulas 1   ∈ Γ and
1   ∈ Θ.

Definition 6.4 (EBd-maximal sets) Let L be and EBd-logic. Γ is an L-
maximal set of formulas iff Γ 0dL Γ (Γ is the complement of Γ).

Once the notions of Disjunctive EBd-derivability and EBd-maximal set being

defined, the Extensions to maximal sets and Primeness Lemmas are proved by

leaning on the Preliminary Lemma to the Extension Lemma.

Lemma 6.5 (Preliminary Lemma to the Extension Lemma) Let L be an

EBd-logic with no other primitive rules than Adjunction, Modus Ponens, dis-

junctive Modus Ponens, disjunctive Suffixing, disjunctive Prefixing and disjunc-

tive Contraposition or just with no other primitive rules than these ones and

the rule disjunctive Ecq. Then, for formulas 1  , if {1  } `L ,

then for any formula ,  ∨ (1 ∧  ∧) `L  ∨.
Proof. Cf. [6], p. 27 or Lemma 7.3 in [13].

Lemma 6.6 (Extensions to maximal sets) Let L be an EBd-logic with no

other primitive rules than Adjunction, Modus Ponens, disjunctive Modus Po-

nens, disjunctive Suffixing, disjunctive Prefixing and disjunctive Contraposition

or just with no other primitive rules than these ones and the rule disjunctive

Ecq. For sets ΓΘ of formulas such that Γ 0dL Θ, there are sets of formulas Γ0,
Θ0 such that Γ ⊆ Γ0, Θ ⊆ Θ0, Θ0 = Γ0 and Γ0 0dL Θ0 (that is, Γ0 is an L-maximal
set such that Γ0 0dL Θ0).

Proof. Cf. Lemma 9 in [6] or Chapter 4 in [16], or Lemma 7.4 in [13].

Lemma 6.7 (Primeness) Let L be an EBd-logic with no other primitive rules

than Adjunction, Modus Ponens, disjunctive Modus Ponens, disjunctive Suffix-

ing, disjunctive Prefixing and disjunctive Contraposition or just with no other

primitive rules than these ones and the rule disjunctive Ecq. If Γ is an L-
maximal set, then it is a prime L-theory closed under the rules of L.

Proof. Cf. Lemma 8 in [6].
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7 Preliminaries to the completeness theorems

In this section, we prove a series of preliminary lemmas to be used in the com-

pleteness proofs of the Lt-logics. As in section 6, we essentially follow the

terminology and strategy of [16], Chapter 4. Firstly, we define the notions of a

fundamental EBd-theory and that of a T -theory.

Definition 7.1 (Fundamental theories) Let L be an EBd-logic. An L-theory

is fundamental if it is a regular and prime L-theory closed under the primitive

rules of derivation of L.

By the term fundamental EBd-theory (or simply, fundamental theory), we

will generally refer to any theory defined upon an EBd-logic as shown in Defin-

ition 7.1.

Definition 7.2 (T -theories) Let T be a fundamental theory. A T -theory is a
set of formulas closed under Adjunction (Adj) and T -entailment (T -ent). That
is,  is a T -theory if whenever  ∈ , then ∧ ∈ ; if whenever →  ∈ T
and  ∈ , then  ∈ .

It is obvious that T -theories are EBd-theories.
The main notions needed in order to define the canonical model are recorded

in the following definition. These notions are used for defining canonical models

in section 8 (cf. Definition 8.3).

Definition 7.3 (Main notions for defining canonical models) Let T be a
fundamental theory and  be the set of all T -theories. Then, the ternary re-
lation  is defined in  as follows: for all formulas  and    ∈  ,

 iff (→  ∈  &  ∈ )⇒  ∈ . Next, let  be the set of all prime

T -theories and  the restriction of  to  . On the other hand, let 

be the set of all non-empty, a-consistent prime T -theories and ∗ be defined on
 as follows: for all  ∈ , ∗ = { | ¬ ∈ }. Finally, the relation ²
is defined as follows: for each formula  and  ∈ ,  ²  iff  ∈ .

In the rest of this section, we prove a series of lemmas which will be used in

the completeness proofs in section 8. These lemmas are proved for Eb3-logics

(the logic Bd is not sufficiently strong). Thus, we suppose that we are given a

fundamental Eb3-theory T upon which the items  ,  ,  , ∗ and ² are
defined as shown in Definition 7.3.

Lemma 7.4 (Defining  for   in  ) Let   be non-empty T -theories. The
set  = { | ∃( →  ∈  &  ∈ )} is a non-empty T -theory such that
.

Proof. It is easy to show that  is a T -theory (use dSuf to prove that  is
closed under T -ent). Next,  is immediate by definition of  . Finally, 

is non-empty: let  ∈ ,  ∈ . By T4 and ,  ∨ ∈ .
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Lemma 7.5 (Extending  in  to a member in ) Let  be a non-

empty T -theory,  a non-empty and a-consistent T -theory and  an a-consistent
T -theory such that . Then, there is an a-consistent (and non-empty)

prime T -theory  such that  ⊆  and 

Proof. By using the Extension Lemma or Zorn’s Lemma,  is extended to a

prime theory  such that  ⊆  and  (cf. [17], pp. 309, ff.). Next, it is

shown that  is a-consistent. Suppose it is not. (We use Proposition 4.8.) Let

 ∈  and be a wff belonging to neither  nor . By T6, → [¬∨(¬→ )].
So, ¬ ∨ (¬ → ) ∈ , whence by primeness of , either (1) ¬ ∈  or

(2) ¬ →  ∈ . Let us consider case 2. As  is supposed to be trivial,

¬ ∈ . But then  ∈  (, ¬ →  ∈ , ¬ ∈  and definition of

 ) contradicting our hypothesis. Let us now examine case 1. Firstly, notice

that  ∧ ¬ ∈ . Next, we have for arbitrary ,  ∨ [( ∧ ) → ] ∈  by

applying T7 (( ∧ ¬) → [ ∨ [( ∧ ) → ]]), whence ( ∧ ) →  ∈ 

since  ∈ . Now, ∧ ∈  ( is supposed to be a-inconsistent). Thus,  ∈ 

(( ∧)→  ∈ ,  ∧ ∈ , ), contradicting the a-consistency of .

Lemma 7.6 (Extending  in  to a member in ) Let   be non-

empty T -theories and  be an a-consistent, prime T -theory such that .

Then, there is an a-consistent (and non-empty) prime T -theory  such that

 ⊆  and 

Proof. As in the previous lemma, it is shown that there is a prime theory 

such that  ⊆  and . Next, it is shown that  is a-consistent. Suppose it

is not and let  ∈  and  be an arbitrary wff. As  is supposed to be trivial,

 →  ∈ . Then,  ∈  (,  →  ∈ ,  ∈  and definition of  )

contradicting the a-consistency of .

Consider now the following definition.

Definition 7.7 (The relation ≤) For any   ∈  ,  ≤  iff T .
The following lemma shows that the relation ≤ is just set inclusion between

a-consistent and non-empty prime T -theories.

Lemma 7.8 (≤ and ⊆ are coextensive) For any   ∈  ,  ≤  iff

 ⊆ .

Proof. From left to right, it is immediate by using T1 of Bd. Suppose now

 ⊆  for   ∈  . Clearly T  (cf. Definitions 6.1 and 7.2). By the
hypothesis, T , i.e.,  ≤  by Definition 7.7.

Lemma 7.9 (Extension to prime T -theories) Let  be a T -theory and 

a wff such that  ∈ . Then, there is a prime T -theory  such that  ⊆  and

 ∈ .
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Proof. By direct application of Zorn’s Lemma as in [16], Chapter 4, pp. 310-

311.

In what follows, we investigate the operation ∗ .

Lemma 7.10 (Primeness of ∗-images) Let  be a prime T -theory. Then,
(1) ∗



is a prime T -theory as well; (2) for any wff , ¬ ∈ ∗


iff  ∈ .

Proof. As there is no danger of confusion between ∗ in  and the canonical

L-theory ∗


in  , we omit the supersript  above ∗ in this and the proofs to
follow. (1) ∗ is closed under T -ent by Con; ∗ is closed under Adj by T3; ∗ is
prime by T2. (2) By A6 and A7.

Lemma 7.11 (∗ is an operation on ) Let  be an a-consistent and non-

empty prime T -theory. Then, ∗ is an a-consistent and non-empty prime T -
theory as well.

Proof. By Lemma 7.10, ∗ is a prime T -theory. Next, it is shown that if  is
a-consistent and non-empty, then ∗ is also a-consistent and non-empty. (1) ∗

is a-consistent. As  is non-empty, there is some wff  such that  ∈ . Then,

¬ ∈ ∗, by Lemma 7.10(2). (2) ∗ is non-empty. As  is a-consistent, there is
some wff  such that  ∈ . Then, ¬ ∈ ∗ by Lemma 7.10(2).
Finally, it is proved that the relation ² obeys requirements (clauses) (i)-(v)

in the definition of an EBd-model (cf. Definition 5.1).

Lemma 7.12 (² and clauses (i)-(v)) For any    ∈  and wffs 

(i). ( ≤  &  ² )⇒  ² 

(ii).  ²  ∧ iff  ²  and  ² 

(iii).  ²  ∨ iff  ²  or  ² 

(iv).  ² →  iff for all   ∈ , ( and  ² )⇒  ² 

(v).  ² ¬ iff ∗


2 

Proof. (i) is immediate by Lemma 7.8; (ii) follows by A1 and closure of 

under Adj; (iii) is proved by A3 and primeness of ; and (v) and (iv) (from

left to right) are immediate by Definition 7.3. So, let us prove (iv) from right

to left. For wffs  and  ∈  , suppose  →  ∈  (i.e.,  2  → ).

We prove that there are   ∈  such that ,  ∈  (i.e.,  ² )

and  ∈  (i.e.,  2 ). Consider the sets  = { |  →  ∈ T } and
 = { | ∃( →  ∈  &  ∈ )}. Firstly, notice that  ∈ , since

 →  ∈ T by T1 of Bd. Then,  and  are easily shown T -theories such
that . Now,  ∈  (if  ∈ , then  →  ∈  contradicting the

hypothesis). Moreover,  is not empty by Lemma 7.4. Then, by Lemma 7.9,

there is a (a-consistent and non-empty) prime T -theory  such that  ⊆  and

 ∈ . Clearly,  (cf. Definition 7.3). Next, by using Lemma 7.5,  is

extended to an a-consistent, non-empty and prime T -theory  such that  ⊆ 
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and . Clearly,  ∈ . Therefore, we have a-consistent and non-empty

prime T -theories   such that  ∈ ,  ∈  and , as was to be proved.

8 Completeness of the Lt-logics

Definition 8.1 (The set of consequences of Γ in L) Let L be an EBd-logic.
The set of consequences in L of a set of formulas Γ (in symbols CnΓ[L]) is de-
fined as follows: CnΓ[L] = { | Γ `L }.
It is obvious that CnΓ[L] is a regular L-theory.
Now we have:

Proposition 8.2 (The building of T ) Let L be an EBd-logic with no other
primitive rules than Adjunction, Modus Ponens, disjunctive Modus Ponens, dis-

junctive Suffixing, disjunctive Prefixing and disjunctive Contraposition or just

with no other primitive rules than these ones and the rule disjunctive Ecq, Γ a
set of wffs and  a wff such that Γ 0L . Then, there is a fundamental L-theory

T such that Γ ⊆ T and  ∈ T .
Proof. Assuming the hypothesis of Proposition 8.2, suppose Γ 0L . Then,

 ∈ CnΓ[L] and so CnΓ[L] 0dL {}: otherwise (1 ∧  ∧ ) `L  for some

1   ∈ Γ whence  would be in CnΓ[L]. Next, Lemmas 6.6 and 6.7 apply
and there is some fundamental L-theory T such that Γ ⊆ T (since Γ ⊆ CnΓ[L])
and  ∈ T . (Notice that T is a-consistent in addition to being fundamental.)

Leaning on this theory T , the canonical L-model is defined and Γ 2L  is

proved.

Definition 8.3 (Canonical EBd-models) Let T , ,  , ∗ and ² be

defined upon the fundamental L-theory T as shown in Definition 7.3. Then, the
structure (T     ∗ ²) is a canonical L-model.

Proposition 8.4 (The postulates are canonically valid) Let L be an Lt-

logic. Then, (1) P1, P2, P3 and P4 hold in all canonical L-models. (2) PA

holds in the canonical L-model if A is provable in L (8 ≤  ≤ 26). (PdEcq
holds in the canonical L-model if dEcq is provable in L.)

Proof. The proof is similar to that provided in [16], Chapter 4, for extensions of

Routley and Meyer’s basic logic B. We prove Proposition 8.4 for the postulates

used above in Lemma 5.8.

(a) PA11,  or ∗, is provable in the canonical Lt-model : Let  ∈
 and suppose, for reductio, (1) not- and (2) not-∗. By 1 and
Definition 7.3, we have, for wffs , (3) →  ∈ , (4)  ∈  and (5)  ∈ ;

by 2 and Definition 7.3, we get, for wffs , (6)  →  ∈ , (7)  ∈ ∗ and
(8)  ∈ . By 3, 6, B and Definition 7.3, we have (9) ( ∨ )→ ( ∨) ∈ ;
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and by 4 and 7, we get (10) ∨ ∈  and (11) ∨ ∈ ∗. Consider now A11
in the form (12) {[(∨)→ ( ∨)] ∧ (∨)}→ [¬(∨)∨ ( ∨)]. By
9, 10 and 12, we obtain (13) ¬( ∨ ) ∨ ( ∨) ∈ . Now, (14) ¬( ∨ ) ∈ 

is derivable from 11 by Definition 7.3, whence (15)  ∨ ∈  follows by 13 and

primeness of . But 5 and 8 contradict 15.

(b) PA13,  ⇒ (∗ ≤  or  ≤ ), is provable in the canonical Lt-
model : Let   ∈  and suppose (1) T , i.e.,  ≤  (cf. Lemma 7.8).

Moreover, for reductio, suppose (2) T ∗ £  and (3)  £ T . By 2, 3 and
Lemma 7.8, we have for wffs , (4)  ∈ T ∗, (5)  ∈ , (6)  ∈  and (7)

 ∈ T . By A13 and regularity of T , we have (8) (∨¬)∨( → ) ∈ T . Now,
(9) ¬ ∈ T is derivable from 4 and Definition 7.3. So, we get (10)  →  ∈ T ,
by 7, 8, 9 and primeness of T . Finally, (11)  ∈  is derivable by 1, 6 and 10

(cf. Definition 7.3). But 5 and 11 contradict each other.

(c) PA17, ∗ ≤ , is provable in the canonical Lt-model : We prove T ∗ ⊆ T ,
whence T ∗ ≤ T follows by Lemma 7.8. Suppose for a given formula , (1)

 ∈ T ∗. Then, (2) ¬ ∈ T by Definition 7.3. By A17 and regularity and

primeness of T , we have (3)  ∈ T or ¬ ∈ T . Consequently, (4)  ∈ T , that
is, (5) T ∗ ⊆ T .
(d) PA26, ∗ ⇒ ( ≤  or  ≤ ∗), is provable in the canonical Lt-

model : Suppose that there are    ∈  such that (1) ∗ but (2)  £ 

and (3)  £ ∗. Then, there are wffs  such that (4)  ∈ , (5)  ∈ ,

(6)  ∈  and (7)  ∈ ∗, i.e., ¬ ∈ . By 1, 5, 6 and Definition 7.3, we

have (8)  →  ∈ ∗, i.e., ¬( → ) ∈ . Now, we use A26 in the form (9)

[¬( → ) ∧ (¬ ∧)]→  ( is an arbitrary formula). By 4, 7, 8 and 9, we

get (10)  ∈ , contradicting the a-consistency of .

(e) PdEcq,  ≤ ∗, is provable in the canonical Lt-model : We prove T ⊆
T ∗, whence T ≤ T ∗ follows by Lemma 7.8. Suppose then that there is some
wff  such that (1)  ∈ T but (2)  ∈ T ∗. Then (3) ¬ ∈ T . But by Ecq, 1
and 3  ∈ T follows for arbitrary , contradicting the a-consistency of T .

Proposition 8.5 (The canonical L-model is an L-model) Let L be an Lt-

model. The canonical L-model is indeed an L-model.

Proof. Given Definition 8.3 and Proposition 8.2, the proof follows by Lemma

7.11 (∗ is an operation on ), Lemma 7.12 (Adequacy of the canonical

clauses) and Lemma 8.4 (The postulates hold canonically).

Finally, we prove completeness.

Theorem 8.6 (Completeness of Lt-logics) Let Lt be any of the logics Lt1-

Lt6. For any set of formulas Γ and a formula , if Γ ²Lt , then Γ `Lt .
Proof. For some set of formulas Γ and formula  suppose Γ 0Lt . We

prove Γ 2Lt . If Γ 0Lt , then by Proposition 8.2, there is a regular and
a-consistent prime Lt-theory T closed under the primitive rules of Lt such

that Γ ⊆ T and  ∈ T . Then, the canonical Lt-model is defined upon T as

indicated in Definition 8.3. By Proposition 8.5, the canonical Lt-model is an
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Lt-model. Then, Γ 2  since T ² Γ but T 2 , whence, by Definition 5.2,

Γ 2Lt  follows, as it was to be proved.

If Γ is the empty set, let Lt be the set of all theorems of Lt. Then, Lt 0Lt 
and we proceed similarly as above.

A Appendix 1. List of the conditional tables in

Proposition 3.4

We display the conditional tables referred to in Proposition 3.4

1. List of the 24 tables with 1 and 2 as designated values:

t1

→ 0 1 2
0 2 1 2
1 0 1 1
2 0 0 2

t2

→ 0 1 2
0 2 1 2
1 0 1 1
2 0 1 2

t3

→ 0 1 2
0 2 1 2
1 0 1 1
2 0 2 2

t4

→ 0 1 2
0 2 1 2
1 0 1 2
2 0 0 2

t5

→ 0 1 2
0 2 1 2
1 0 1 2
2 0 1 2

t6

→ 0 1 2
0 2 1 2
1 0 1 2
2 0 2 2

t7

→ 0 1 2
0 2 1 2
1 0 2 1
2 0 0 2

t8

→ 0 1 2
0 2 1 2
1 0 2 1
2 0 1 2

t9

→ 0 1 2
0 2 1 2
1 0 2 1
2 0 2 2

t10

→ 0 1 2
0 2 1 2
1 0 2 2
2 0 0 2

t11

→ 0 1 2
0 2 1 2
1 0 2 2
2 0 1 2

t12

→ 0 1 2
0 2 1 2
1 0 2 2
2 0 2 2

t13

→ 0 1 2
0 2 2 2
1 0 1 1
2 0 0 2

t14

→ 0 1 2
0 2 2 2
1 0 1 1
2 0 1 2

t15

→ 0 1 2
0 2 2 2
1 0 1 1
2 0 2 2

t16

→ 0 1 2
0 2 2 2
1 0 1 2
2 0 0 2

t17

→ 0 1 2
0 2 2 2
1 0 1 2
2 0 1 2

t18

→ 0 1 2
0 2 2 2
1 0 1 2
2 0 2 2
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t19

→ 0 1 2
0 2 2 2
1 0 2 1
2 0 0 2

t20

→ 0 1 2
0 2 2 2
1 0 2 1
2 0 1 2

t21

→ 0 1 2
0 2 2 2
1 0 2 1
2 0 2 2

t22

→ 0 1 2
0 2 2 2
1 0 2 2
2 0 0 2

t23

→ 0 1 2
0 2 2 2
1 0 2 2
2 0 1 2

t24

→ 0 1 2
0 2 2 2
1 0 2 2
2 0 2 2

2. List of the 6 tables with 2 as the only designated value:

t25

→ 0 1 2
0 2 2 2
1 2 2 2
2 0 1 2

t26

→ 0 1 2
0 2 2 2
1 2 2 2
2 0 0 2

t27

→ 0 1 2
0 2 2 2
1 0 2 2
2 0 0 2

t28

→ 0 1 2
0 2 2 2
1 1 2 2
2 0 1 2

t29

→ 0 1 2
0 2 2 2
1 0 2 2
2 0 1 2

t30

→ 0 1 2
0 2 2 2
1 1 2 2
2 0 0 2

B Appendix 2. The Lt-logics as axiomatized in
[14] and [15]

In [14] and [15], the Lt-logics Lt1, Lt2,..., Lt6 are axiomatized as follows.

1. Common axioms to Lt1-Lt6:

a1. ( ∧)→  / ( ∧)→ 

a2. [(→ ) ∧ (→ )]→ [→ ( ∧ )]
a3. → ( ∨) /  → ( ∨)
a4. [(→ ) ∧ ( → )]→ [( ∨)→ ]

a5. [ ∧ ( ∨ )]→ [( ∧) ∨ ( ∧)]
a6. ¬( ∨)↔ (¬ ∧ ¬)
a7. ¬( ∧)↔ (¬ ∨ ¬)
a8. ↔ ¬¬
a9. [¬(→ ) ∧ ¬]→ 

a10. [¬(→ ) ∧]→ ¬
a11. (¬ ∧)→ (→ )
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2. Common rules to Lt1-Lt6:

Adjunction (Adj):  &  ⇒  ∧
Modus Ponens (MP): →  & ⇒ 

3. Common axioms to Lt5 and Lt6:

a12.  ∨ ¬
a13. [(→ ) ∧ ( → )]→ (→ )

a14. [(→ ) ∧]→ 

a15.  ∨ (→ )

a16. [(→ ) ∧ ¬]→ ¬
a17. ¬ ∨ (→ )

4. Axioms for Lt5 and Lt6:

Lt5:

a18. ( ∧ ¬)→ ¬(→ )

Lt6:

a19. → [ ∨ ¬(→ )]

a20. ¬ → [¬ ∨ ¬(→ )]

a21. [¬(→ ) ∧ (¬ ∧)]→ 

5. Common axioms to Lt1, Lt2, Lt3 and Lt4:

a22. [(→ ) ∧]→ (¬ ∨)
a23. [(→ ) ∧ ¬]→ (¬ ∨)
a24. ¬→ [ ∨ (→ )]

a25.  → [¬ ∨ (→ )]

a26. ( ∨ ¬) ∨ (→ )

6. Common rules to Lt1, Lt2, Lt3 and Lt4:

dMP:  ∨ &  ∨ (→ )⇒  ∨
dTrans:  ∨ (→ ) &  ∨ ( → )⇒  ∨ (→ )

dEcq:  ∨ ( ∧ ¬)⇒  ∨

(In addition to Adj and MP.)
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7. Axioms for Lt1, Lt2, Lt3 and Lt4:

Lt1:

a19. → [ ∨ ¬(→ )]

a20. ¬ → [¬ ∨ ¬(→ )]

a27. ¬(→ )→ ( ∨ ¬)

Lt2:

a28. ¬(→ )→ ( ∧ ¬)
a29. ( ∧ ¬)→ [¬ ∨ ¬(→ )]

Lt3:

a20. ¬ → [¬ ∨ ¬(→ )]

a30. ¬(→ )→ ¬

Lt4:

a19. → [ ∨ ¬(→ )]

a31. ¬(→ )→ 

Now, for  (1 ≤  ≤ 6), let us refer by Lt to the logic defined in section 4
and by Lt0 to the one defined in the present appendix. We have:

Proposition B.1 (Lt and Lt0 are equivalent) For  (1 ≤  ≤ 6), Lt and
Lt0 are deductively equivalent.

Proof. (a) Lt0 is deductively included in Lt: We remark the following facts.
(1) a1-a8, Adj, MP, dMP and dTrans are provable in Bd; (2) the following are

provable in b3: a9, a10 (T5 and T8 in Proposition 4.8, respectively), a24 and a25

(A9 and A10, respectively); (3) the following are provable in b31: a22, a23, a26,

a29 and Ecq (Definition 4.9 and Proposition 4.10); on the other hand, notice

that a11 is provable in Lt1-Lt6 (cf. Definition 4.9 and Definition 4.11); (4) the

following are provable in b32: a11-a17, a19 and a20 (Definition 4.9, Proposition

4.10). Then, it follows by inspection of the axiomatization of Lt and Lt0 that
all axioms and rules of Lt0 are provable in Lt.
(b) Lt is deductively included in Lt0: All axioms and rules of Lt are verified

by Mt (the reader can use the tester in [9], if needed). But in [14] and [15], it

is proved that Lt0 is determined by Mt (cf. Definition 2.7). Consequently, it
follows from (a) above and this fact that Lt is also determined by Mt. Thus,

Lt is deductively included in Lt0.

26



C Appendix 3. Alternative axiomatizations of

the Lt-logics

It is possible to give more conspicuous axiomatizations of the Lt-logics. Con-

sider the following system TR (Ticket Entailment –cf. [1]– minus the reductio

axiom (→ ¬)→ ¬):

b1. → 

b2. ( ∧)→  / ( ∧)→ 

b3. [(→ ) ∧ (→ )]→ [→ ( ∧ )]
b4. → ( ∨) /  → ( ∨)
b5. [(→ ) ∧ ( → )]→ [( ∨)→ ]

b6. [ ∧ ( ∨)]→ [( ∧) ∨ ( ∧)]
b7. (→ )→ [( → )→ (→ )]

b8. [→ (→ )]→ (→ )

b9. (→ ¬)→ ( → ¬)
b10. (¬→ )→ (¬ → )

The only rules of inference are Adj and MP.

Consider now the result of extending TR with the following axioms:

b11. → (→ )

b12. ¬→ [ ∨ (→ )]

b13. (¬ ∧)→ (→ )

b14.  ∨ ¬

Let us name eTR this extension of TR. Then, the Lt-logics are axiomatized as

follows.

• Lt5: eTR & ( ∧ ¬)→ ¬(→ ) (b15).

• Lt6: eTR & [¬(→ ) ∧ (¬ ∧)]→  (b16).

• Lt1: Lt6 minus b14 plus ( ∨ ¬) ∨ (→ ) (b17) and dEcq.

• Lt2: b1-b7, b9, b10, b17, → ( → ) (b18), [(→ )∧]→ (¬∨)
(b19), Adj, MP, dMP and dEcq.

• Lt3: b1-b8, b12, b17, b18,  → ¬¬ (b20), ¬¬ →  (b21), [( →
)∧¬]→ (¬∨) (b22),  → [¬ ∨ (→ )] (b23), Adj, MP, dCon
and dEcq.

• Lt4: b3Ecq & b17, b19, [(→ )∧¬]→ ¬ (b24) and ¬→ (→ )
(b25).
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It would not be difficult to prove that the axiomatizations of the Lt-logics

given above are (deductively) equivalent to the ones discussed in Appendix 2,

but we do not have space to develop this point here.
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