
ABSTRACT

This study aimed to perform a GWAS to identify ge-
nomic regions associated with milk and cheese-making 
traits in Assaf and Churra dairy sheep breeds; second, 
it aimed to identify possible positional and functional 
candidate genes and their interactions through post-
GWAS studies. For 2,020 dairy ewes from 2 breeds 
(1,039 Spanish Assaf and 981 Churra), milk samples 
were collected and analyzed to determine 6 milk produc-
tion and composition traits and 6 traits related to milk 
coagulation properties and cheese yield. The genetic 
profiles of the ewes were obtained using a genotyping 
chip array that included 50,934 SNP markers. For both 
milk and cheese-making traits, separate single-breed 
GWAS were performed using GCTA software. The set 
of positional candidate genes identified via GWAS was 
subjected to guilt-by-association-based prioritization 
analysis with ToppGene software. Totals of 84 and 
139 chromosome-wise significant associations for the 6 
milk traits and the 6 cheese-making traits were identi-
fied in this study. No significant SNPs were found in 
common between the 2 studied breeds, possibly due 
to their genetic heterogeneity of the phenotypes under 
study. Additionally, 63 and 176 positional candidate 
genes were located in the genomic intervals defined as 
confidence regions in relation to the significant SNPs 
identified for the analyzed traits for Assaf and Churra 
breeds. After the functional prioritization analysis, 
71 genes were identified as promising positional and 
functional candidate genes and proposed as targets of 
future research to identify putative causative variants 
in relation to the traits under examination. In addition, 
this multitrait study allowed us to identify variants 
that have a pleiotropic effect on both milk production 
and cheese-related traits. The incorporation of variants 
among the proposed functional and positional candi-
date genes into genomic selection strategies represent 

an interesting approach for achieving rapid genetic 
gains, specifically for those traits difficult to measure, 
such as cheese-making traits.
Key words: dairy sheep, genome-wide association 
studies, cheese-making traits, candidate genes

INTRODUCTION

Improving important production traits in livestock 
may gain an advantage of the in-depth understanding 
of the genetic architecture that underlies the phenotype 
of interest. From this standpoint, animal genotyping 
using medium- or high-density SNP panels followed by 
GWAS has been presented as a powerful approach to 
reconnect phenotypes of interest back to their under-
lying genetics in livestock species (Korte and Farlow, 
2013). To complement GWAS, post-GWAS analyses, 
such as gene prioritization analyses, gene set enrich-
ment, or pathway analyses, have been increasingly 
used over the past few years to better understand the 
molecular mechanisms involved in the different traits 
of interest (Otto et al., 2020). Such new approaches 
help to solve GWAS limitations, such as by taking into 
account that genes work together in networks across 
the different biological pathways, thus generating the 
complex control of quantitative traits (Dadousis et al., 
2017).

In the dairy industry, milk yield and milk solids, 
referred to here as “milk traits,” are major goals for 
selection. Accordingly, a large number of studies have 
implemented QTL mapping and GWAS to identify 
QTL with effects on milk traits in dairy cattle (Li et 
al., 2020b; Otto et al., 2020), goats (Mucha et al., 2018; 
Guan et al., 2020), and sheep (García-Gámez et al., 
2012a; Li et al., 2020a). Moreover, in recent years, an 
increasing number of studies have successfully applied 
post-GWAS analyses to determine those genes poten-
tially involved in controlling milk traits (Sanchez et al., 
2019; Otto et al., 2020).

Spain is ranked fourth in the world for ewe milk 
production (FAOSTAT, 2019). The fact that sheep's 
milk in Spain is mainly intended to produce cheeses 
means that the study of cheese-making traits is becom-

Genome-wide association studies (GWAS) and post-GWAS analyses 
for technological traits in Assaf and Churra dairy breeds
H. Marina,  R. Pelayo,  A. Suárez-Vega,  B. Gutiérrez-Gil,  C. Esteban-Blanco,  and J. J. Arranz*  
Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain

 

J. Dairy Sci. 104
https://doi.org/10.3168/jds.2021-20510
© 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Received March 24, 2021.
Accepted July 5, 2021.
*Corresponding author: jjarrs@ unileon .es

https://orcid.org/0000-0001-9226-2902
https://orcid.org/0000-0002-9827-1292
https://orcid.org/0000-0002-7726-4288
https://orcid.org/0000-0001-7990-5723
https://orcid.org/0000-0002-2425-000X
https://orcid.org/0000-0001-9058-131X
mailto:jjarrs@unileon.es


Journal of Dairy Science Vol. 104 No. 11, 2021

ing increasingly important. Some of the most studied 
indicators related to cheese-making ability are traits 
related to milk coagulation properties (MCP; McMa-
hon and Brown, 1982; Bynum and Olson, 1982) and 
different measurements of cheese yield (Othmane et al., 
2002a,c). Toward a better understanding of the genetic 
basis of cheese-making traits in dairy sheep, our research 
group has recently investigated the genetic parameters 
for 2 groups of traits characterizing the technological 
behavior of milk (MCP and cheese yield) in 2 of the 
main dairy sheep breeds in Spain, namely, the Assaf 
and Churra breeds (Sánchez-Mayor et al., 2019; Pelayo 
et al., 2021). However, the lack of a straightforward 
methodology to routinely measure cheese yield-related 
traits at farms has hampered the integration of these 
traits into classical breeding programs.

In this sense, identifying genetic markers associated 
with these difficult-to-measure cheese-making traits 
may be highly relevant to the sheep dairy industry 
(Marina et al., 2020b). In the literature, approaches 
to performing GWAS in dairy sheep have mainly fo-
cused on milk traits (García-Gámez et al., 2012a; Di 
Gerlando et al., 2019), with few methods found in re-
lation to cheese-making traits (Marina et al., 2020b). 
Moreover, to our knowledge, there are no studies that 
combine analyses of GWAS for milk and cheese-making 
traits in 2 different dairy breeds. Different breeds show 
different behaviors concerning MCP (Pazzola et al., 
2014a; Pelayo et al., 2021). In particular, concerning 
Assaf and Churra sheep, previous studies performed 
by our research group have identified clear differences 
between both breeds regarding MCP. Milk from Churra 
shows shorter coagulation times than milk from Assaf 
(Sánchez-Mayor et al., 2019; Pelayo et al., 2021). Thus, 
identifying unique and common genomic regions among 
breeds associated with cheese-related traits could pro-
vide insights into the genetic basis of the milk coagula-
tion process in sheep.

Based on these factors and the interests of the sheep 
dairy industry in increasing the cheese-making ability 
of milk, the present study reports the analysis results 
of GWAS for milk traits and cheese-making traits in 
Assaf and Churra dairy sheep breeds. In addition, we 
aimed to identify potential positional and functional 
candidate genes and their interactions through post-
GWAS analyses.

MATERIALS AND METHODS

Sampling, Genotyping, and Quality Filtering

The phenotypic data used in this study were previ-
ously described by Sánchez-Mayor et al. (2019) for the 

Assaf breed and by Pelayo et al. (2021) for the Churra 
breed. A total of 2,020 ewes belonging to the Assaf (n 
= 1,039, number of flocks = 4) and Churra breeds (n 
= 981, number of flocks = 2) were analyzed. Following 
the procedure described in detail by Sánchez-Mayor et 
al. (2019), a sample of 50 mL of milk was collected 
from each ewe from the morning milking. Each milk 
sample was analyzed separately to determine 6 milk 
traits and 6 cheese-making traits. On the one hand, the 
milk traits included 5 milk production and composition 
traits, including milk yield (MY, kg), fat percentage 
(FP, %), fat yield (FY, kg), protein percentage (PP, 
%), and protein yield (PY, kg), and milk SCC (cells/
mL) as a functional trait considered a good indicator 
trait of mastitis resistance. On the other hand, the 6 
cheese-making-related traits included MCP and indi-
vidual cheese yield traits. The studied MCP traits were 
the rennet clotting time (RCT, min), which is the time 
between rennet addition and the formation of the curd; 
the time necessary for the curd to reach 20 mm or 
curd-firming time (K20, min); and the curd firmness at 
30 and 60 min after rennet addition (A30 and A60, 
mm). These MCP traits were measured in both breeds 
at 32°C with a Formagraph viscometer (FRM; Foss 
Electric A/S) using commercial liquid rennet extract 
[1:15.000; >70% chymosin, <30% bovine pepsin; 185 
international milk clotting units (IMCU)/mL] diluted 
to 4% in distilled water for 60 min. Full details about 
the analysis of these traits have been described in a 
previous study of our research group (Sánchez-Mayor et 
al., 2019). Concerning the cheese yield, the individual 
laboratory cheese yield (ILCY, g/10 mL of milk) and 
the individual laboratory dried curd yield (ILDCY, 
g/10 mL) were estimated following Othmane et al. 
(2002a,c). The genetic parameters estimated for all the 
traits presented in this work (both milk and cheese-
making traits) were previously analyzed by Sánchez-
Mayor et al. (2019) for the Assaf breed and by Pelayo 
et al. (2021) for the Churra breed. Note that in these 
2 studies, after the initial assessment of the normality 
of the variable distributions for each trait, logarithmic 
base 10 transformations of the K20 and SCC traits were 
considered for the different analyses (logK20; logSCC). 
Basic descriptive statistics of the phenotype data con-
sidered in the present study for both dairy sheep breeds 
are given in Table 1.

The genetic profiles of the 2,020 ewes were obtained 
through the same custom SNP chip with 50,934 mapped 
markers. Quality control (QC) of the raw genotypes 
was carried out in both breeds simultaneously using 
PLINK version 1.90 (Purcell et al., 2007). Samples with 
more than 10% missing genotypes and SNPs with call 
rates under 90% and minor allele frequency (MAF) 
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lower than 1% were excluded from the data set. In ad-
dition, SNPs mapped on the X chromosome were also 
removed from the analysis.

Population Structure and Linkage Disequilibrium

First, population stratification was evaluated 
through a principal component analysis (PCA) based 
on the variance-standardized relationship matrix using 
the remaining SNPs after QC. In addition, linkage dis-
equilibrium (LD) was estimated through the squared 
correlation coefficient (r2) and the absolute value of 
D′ (|D′|) using HAPLOVIEW v4.2 (Barrett et al., 
2005). Finally, to observe the LD decay pattern for the 
2 breeds, the average for each parameter was calculated 
based on the SNP pairwise distance in 1-Mb intervals 
(Miller et al., 2011). The SNP pairs were stacked ac-
cording to their physical distance into 14 intervals fol-
lowing García-Gámez et al. (2012b): <10 kb, 10 to 20 
kb, 20 to 40 kb, 40 to 60 kb, 60 to 100 kb, 100 to 200 
kb, 200 to 500 kb, 0.5 to 1 Mb, 1 to 2 Mb, 2 to 5 Mb, 
5 to 10 Mb, 10 to 20 Mb, 20 to 50 Mb, or >50 Mb. 

The genetic distance for the estimation of LD decay 
was calculated as the distance at which both r2 and 
|D'| reached values lower than 0.1 and 0.6, respectively 
(Fonseca et al., 2016).

Genome-Wide Association Studies

For each of the milk and cheese-making traits con-
sidered in this study, individual GWAS analyses were 
performed using GCTA software (Yang et al., 2011) 
applying the following general mixed linear model in 
both breeds:

 Y = Xb + Zu + e, 

where Y is the vector of phenotypes, X is the incidence 
matrix of fixed effects, b is the vector of fixed effects, 
and it included the following factors: DIM as a covari-
ate; age at parturition, with 5 and 7 levels for the Assaf 
and Churra breeds, respectively; flock test day, with 12 
and 10 levels for Assaf and Churra, respectively; and 
the number of lambs born, with 2 levels for both breeds. 

Marina et al.: POST-GWAS FOR TECHNOLOGICAL TRAITS IN SHEEP

Table 1. Descriptive statistics for the milk and cheese-making phenotypes measured in the Assaf and Churra breeds analyzed in the present 
study

Breed  Trait1
No. of  
records NA2 NA% Minimum Maximum Mean SD CV (%)

Assaf  MY 1,039 0 0.00 0.45 6.53 2.89 1.07 37.13
 FP 1,039 0 0.00 3.04 10.34 5.56 1.05 18.96
 FY 1,039 0 0.00 3.07 54.60 16.01 6.63 41.39
 PP 1,039 0 0.00 3.57 7.68 5.05 0.46 9.17
 PY 1,039 0 0.00 2.22 34.16 14.45 5.09 35.23
 SCC 1,039 0 0.00 11.00 27,139.00 701.89 2,426.99 345.78
 logSCC 1,039 0 0.00 1.04 4.43 2.19 0.61 27.76
 RCT 1,039 131 12.61 8.00 58.45 29.15 10.52 36.08
 K20 1,039 173 16.65 1.30 20.45 4.27 2.48 57.95
 logk20 1,039 173 16.65 0.11 1.31 0.57 0.22 38.96
 A30 1,039 507 48.80 1.04 58.36 29.76 13.96 46.91
 A60 1,039 131 12.61 2.12 64.00 40.96 11.29 27.56
 ILCY 1,039 131 12.61 1.36 4.35 2.49 0.41 16.58
 ILCDY 1,039 131 12.61 0.13 1.76 0.97 0.18 18.07

Churra  MY 981 3 0.31 0.20 4.06 1.71 0.65 38.25
 PP 981 1 0.10 3.78 10.10 5.42 0.64 11.87
 PY 981 4 0.41 1.20 32.80 9.12 3.30 36.16
 FP 981 1 0.10 1.68 11.66 6.27 1.53 24.33
 FY 981 4 0.41 1.79 24.23 10.28 3.66 35.57
 SCC 981 8 0.82 11.00 29,322.00 1,143.46 3,307.96 289.29
 logSCC 981 8 0.82 1.04 4.47 2.33 0.68 29.06
 RCT 981 37 3.77 8.15 56.00 17.47 6.93 39.65
 K20 981 36 3.67 1.30 60.00 3.38 6.15 182.15
 logK20 981 36 3.67 0.11 1.78 0.40 0.25 64.07
 A30 981 36 3.67 1.00 59.96 36.98 13.42 36.28
 A60 981 36 3.67 5.06 64.00 39.99 13.07 32.68
 ILCY 981 36 3.67 1.44 4.30 2.64 0.47 17.80
 ILCDY 981 36 3.67 0.30 2.45 1.10 0.21 18.68

1MY = milk yield; FP = fat percentage; FY = fat yield; PP = protein percentage; PY = protein yield; logSCC: SCC expressed in log10; RCT 
= rennet coagulation time; K20 = curd-firming time; logK20 = curd-firming time expressed in log10; A30 and A60 = curd firmness at 30 and 60 
min, respectively, after rennet addition; ILCY = individual laboratory cheese yield; ILDCY = individual laboratory dried curd yield.
2NA = number of missing values.
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The individual’s genotype information (given by the P 
number of SNPs) is represented in the vector of random 
effects u (P × 1), Z is the incidence matrix of the 
random effect (N × P), and e is the vector of residual 
effects, which is assumed to be normally distributed, 
with a mean of zero and variance of σe

2.  Simultane-
ously, GCTA estimates Z by centering and scaling the 
data matrix X using Hardy–Weinberg assumptions, 
including that u and e are normally distributed with a 
mean of zero and variance of σu

2I  and σe
2I,  respectively 

(Krishna Kumar et al., 2016). Finally, the association 
analysis between the SNPs and the different pheno-
types was based on the leave one chromosome out 
strategy, which creates a genetic relationship matrix 
that includes all autosomal SNPs except those on the 
one chromosome tested in the GWAS (Lin et al., 2017).

Significance thresholds for the GWAS are usually 
estimated using a Bonferroni multiple-test correction. 
However, because the Bonferroni approach, which con-
siders all SNPs included in the GWAS as independent 
variables, is known to be very conservative, we applied 
the methodology proposed by Gao et al. (2008) for 
each chromosome as others authors previously reported 
(García-Gámez et al., 2012a; Atlija et al., 2016). Thus, 
we first calculated the effective number of independent 
tests based on the LD for each chromosome (Meff_C). 
Through this approach, a total of 22,339 markers across 
the genome were considered independent markers. 
Then, we applied the Bonferroni correction formula to 
calculate the adjusted significance level for each chro-
mosome as follows:

 α αC e eff CM ,_=  

where Meff_C is the number of independently analyzed 
markers per chromosome, αe is the chromosome-wise 
type I error rate considered (0.05), and αC is the ad-
justed chromosome-wise significance level. Genome-wise 
significance thresholds were based on the chromosome-
wise significance thresholds by correcting for the total 
number of independent markers analyzed across the 
genome. SNPs with a significant association P-value 
lower than the chromosome-wise threshold (αC) were 
considered in the subsequent analyses.

QTL Regions and Gene Annotation

The list of SNPs associated with all traits under 
study was used for gene and QTL annotation using 
the GALLO R package (Fonseca et al., 2020). The con-
fidence region considered for extraction of positional 
candidate genes and assessment of concordance with 

previously described QTL was the genomic distance 
where the LD decays at the level of r2 < 0.1 and |D′| < 
0.6 concurrently in both populations.

For gene annotation within the QTL confidence re-
gions, we used the annotation file for the Oar_v.3.1 
ovine reference genome available from Ensembl (http: 
/ / www .ensembl .org/ biomart). For the positional can-
didate genes annotated within the significant SNP 
confidence regions identified, we also extracted tran-
scription factors (TF) and co-transcription factors 
(CF) from the AnimalTFDB 3.0 database (Hu et al., 
2019). In addition, the coordinates of QTL previously 
identified through association analyses reported in 
sheep in relation to milk production or composition, 
SCS and cheese-making traits were downloaded from 
SheepQTLdb (http: / / www .animalgenome .org/ cgi -bin/ 
QTLdb/ OA/ search; Hu et al., 2016).

Gene Prioritization and Networks

The set of positional candidate genes identified 
through the individual GWAS analyses was submitted 
to guilt-by-association-based prioritization analyses 
using ToppGene software (Chen et al., 2009). This 
tool uses functional information from Gene Ontology 
(GO), human and mouse phenotypes, metabolic path-
ways, PubMed publications, coexpression patterns, and 
diseases from a list of training genes to calculate the 
functional similarities between the training list and the 
list of considered positional candidate genes using a 
fuzzy-based similarity measure. The similarity scores 
from each functional database were combined using a 
statistical meta-analysis, and the P-value was deter-
mined for each test gene. The training list of genes, 
which was composed of 1,160 genes in our case, was 
carefully selected from the literature through differ-
ent studies related to milk and cheese-making traits. 
Briefly, the 6 studies were as follows: 1 study aimed 
at unifying a database of candidate genes involved in 
mammary gland development and function in dairy 
cattle (Ogorevc et al., 2009); 1 study focused on the 
identification of potential causal mutations from a list 
of candidate genes for milk composition traits using 
whole-genome resequencing data sets (Marina et al., 
2020a); 2 transcriptomic studies focused on candidate 
genes, with one on cheese-related traits in dairy sheep 
(Suárez-Vega et al., 2016a) and the other on the ci-
trate content in cow milk, (Cánovas et al., 2013); and 
2 studies focused on the identification of co-associated 
gene networks with milk and cheese-making properties 
in dairy sheep (Marina et al., 2020b) and dairy cattle 
(Sanchez et al., 2019). Finally, considering those genes 
with a statistical meta-analysis P-value lower than 0.05, 
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a gene network analysis was performed using STRING 
software v11.5 (Szklarczyk et al., 2019).

RESULTS AND DISCUSSION

Phenotype Basic Statistics and Genotype  
Quality Filtering

The milk and cheese-making traits analyzed in this 
study are difficult to measure routinely on farms, 
especially following the processing of individual milk 
samples, which is crucial to achieve accurate individu-
alized values that are useful for breeding programs. 
Individual cheese yield based on micro-cheese manu-
facturing (ILCY) was first described by Othmane et 
al. (2002a) as a useful predictor of actual cheese yield. 
Individual cheese yield can also be predicted by spec-
troscopy, as Othmane (2000) and Cellesi et al. (2019) 
showed. However, the laboratory simulation process of 
individual cheese manufacturing followed in this study 
is not completely comparable to that of the dairy in-
dustry. As other authors have suggested, micro-cheese 
factoring can determine an overestimation of the ac-
tual cheese yield due to the limited amount of milk 
used (Puledda et al., 2017; Othmane et al., 2002b; 
Jaramillo et al., 2008). In any case, ILCY is the most 
commonly used parameter for the calculation of the 
individual laboratory cheese yield, and many different 
studies have used it as a good proxy trait to assess the 
cheese-making ability of dairy species (Othmane et al., 
2002b,c; Cellesi et al., 2019). Because genetic selection 
relies on individual phenotype values, the individual 
proxy phenotypes here analyzed for MCP and cheese 
yield traits may be of great value for those breeding 
programs of dairy species that define the improvement 
of milk technological properties selection objectives.

The phenotypic data analyzed here for Assaf and 
Churra sheep breeds, whose basic statistics are given 
in Table 1, have been previously analyzed in detail by 
Sánchez-Mayor et al. (2019) and Pelayo et al. (2021), 
respectively. Briefly, of the 1,039 and 981 milk samples 
from Assaf and Churra ewes, respectively, included in 
the study, 131 samples in Assaf and 36 in Churra (13% 
and 3.6%, respectively) did not coagulate within 60 
min after the addition of the clotting enzyme (Sánchez-
Mayor et al., 2019; Pelayo et al., 2021). These samples 
had no values for the cheese-making traits (MCP and 
cheese yield traits), and therefore were declared missing 
values for the subsequent analyses. This percentage of 
noncoagulating samples for the Assaf breed was much 
higher than the values reported in other dairy sheep 
breeds, such as 0.44% in Sarda sheep by Pazzola et al. 
(2014a), 3.8% in Alpine sheep by Bittante et al. (2014), 

and 3.7% in Churra sheep by Pelayo et al. (2021). In 
general, the observed average values shown in Table 1 
suggest that milk from Churra sheep shows intermedi-
ate coagulation properties between the milk from the 
Assaf breed (considered a slow coagulation breed) and 
from other fast coagulation dairy sheep breeds, such as 
Manchega or Sarda (Pelayo et al., 2021).

Regarding the QC performed on the raw genotypes, 
none of the individuals included in this study was dis-
carded due to a low call rate. Call rates lower than 95% 
were detected for 2,139 SNPs, and a MAF lower than 
0.05 was found for 5,910 SNPs, which were filtered out. 
Finally, a total of 43,784 SNPs, distributed on the 26 
ovine autosomes remained after the QC filtering steps 
in both breeds, were included in further analyses.

Population Structure and Linkage Disequilibrium

The PCA revealed that Assaf and Churra breeds are 
subdivided into 2 highly differentiated groups by the 
first principal component, which explained 49.50% of the 
genetic variability in the analysis (Supplemental Figure 
S1, https: / / data .mendeley .com/ datasets/ 64jsbg5n9s/ 1, 
Marina et al., 2021). This finding is consistent with the 
phylogenetic analysis reported on whole-genome data 
sets by Marina et al. (2020b), where Assaf and Churra 
breeds had an evolutionary divergence estimate of 0.20 
and the 43 different domestic sheep breeds included in 
the study had average estimates of 0.16. The second 
component, which captured 7.22% of the variance, rep-
resented the intrabreed genetic diversity. The Churra 
breed showed higher genetic variability than the Assaf 
breed, although Churra sampling involved fewer flocks 
than Assaf (2 flocks in Churra vs. 4 flocks in Assaf).

The LD is a key genetic parameter in GWAS and 
population genetic diversity analyses. In this study, the 
LD decay pattern estimated for both r2 and |D’| at 
different physical distances is represented in Figure 1. 
For the Assaf and Churra breeds, the LD decay pat-
tern was very similar, suggesting that the r2 and |D’| 
parameters reached very low values (r2 < 0.1 and |D’| 
< 0.5) at distances greater than 100 kb, which was 
the distance used to define the region of confidence 
on both sides of the significant SNPs identified in the 
subsequent analyses (Figure 1 and Supplemental Table 
S1, https: / / data .mendeley .com/ datasets/ 64jsbg5n9s/ 1, 
Marina et al., 2021). The LD pattern described here for 
Churra agrees with previous studies in different popula-
tions of this sheep breed (García-Gámez et al., 2012b; 
Chitneedi et al., 2017). A similar LD decay distance has 
been reported in others sheep breeds (Kijas et al., 2014; 
Cesarani et al., 2019).
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Significant Regions Identified by the GWAS

The GWAS analysis results in this work are repre-
sented as individual Manhattan plots per breed for the 
milk traits in Figure 2 and the cheese-making traits in 
Figure 3.

Their corresponding quantile-quantile plots are repre-
sented in Supplemental Figures S2 and S3 (https: / / data 
.mendeley .com/ datasets/ 64jsbg5n9s/ 1, Marina et al., 
2021) for milk and cheese-making traits, respectively. 
No significant SNPs were observed at genome-wide sig-
nificance level. However, a total of 84 chromosome-wise 
significant associations were identified for the 6 milk 
traits [MY (11), FP (14), FY (19), PP (15), PY (15), 
and logSCC (10)], whereas 139 for the 6 cheese-making 

traits [RCT (10), logK20 (11), A30 (10), A60 (10), 
ILCY (67) and ILCDY (31)]. Further studies should 
be performed to confirm the total of 223 chromosome-
wise significant associations found in this analysis. In 
addition, no significant SNPs were found in common 
between the 2 studied breeds. A possible explanation 
for this could be the difference in the frequency alleles 
between the studied breeds. For example, Marina et al. 
(2020a) found notable differences in the LALBA gene 
for the missense deleterious mutation LALBA _OAR3: 
137390760T > C, where the T allele was close to fixa-
tion (0.92) in the Assaf breed. In contrast, this allele 
showed a low–moderate frequency (0.26) in the Churra 
breed. Another explanation for the lack of common 
significant SNPs between the 2 studied breeds could be 
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Figure 1. Average linkage disequilibrium (LD) measured through r2 and D′ parameters as a function of the 19 genomic distances considered 
between markers across the genome of Spanish Assaf and Churra breeds.
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Figure 2. Manhattan plots showing the genome-wide association study results for the 6 milk traits considered in this work. The Assaf breed 
results are represented on the left-hand side (pink and black chromosomes), and the results for the Churra breed are represented on the right-
hand side (blue and black chromosomes). The log (1/P-value) is depicted here for all 43,784 SNPs used in the GWAS analyses for each of the 6 
milk traits under study. The chromosome-wise significance thresholds are depicted as horizonal blue lines above each chromosome. MY = milk 
yield; FP = fat percentage; FY = fat yield; PP = protein percentage; PY = protein yield; and logSCC = the logarithm of SCC.
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Figure 3. Manhattan plots showing the genome-wide association study results for the 6 cheese-making traits considered in this work. The 
Assaf breed results are represented on the left-hand side (pink/black chromosomes), and the results for the Churra breed are represented on the 
right-hand side (blue/black chromosomes). The log (1/P-value) is depicted here for all 43,784 SNPs used in the GWAS analyses for each of the 
6 cheese-making traits under study. The chromosome-wise significance thresholds are depicted as horizonal blue lines above each chromosome. 
RCT = rennet clotting time; logK20 = the logarithm of curd-firming time; A30 and A60 = curd firmness at 30 and 60 min, respectively; ILCY 
= individual laboratory cheese yield; and ILDCY = individual laboratory dried curd yield.
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a possible breed-specific epistatic effect underlying the 
studied traits (de Camargo et al., 2015). Evidence of 
pleiotropic effects in the dairy sheep and goat genomes 
has been previously detailed (Rupp et al., 2015; Martin 
et al., 2018). These points suggest the difficulties of 
selecting a specific low-density SNP panel to be used in 
genomic selection for both breeds due to their genetic 
heterogeneity.

Only 11 markers in Assaf and 3 markers in Churra 
showed significant effects, at the chromosome-wise level, 
on more than 1 trait. No coincident genomic locations 
for these potential pleiotropic markers were observed 
among the 2 breeds. As summarized in Supplemen-
tal Table S2 (https: / / data .mendeley .com/ datasets/ 
64jsbg5n9s/ 1, Marina et al., 2021), most of these 
pleiotropic effects influence yield traits (MY, PY, and 
FY), although some other markers influenced cheese-
making traits (e.g., OAR13_18633656, rs413217716, 
and rs415695399) showed effects on the ILCY and 
ILDCY in the Assaf breed; and the OAR6_85117333 
simultaneously influence the PP and A60 traits in the 
Churra breed. Most of the potential pleiotropic SNPs 
listed in Supplemental Table S2 influenced the different 
traits in the same direction. In contrast, only 1 marker 
in the Assaf breed (rs427009325) and 2 in the Churra 
breed (rs417819324 and rs407891698) showed opposite 
pleiotropic effects on the RCT-A60 and RCT-A30 trait 
pairs (Supplemental Table S2).

The high genetic correlations estimated by Marina 
et al. (2020b) in the Assaf breed between the pairs of 
traits MY-PP (−0.52), MY-FP (−0.42), PP-FP (0.65), 
ILCY-ILDCY (0.87), and RCT-A60 (−0.79), and the 
high genetic correlation reported by Pelayo et al. (2021) 
in the Churra breed between the RCT-A30 trait pair 
(−0.77), suggest that several genes and mechanisms 
underlying those traits are partially common (Rupp et 
al., 2015). Epistatic and pleiotropic background mecha-
nisms for dairy traits have been previously reported in 
dairy cattle (Sanchez et al., 2017), dairy buffalo (de 
Camargo et al., 2015), dairy goats (Martin et al., 2018), 
and dairy sheep (Marina et al., 2020b; García-Gámez et 
al., 2012a; Rupp et al., 2015; Banos et al., 2019).

QTL Regions and Gene Annotation

Considering the concordance between the regions 
of confidence, obtained through the LD decay pattern 
(100 kb), around each of the significant SNPs identified 
by the GWAS, and the regions of the QTL previously 
reported in sheep for milk and cheese-making traits 
(SheepQTL database, http: / / www .animalgenome .org/ 
cgi -bin/ QTLdb/ OA/ index), we identified a total of 16 
and 44 QTL overlapping the confidence regions of the 

significant SNPs identified here for Assaf and Churra 
breeds, respectively (Supplemental Table S3, https: / / 
data .mendeley .com/ datasets/ 64jsbg5n9s/ 1, Marina et 
al., 2021). The significant confidence regions identified 
for the Assaf breed showed concordance with 1 QTL for 
milk PY and 14 QTL related to milk fatty acid content 
(Crisà et al., 2010; Li et al., 2020a). For the significant 
regions defined here for the Churra breed, we found 3 
QTL associated with MY, 9 QTL associated with milk 
protein content, 18 QTL associated with milk fatty 
acid content, 3 QTL associated with lactose content, 
2 QTL associated with rennet coagulation time, and 9 
QTL associated with curd firmness (Crisà et al., 2010; 
García-Gámez et al., 2012a, 2013; Noce et al., 2016; Li 
et al., 2020a). None of the QTL previously identified 
in the confidence regions by association analyses were 
related to the SCS trait.

As mentioned above, the GWAS results did not 
identify significant SNPs in common between the 2 
breeds studied in this paper. However, the 11 QTL 
previously described by Crisà et al. (2010) on OAR24 
(OAR24: 26228200–38615161 bp) related to milk fat 
content traits overlapped with the confidence regions 
identified here for both Assaf (in relation to FP and 
ILCY) and Churra breeds (regarding the ILCY and 
ILCDY traits).

A total of 63 and 176 different genes were annotated 
in the reference genome within the confidence regions 
of the significant SNPs related to milk and cheese-
making traits in the Assaf and Churra breeds, respec-
tively (Supplemental Table S4, https: / / data .mendeley 
.com/ datasets/ 64jsbg5n9s/ 1, Marina et al., 2021). Of 
the total number of genes located within the confidence 
region defined around the significant SNPs, 28 genes 
showed significant results for more than 1 trait and 
only 4 genes (5S_rRNA, U6, HFM1, and FBXL18) 
were located within confidence regions defined for the 
2 analyzed breeds. Interestingly, the noncoding RNAs 
5S_rRNA and U6 genes were previously found by Taye 
et al. (2017) in QTL regions related to milk traits in 
dairy cattle. The HFM1 gene was previously associ-
ated with an increase in the PP in dairy cattle (Pimen-
tel et al., 2011). Finally, the FBXL18 gene mediates 
polyubiquitylation and proteasomal degradation of the 
FBXL7 protein, which was previously associated with 
clinical mastitis in dairy cattle (Nayeri et al., 2019). 
Although no significant common SNPs were identified 
between the 2 studied breeds, we found 2 significant 
SNPs for both breeds in the surroundings of the HFM1 
and FBXL18 genes, as shown in Supplemental Table 
S4. These results could highlight the candidate regions 
to be targeted by a low-density SNP chip to use in 
different dairy sheep breeds.
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Gene Prioritization and Networks

After the functional prioritization analysis of the 
positional candidate genes, 60 genes were prioritized 
based on their functional similarity with the training 
gene list for milk and cheese-making traits (Supple-
mental Table S4, https: / / data .mendeley .com/ datasets/ 
64jsbg5n9s/ 1, Marina et al., 2021). Moreover, 11 genes 
in the confidence regions of the significant SNPs identi-
fied in the GWAS matched the genes from the training 
gene list used for the functional prioritization analyses. 
These 71 positional and functional candidate (PFC) 
genes were used to construct a protein-protein interac-
tion network, where only the 44 interconnected genes 
are represented (Figure 4). These connections showed 
8 gene interaction groups, of which the largest group 
of linked genes was composed of 26 of the identified 
PFC genes and 9 CF genes. The interaction enrichment 
analysis performed on the gene network revealed the 
high connectivity of the network (P-value: 3.79e-06).

The PFC genes were colored according to the mo-
lecular functions (Ashburner et al., 2000), Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathways 
(http: / / www .genome .ad .jp/ kegg/ ; Ogata et al., 1999), 
and network clusters identified in the functional enrich-
ment analysis of the gene network (false discovery rate 
<0.05). In the gene network, 4 molecular functions have 
been highlighted: calcium ion binding (GO: 0005509; 
depicted in green color) and ion transmembrane trans-
porter (activity GO: 0015075, blue), both of which play 
a relevant role in the lactation process (Neville, 2006; 
Pegolo et al., 2018); MAP kinase activity (GO: 0004708, 
purple), which has been related to milk production me-
diated through insulin hormone signaling (Janjanam 
et al., 2014); and transcription factor binding (GO: 
0008134, red), which connects the 9 CF included in the 
gene network (8 identified in relation to the significant 
results for Churra breed and 1 with regard to the sig-
nificant results for Assaf breed). Moreover, 3 KEGG 
pathways highly related to the lactation process were 
depicted in the gene network: insulin signaling pathway 
(gold), oxytocin signaling pathway (light blue), and 
prolactin signaling pathway (pink). Finally, the casein 
α/β network cluster (CL: 35901, yellow) was depicted, 
highlighting the relevance of the gene network for the 
studied traits. All the functionally molecular functions, 
enriched KEGG pathways, and network clusters in the 
gene network are summarized in Supplemental Table 
S5 (https: / / data .mendeley .com/ datasets/ 64jsbg5n9s/ 
1, Marina et al., 2021).

Although no single gene in the network is common 
to the 2 studied breeds, the fact that significant genes 
are involved in the different metabolic pathways may 

highlight the importance of the actual biological pro-
cess of complex traits and could help to elucidate the 
genetic background differences between the Assaf and 
Churra breeds. In the resulting gene network, the meta-
bolic pathways related to the studied phenotypes could 
be mediated by different PFC genes. The overlapping 
genes among the PFC genes located within the confi-
dence region of the significant SNPs and the training 
gene list carefully selected from the literature are sum-
marized in Table 2. The SNPs located in the surround-
ings of these genes are associated with several traits in 
Assaf (FP and ILCY) and Churra (PP, logK20, A60, 
ILCY, and ILCDY) sheep. This finding might contrib-
ute to designing a low-density multibreed SNP chip 
that contains variants in different genes implicated in 
the same biological pathways, thus solving their genetic 
heterogeneity.

The following is a brief description of the most rel-
evant prioritized genes (Table 2 and 3) identified in 
relation to the significant results reported here for each 
breed (Figure 4). On the one hand, in the Assaf breed, 
the solute carrier family 2, member 2 (encoded by 
SLC2A2 on chromosomes 1) is related to the biological 
process of carbohydrate metabolic processes and their 
transmembrane transport and insulin secretion regula-
tion. In the literature, other solute carrier genes, such 
as the SLC27A6 and SLC37A1 genes, have been associ-
ated with milk traits such as the fatty acid composition 
and the mineral content of bovine milk (Bionaz and 
Loor, 2008; Nafikov et al., 2013; Sanchez et al., 2019). 
As shown in Figure 4, this gene is highly connected 
with 2 genes (GYS2 and PCK1) related to the insulin 
signaling pathway. Phosphoenolpyruvate carboxykinase 
(encoded by the PCK1 gene) has been significant in 
relation to citrate content in cow milk (Cánovas et al., 
2013). This gene related to the insulin signaling path-
way was associated with the milk and cheese-making 
traits together with the NRP1 and SCUBE2 genes, 
also highlighted by the prioritization approach. The 
miRNA encoded by the NRP1 gene has been related to 
5 milk production- and composition-related traits (MY, 
SCC, PP, FP, and lactose content) in dairy cattle (Bai 
et al., 2016; Do et al., 2017b). Finally, the SCUBE2 
gene is related to the molecular function of calcium ion 
binding, as previously described by Yates et al. (2020). 
Moreover, the MYRIP and GPM6A genes (positioned 
on sheep chromosomes 19 and 26, respectively) were 
identified within the confidence regions of significant 
SNPs associated with ILCDY and logk20 traits, re-
spectively. The MYRIP and GPM6A genes, related to 
the biological function of positive regulation of insulin 
secretion and calcium ion transmembrane transport, 
respectively, have also been included in a co-association 
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network related to milk and cheese-making traits in the 
Assaf breed (Marina et al., 2020b).

On the other hand, for the Churra breed, Table 2 
also shows 9 of the prioritized genes identified within 

the confidence regions of significant SNPs. On chromo-
some 3, the LALBA and PTHLH genes were related to 
the PP and ILCY traits in the results reported here, 
respectively. α-LG is one of the main whey proteins 

Marina et al.: POST-GWAS FOR TECHNOLOGICAL TRAITS IN SHEEP

Figure 4. Gene network displaying the connections between the 44 interconnected functional and positional candidate genes related to milk 
and cheese-making traits in the 2 studied sheep breeds (Assaf and Churra). The genes are represented as nodes, and the edges linking the nodes 
represent the interactions between the genes. The name of the genes is represented in pink for the Assaf breed and in blue for Churra. The 
nodes have been colored according to the molecular function: calcium ion binding (GO: 0005509; green), ion transmembrane transporter (activ-
ity GO: 0015075, blue), MAP kinase activity (GO: 0004708, purple) and, transcription factor binding (GO: 0008134, red); Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways: insulin signaling pathway (mmu04910, gold), oxytocin signaling pathway (mmu04921, light blue), and 
prolactin signaling pathway (mmu04917, pink)]; molecular function: calcium ion binding (GO: 0005509; green), ion transmembrane transporter 
(activity GO: 0015075, blue), MAP kinase activity (GO: 0004708, purple) and, transcription factor binding (GO: 0008134, red); and the network 
cluster: Casein, alpha/beta (CL: 35901, yellow). The gene interactions can be classified as 3 groups: (1) known interactions: from curated data-
bases (light blue) and experimentally determined (pink); (2) predicted interactions: gene neighborhood, fusions, and co-occurrence (green, red, 
dark blue, respectively); (3) others: text mining (yellow), coexpression (black) and protein homology (violet).
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encoded by the LALBA gene, where a missense variant 
(p. Val27Ala) was significantly related to the milk pro-
tein and fat content in Spanish Churra sheep (García-
Gámez et al., 2012a). The valuable role of parathyroid 
hormone-like hormone (encoded by the PTHLH gene) 
during lactation was highlighted through knockout in 
mice (Ogorevc et al., 2009). The PTHLH gene has also 
been described as a promising candidate gene for the 
milk protein and FP in Holstein cows (Cui et al., 2014). 
This gene is closely related to the Ca+ concentration 
in milk (Onda et al., 2006) and highly connected 
with another gene related to the molecular function 
of calcium ion binding in the gene network, namely, 
the MMP13 gene. In addition, this gene is expressed in 
the mammary gland and appears to be critical for the 
morphogenesis and angiogenesis of this structure (Cros 
et al., 2002). We also found that the CSMD3 and HCN1 
genes, which are located on sheep chromosomes 9 and 
16, respectively, were related to ILCY in the Churra 
breed. These 2 genes have also been identified within 
the confidence region of QTLs previously detected for 
milk cheese-making traits in dairy cattle (Sanchez et 
al., 2019). Specifically, hyperpolarization-activated 
cyclic nucleotide-gated potassium channel 1 (encoded 
by the HCN1 gene) has been identified as significantly 
related to the lactation persistence trait in dairy cattle 
(Do et al., 2017a).

Last, TF and CF are related to the transcriptional 
control of gene expression, which underlies the creation 
and maintenance of tissue-specific protein synthesis 
and the response to specific cellular signaling pathways 
(Latchman, 1997). Therefore, TF and CFs could be con-
sidered potential regulators of the pathway highlighted 
by this gene network. Within the PFC gene prioritized 
in this work, we found a total of 10 TF and CF factors 
(Table 3). Figure 4 shows a highly connected gene group 
composed of 5 CF (BCAS3, CBX5, HDAC5, SIN3A, 
and HDAC9 genes colored in red) related to the PP 
and ILCY traits identified in Churra breed, and a single 
CF (ACTB gene) related to the ILCY trait identified in 
the Assaf breed, all of them related to the transcription 
factor biding molecular function. As shown in Figure 4, 
the ACTB gene is highly connected with several PFC 
genes discovered in this work and detected within the 
confidence regions identified here for the 2 breeds. This 
particular CF encodes the β-actin protein, located on 
sheep chromosome 24, which is included in the data-
base of cattle candidate genes for dairy-related traits 
associated with mastitis resistance reported by Ogorevc 
et al. (2009). The ACTB gene been identified with a 
high probability of showing a binding site for a TF 
that is differentially expressed and linked with several 
genes related to energy conservation metabolism and 

cell proliferation in beef cattle (Fonseca et al., 2018). 
This gene is also highly expressed in the dairy cattle 
milk somatic cell transcriptome at the peak and end of 
lactation (Wickramasinghe et al., 2012). The remaining 
CF (2) and TF (3), highlighted by the analyses for 
the Churra breed, were found in the areas surrounding 
SNPs significantly associated with the ILCY, ILCDY, 
logK20, and PP traits (Table 3).

Finally, in the Churra breed, 3 genes (CSN1S1, 
CSN1S2, and CSN2) that compose the casein α/β 
network cluster are related to milk and cheese-making 
traits (Yousefi et al., 2013; Giambra et al., 2014; Paz-
zola et al., 2014b). Within the reference gene list previ-
ously reported in the literature, we found 3 casein genes 
(CSN1S1, CSN1S2, and CSN2) located on chromosome 
6 that have been identified as significantly associated 
with the A60 and PP traits and could present pleiotro-
pic effect, thus highlighting the potential effect of this 
genomic region in the Churra breed. Several authors 
in dairy species have previously described the effect of 
these genes on milk and cheese-making traits. Specifi-
cally, the CSN1S1 and CSN1S2 genes have been associ-
ated with MY, PY, FY, and milk casein content in 
sheep (Barillet et al., 2005; Giambra et al., 2014) and 
the curd-firming times and efficient renneting proper-
ties in Sarda goats (Pazzola et al., 2014b). The CSN1S2 
gene has also been associated with rennet-induced ge-
lation of skim milk in dairy cattle (Gregersen et al., 
2015). Moreover, the CSN2 gene has been significantly 
associated with milk and cheese-making traits in dairy 
cattle (Cecchinato et al., 2015) and dairy goats (Paz-
zola et al., 2014b) and with curd-firming time in Sarda 
sheep (Noce et al., 2016). A previous transcriptomic 
analysis of the sheep mammary gland highlighted the 
very high expression levels of the CSN2 gene in dairy 
sheep during lactation (Suárez-Vega et al., 2016b).

CONCLUSIONS

In summary, the GWAS results together with pri-
oritized genes and gene network analyses presented 
in this study provide a new set of candidate genes re-
lated to milk and cheese-making traits for the studied 
breeds. Some of the genes resulting from these analyses 
have been previously associated with milk and cheese-
making traits in dairy populations, thus supporting our 
findings. In addition, several of the significant variants 
located in the area surrounding the candidate genes 
showed a pleiotropic effect on milk and cheese-making 
traits; therefore, they are potential markers influencing 
various pathways related to the studied traits. To our 
knowledge, this is the first study to perform GWAS 
for cheese-making traits in parallel in 2 different dairy 
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breeds, and the results were directly compared. The 
functional and positional candidate genes highlighted 
in this work can be further analyzed for genomic varia-
tions. Incorporating those variants in genomic selection 
strategies could lead to more rapid genetic gains, spe-
cifically for traits that are difficult to routinely measure 
on farms, such as cheese-making traits.
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