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A Compactification of the Universal Moduli
Space of Principal G-Bundles

Ángel Luis Muñoz Castañeda

Abstract. Let G be a semisimple linear algebraic group, ρ : G ↪→ SL(V ) a
finite-dimensional faithful representation, g ≥ 2 a natural number, and δ
a positive rational number. We prove the existence of a compactification
of the universal moduli space of semistable principal G-bundles over Mg,
provided that δ is sufficiently large, having the following property: the
fibers over singular curves are the moduli spaces of δ-semistable singular
principal G-bundles.
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1. Introduction

Let X be a smooth projective curve of genus g ≥ 2 over an algebraically
closed field of characteristic 0, and G a connected reductive algebraic group.
In [18,19], Ramanathan proved the existence of a projective moduli space,
M(s)s

X (G), of (semi)stable principal G-bundles on X of a given topological
type. When G = GLr, this moduli space is isomorphic to the classical moduli
space of (semi)stable vector bundles constructed by Mumford and Seshadri
[15,27].

A problem that arises naturally is to consider a degeneration of X along
a discrete valuation ring, whose closed fiber is a stable curve of genus g, and
describe the limit of a semistable principal G-bundle on X when we approach
the closed fiber. When G = GLr (respectively, Spr, Or), this problem is
equivalent to the problem of finding the limit of a locally free sheaf of rank
r (respectively, together with a bilinear form satisfying certain conditions).
It is well known that the solution is a torsion-free sheaf of the same rank
(respectively, together with a bilinear form satisfying certain conditions) [5].
This degeneration problem has been studied by Sun when G = SLr [29,30].
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One can also study how the moduli space of semistable principal G-
bundles varies as the base curve varies in the moduli space of stable curves,
Mg. This leads to the problem of compactifying the universal moduli space [4]
of principal G-bundles over Mg. Regarding this problem, not much is known,
except when G = GLr. In this case, Pandharipande has proved the existence
of a projective moduli space and a morphism onto Mg whose fiber over a
stable curve X is the moduli space of semistable torsion-free sheaves of a
given rank and degree divided by Aut(X) (see [3,17] for the particular case
of r = 1).

For a general group G, Balaji has carried out one-parameter flat degen-
erations of the moduli space when the closed fiber of the relative curve is
irreducible [1]. This is a first step in understanding how to construct a flat
compactification of the universal moduli space of bundles. Concerning this
problem in case G = GL(n), it is worth mentioning the work of Schmitt [22].
Here, a compactification of the universal moduli space is carried out by look-
ing at vector bundles on semistable models of stable curves. It is important to
note that Schmitt’s construction rests on the space built by Pandharipande
[17].

An alternative construction of the moduli space of principal G-bundles
was given by Schmitt for a semisimple linear algebraic group G. Given a
faithful representation ρ : G ↪→ SL(V ) of dimension r, a singular principal
G-bundle is a pair (E , τ) consisting of a locally free sheaf E of rank r and
degree 0, and a non-trivial morphism of algebras τ : S•(V ⊗ E )G → OX .
Giving τ is the same as giving a morphism X → HomOX

(V ⊗ OX ,E ∨)//G,
and the singular principal G-bundle (E , τ) is said to be honest if Im(τ) lies
inside the subscheme IsomOX

(V ⊗ OX ,E ∨)/G. Schmitt’s work is based on
the following result (a particular case of [26, Proposition 9]):

⎧
⎨

⎩

isomorphism classes
of principal G-bundles
on X

⎫
⎬

⎭
�

⎧
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isomorphism classes of pairs (E , τ)
E being a locally free sheaf of rank
r with trivial determinant and
τ : X → IsomOX

(V ⊗ OX ,E )/G
a section

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

For a given representation ρ : G ↪→ SL(V ) and a rational number δ ∈ Q>0, it
is proved in [23] the existence of a projective moduli space, SPB(ρ)δ-(s)s

X,P , of
δ-(semi)stable singular principal G-bundles with Hilbert polynomial P over a
smooth projective curve X. Furthermore, for δ � 0 and P (k) = rk+r(1−g),
it is also proved that every δ-semistable singular principal G-bundle is honest
and that SPB(ρ)δ-(s)s

X,P is isomorphic to M(s)s
X (G). It is worth pointing out that

it is possible to prove the existence of these moduli spaces when working
over more general base schemes [2,11,14]. Considering everything said so far,
Schmitt’s approach seems suitable for tackling the problems mentioned above
when the linear algebraic group G is different from GLr.

This work aims to prove the existence of a compactification of the mod-
uli problem defined by pairs (X,P), where X is a smooth projective curve
of genus g and P is a semistable principal G-bundle. This generalizes the
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construction for vector bundles given by Pandharipande [17]. The approach
we will follow is the approach taken by Schmitt; therefore, we will substitute
P by its corresponding singular principal G-bundle. A key component in
the theory of singular principal bundles is the notion of swamp, which over a
reduced projective curve is a pair (F , φ), where F is a coherent sheaf of pure
dimension one and φ : (F⊗a)⊕b → D is a morphism of OX -modules [11,14].
Here, a, b and D are fixed input data. From [14], it follows that the con-
struction of the universal moduli space of singular principal bundles reduces,
essentially, to the construction of the universal moduli space of swamps. Thus,
a significant part of this work is focused on the universal moduli space of these
objects.

The precise statement of the main result is as follows.

Theorem 1.1. Let G be a semisimple linear algebraic group, ρ : G ↪→ SL(V ) a
faithful representation of dimension r, g ≥ 2 a natural number, and δ ∈ Q>0

a rational number. There exists a projective scheme SPB(ρ)δ-(s)s
r,g , together

with a map Θb : SPB(ρ)δ-(s)s
r,g → Mg, such that for any stable curve [X] ∈ Mg,

Θ−1
b ([X]) = SPB(ρ)δ-(s)s

r,X /Aut(X), where SPB(ρ)δ-(s)s
r,X is the moduli space of

δ-(semi)stable singular principal G-bundles, (F , τ), on X with F of uniform
rank r and degree 0. If δ is large enough, Θ−1

b ([X]) = M(s)s
X (G)/Aut(X) for

every smooth curve [X] ∈ Mg.

The main technical result necessary to prove the previous theorem is
the following.

Theorem (Theorem 3.6). Fix g, h, C ∈ N with g ≥ 2, and a finite set P of
polynomials of degree one with integral coefficients. There is a natural number
N0, depending only on P ,C, g and h, such that for every Cohen–Macaulay
projective and connected curve of genus g with a very ample invertible sheaf
OX(1) of degree h and every coherent sheaf of pure dimension one, F , over
X with Hilbert polynomial in P satisfyingA coherent sheaf μmax(F ) ≤ C, the
following holds: for all k ≥ N0, h1(X,F (k)) = 0, and F (k) is generated by
its global sections.

This result is necessary to prove the existence of a relative Quot scheme
over the parameter space of the universal curve of genus g containing every
coherent sheaf of pure dimension one with a given Hilbert polynomial that
appears in a δ-semistable singular principal bundle. Note that in case of P
consist of one polynomial, P (n) = αn+β, and C be equal to β/α, Theorem 3.6
implies the existence of a Quot scheme, relative to the parameter space for
stable curves of genus g, which contains every semistable sheaf with Hilbert
polynomial P (this particular case was proved in [17, Section 5, Section 6]).

Following the proof of [7, Theorem 3.6] and applying the corollaries of
Theorem 3.6 appropriately, we prove Theorem 3.11. This theorem character-
izes δ-semistability for swamps in terms of GIT semistability on a particular
parameter space that depends on two natural numbers, N and L, that must
be large enough. The novel part is that we prove that N and L do not depend
on the base curve. From [14], the corresponding result for singular principal
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bundles follows, which, in turn, implies that the projective scheme we con-
struct is a coarse moduli space for pairs (X, (F , τ)) given by a stable curve
of genus g and a δ-semistable singular principal bundle.

1.1. Outline of the Paper

This paper is organized as follows. In Sect. 2, we introduce the notions of
swamps and singular principal bundles, their relation, and the concept of
δ-semistability. In Sect. 3, we prove the main technical result of the article,
which is Theorem 3.6. This allows us to prove Theorem 3.11, which eventually
implies the main property of the projective scheme we construct. In Sect. 4,
we prove the existence of a coarse projective moduli space for the moduli
functor defined by pairs (X, (F , φ)), X being a stable curve of genus g and
(F , φ) a δ-semistable swamp of a given Hilbert polynomial. The forgetful map
defines a morphism between this moduli space and Mg. Finally, in Sect. 5,
we prove the existence of a coarse projective moduli space for the moduli
functor defined by pairs (X, (F , τ)), X being a stable curve of genus g, and
(F , τ) a δ-semistable singular principal G-bundle of a given rank and degree
0. As in the case of swamps, there is a morphism to Mg. This, together with
the results given in [14,20,24,25] and Sect. 3, implies that the fibers of the
above morphism over smooth curves are precisely the classical moduli spaces
of principal G-bundles constructed by A. Ramanathan.

2. Preliminaries

Let C be an algebraically closed field of characteristic 0. We work in the
category of schemes over C.

Let X be a Cohen–Macaulay projective and connected curve of genus g
together with a very ample invertible sheaf OX(1).

Set k ∈ Z. A coherent sheaf F on X is k-regular if H1(X,F (k−1)) = 0.
If F is k-regular and k′ > k, then F is also k′-regular. From Serre’s vanishing
theorem, it follows that there is always an integer k, such that F is k-regular.
The regularity of F is defined as reg(F ) := inf{k ∈ Z : F is k-regular}.

Let F be a coherent sheaf on X. Its (polarized) degree and its (polar-
ized) slope are defined as deg(F ) := χ(F ) − rχ(OX), μ(F ) := χ(F )/α, α
being the multiplicity of F (the degree one coefficient of its Hilbert polyno-
mial PF ) and r = α/h its rank. If X has irreducible components X1, . . . , Xl,
and μi denotes the generic point of Xi, the multirank of F is the tuple
(dim(Fμi

))i=1,...,l. It has uniform rank r if dim(Fμi
) = r for each i.

A coherent sheaf on X is of pure dimension one if dim(Supp(G )) = 1
for every G ⊆ F . Recall that a coherent sheaf of pure dimension one, F ,
is semistable if for any subsheaf F ′ ⊂ F , μ(F ′) ≤ μ(F ). Recall also that
for any coherent sheaf of pure dimension one, F , there is a unique filtration
(Harder-Narasimhan filtration) 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk = F , such that the
quotients Fi/Fi−1 are semistable sheaves with decreasing slopes. As usual,
we will use the following notation:
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μmax(F ) := max{μ(Fi/Fi−1)|i = 1, . . . , k} = μ(F1).

For any subsheaf G ⊂ F , we have μ(G ) ≤ μmax(F ).

2.1. Swamps

Let a, b ∈ N be natural numbers, P a polynomial with integral coefficients of
degree one, and D an invertible sheaf over X.

Definition 2.1. A swamp over X of type (a, b,D) and Hilbert polynomial P
is a pair (F , φ), where F is a coherent OX -module with Hilbert polynomial
P and φ : (F⊗a)⊕b → D is a non-zero morphism of OX -modules.

Let T be a scheme and πX : X × T → X, and πT : X × T → T
the first and the second projections, respectively. A family of swamps over
X of type (a, b,D) parametrized by T is a tuple (FT , φT ,N ), where FT

is a coherent OX×T -module flat over T , N is an invertible sheaf over T
and φT : (F⊗a

T )⊕b → π∗
XD ⊗ π∗

TN is a morphism of OX×T -modules. An
isomorphism between families (FT , φT ,N ) and (F ′

T , φ′
T ,N ′) is a pair of

isomorphisms f : F � F ′, g : N � N ′, such that φ′
T ◦(f⊗a)⊕b = id⊗π∗

T (g)
(see [7]).

Let F be a coherent sheaf of pure dimension one over X. A weighted
filtration of F is a filtration F• ≡ (0) ⊂ F1 ⊂ · · · ⊂ Ft ⊂ Ft+1 = F ,
equipped with positive rational numbers m = (m1 . . . ,mt) ∈ Qt

>0.
Let φ : (F⊗a)⊕b → D be a swamp on X and let (F•,m) be a weighted

filtration. We denote by αi the multiplicity of Fi and by α the multiplicity
of F . Let us define Γ :=

∑t
1 miΓ(αi), Γ(l) := (l − α, ×l. . ., l − α, l, ×α−l. . . , l).

Let us denote by J the set of multi-indices I = (i1, . . . , ia), such that ij ∈
{1, . . . , t + 1}. Let us define

μ(F•,m, φ) := minI∈J{Γαi1
+ · · · + Γαia

| φ|(Fi1⊗···⊗Fia )
⊕b 
= 0}; (1)

Γj being the jth component of Γ.

Definition 2.2. Let δ ∈ Q>0 be a positive rational number. A swamp (F , φ)
of type (a, b,D) is δ-(semi)stable if for each weighted filtration (F•,m) the
inequality

∑t
1 mi(αPFi

− αiPF ) + δμ(F•,m, φ)(≤)0 holds.

Remark 2.3. (1) There is a positive integer A, depending only on the input
data P and a, which allows considering just weighted filtrations satisfy-
ing mi < A to check the δ-semistability condition. To see this, note that
a swamp is δ-(semi)stable if and only if the δ-(semi)stability condition
holds for every integral weighted filtration, i.e., filtrations with integral
weights. Now, the claim follows from [7, Lemma 1.4] changing ranks by
multiplicities. Observe that the upper bound A does not depend either
on b or on D .

(2) Note that if (F , φ) is δ-semistable, then F is of pure dimension one.

2.2. Singular Principal Bundles

Let G be a semisimple linear algebraic group and ρ : G ↪→ SL(V ) a faithful
representation of dimension r. Let P be a polynomial with integral coefficients
of degree one.
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Definition 2.4. A singular principal G-bundle over X with Hilbert polynomial
P is a pair (F , τ), where F is a coherent OX -module with Hilbert polynomial
P and τ : S•(V ⊗ F )G → OX is a morphism of OX -algebras, which is not
just the projection onto the zero-degree component.

A family of singular principal G-bundles parametrized by a scheme T ,
as well as an isomorphism between two families, is defined in the obvious
way.

Consider a singular principal G-bundle on X, τ : S•(V ⊗ F )G → OX .
We can find s ∈ N, such that S•(V ⊗ F )G is generated by the submodule⊕s

i=0 Si(V ⊗ F )G. Let d ∈ Ns be so that
∑

idi = s!. Then, we have
s⊗

i=1

(V ⊗ F )⊗idi →
s⊗

i=1

Sdi(Si(V ⊗ F )) →
s⊗

i=1

Sdi(Si(V ⊗ F ))G → OX .

(2)

Adding up these morphisms as d ∈ N varies, we find a swamp (see [14] or
[20])

Swamp(τ) := φτ : ((V ⊗ F )⊗s!)⊕N → OX . (3)

Let us define a := s! and b := N . From [14, Theorem 5.5], we deduce that
there is an s ∈ N, which depends only on the numerical input data, large
enough that the map

{
isomorphism classes of
singular principal G-bundles

}

→
{

isomorphism classes of
swamps of type (a, b,OX)

}

(4)

is injective.

Definition 2.5. Let δ ∈ Q>0 be a positive rational number. A singular prin-
cipal G-bundle is said to be δ-semi(stable) if its associated swamp is δ-
semi(stable).

3. A Uniform Boundedness Result on Cohen–Macaulay Curves

Although the aim is to construct moduli spaces over stable curves, the main
results of this section hold for Cohen–Macaulay curves, so they are stated for
this more general case.

3.1. Locally Free Sheaves on the Projective Line

Let E be a locally free sheaf of rank r on the projective line P1
k. By [8,

Théorème 2.1], there are integers n1 ≥ · · · ≥ nr, such that E �
⊕r

i=1 OP1
k
(ni).

The tuple (n1, . . . , nr) is defined as the type of E and is denoted by τ(E ). We
will denote by τmin(E ) (respectively, τmax(E )) the minimum (respectively,
maximum) integer of the type τ(E ) of E , that is, τmin(E ) = nr (respectively
τmax(E ) = n1).

Let r,m ∈ N and d ∈ Z be integers. There are finitely many isomorphism
classes of locally free sheaves on P1 of rank r, degree d, and h0(P1,E ) = m.
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Such isomorphism classes are determined by the tuples of integers n1 ≥ · · · ≥
nr, verifying the equations

δ(n1) + · · · + δ(nr) = m, where δ(ni) =
{

ni + 1 if ni ≥ 0
0 otherwise

n1 + · · · + nr = d.

(5)

Let us denote by N(r, d,m) the set of tuples of integers n1 ≥ · · · ≥ nr satisfy-
ing (5) and by S−(r, d,m) (resp. S+(r, d,m)) the minimum (resp. maximum)
among the integers i ∈ Z that appear as the smallest (resp. largest) integer
in a tuple of N(r, d,m). Therefore, any integer n ∈ Z that appears in a tuple
(n1, . . . , nr) ∈ N(r, d,m) satisfies that S+(r, d,m) ≥ n ≥ S−(r, d,m).

Lemma 3.1. Let E be a locally free sheaf of rank r, degree d and h0(P1,E ) =
m. Then, for every n ≥ −S−(r, d,m), E (n) is generated by its global sections
and h1(P1,E (n)) = 0.

Proof. Let τ(E ) = (n1, . . . , nr) be the type of E , that is, E =
⊕r

i=1 OX(ni).
Then, E (n) is generated by global sections if and only if n + ni ≥ 0 for
all i, that is, if and only if n ≥ −ni for all i. However, ni ≥ S−(r, d,m)
for every i by definition, so taking n ≥ −S−(r, d,m), we get the desired
result. On the other hand, h1(P1,E (n)) =

∑r
i=1 h0(P1,OP1(−2 − ni − n)),

and h0(P1,OP1(−2 − ni − n)) = 0 for every n ≥ −S−(r, d,m), so we are
done. �
3.2. Uniform Boundedness

Let X be a Cohen–Macaulay projective and connected curve together with a
very ample invertible sheaf OX(1) of degree h. By [16, Proposition 6], there
exists a finite surjective morphism f : X → P1, such that f∗OP1(1) � OX(1),
and [12, Theorem 23.1] implies that f is flat. Let L be a coherent sheaf over
X of degree d and multiplicity α, and define E := f∗L . Since f is finite and
f∗OP1(1) � OX(1), we know that PE (n) = PL (n). Assuming n � 0, we get

PE (n) = rk(E ) · n + rk(E ) + deg(E ), PL (n) = α · n +
α

h
(1 − g) + d; (6)

hence, rk(E ) = α and deg(E ) = (1 − g)
α

h
− α + d.

Assume now that L is an invertible sheaf. Then, E is locally free and
there are integers a1(f) ≥ · · · ≥ ah(f), such that

E = f∗L =
h⊕

i=1

OP1
k
(ai(f)), 1 − g − h + d =

h∑

i=1

ai(f).

Definition 3.2. Let X,OX(1), f,L be as above. We define the f -type of L
as the tuple (a1(f), . . . , ah(f)), and it is denoted by τf (L ).

Lemma 3.3. Fix g, h,m ∈ N and d ∈ Z. There are integers S−, S+ depending
only on g, h,m, d, such that for any Cohen–Macaulay projective and connected
curve of genus g with a very ample invertible sheaf OX(1) of degree h, any
invertible sheaf L on X of degree d and h0(X,L ) = m, and any finite
morphism f : X → P1, such that f∗O(1) � OX(1), the following holds:

S+ ≥ τf,max(E ), τf,min(E ) ≥ S−, where E := f∗(L ). (7)
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Furthermore, for every n ≥ −S−, L (n) is generated by its global sections
and h1(X,L (n)) = 0.

Proof. By (6), rk(E ) = h and deg(E ) = 1 − g − h + d. On the other hand,
h0(P1,E ) = h0(X,L ) = m. Then, S− := S−(h, 1 − g − h + d,m) and S+ :=
S+(h, 1−g−h+d,m) satisfy the inequality given in (7). Besides, if n ≥ −S−,
E (n) is generated by global sections and h1(P1,E (n)) = 0 by Lemma 3.1.
This implies that h1(X,L (n)) = 0, since h1(X,L (n)) = h1(P1,E (n)) and
that L (n) is generated by its global sections, since the adjunction map,
f∗f∗ → id, is surjective for finite morphisms. �

Lemma 3.4. Fix g, h ∈ N and n ∈ Z. There exists a constant C ∈ Z, de-
pending only on g, h, n, such that for every Cohen–Macaulay projective and
connected curve X of genus g with a very ample invertible sheaf OX(1) of de-
gree h, we have μmax(H ) ≤ C, where H = ⊕r

i=1OX(ni) with r any natural
number and ni ≤ n.

Proof. Let X and H be as in the statement. Let f : X → P1 be a finite and
surjective morphism, such that f∗OP1(1) � OX(1). Then, f∗H = ⊕r

i=1E (ni)
for certain natural numbers n1, . . . , nr, where E = f∗OX =

⊕h
i=1 OP1

k
(ai(f)).

By (6), we know that rk(E ) = h and deg(E ) = 1−g−h. Let F ⊂ H be a sub-
sheaf of multiplicity α. Since f∗F is locally free, there are integers t1, . . . , tα,
such that f∗F = ⊕α

i=1OX(ti). Let n′ be the maximum among n1, . . . , nr.
Since f∗F ⊂ f∗H , we deduce that ti ≤ τmax(E ) + n′ ≤ τmax(E ) + n, which
implies that deg(f∗F ) ≤ α(τmax(E ) + n). On the other hand, deg(F ) =
α + deg(f∗F ) − (1 − g)α/h, so deg(F ) ≤ α(1 + τmax(E ) + n) − (1 − g)α/h
and, therefore, μ(F ) ≤ 1+ τmax(E )+n− (1− g)1/h. Finally, by Lemma 3.3,
there is a constant S+, depending only on g and h, such that τmax(E ) ≤ S+.
Therefore, μ(F ) ≤ 1 + S+ + n − (1 − g)1/h =: C. �

Lemma 3.5. Let P be a finite set of polynomials of degree one with integral
coefficients. There is a natural number Bτ depending only on P , such that
for every Cohen–Macaulay projective and connected curve with a very ample
invertible sheaf OX(1) and every coherent sheaf, F , of pure dimension one
with Hilbert polynomial in P , we have dim(Fx/mxFx) ≤ Bτ .

Proof. Let us define Bτ as the maximum of the leading coefficients of the
polynomials in P . Consider a finite surjective morphism f : X → P1,
such that f∗OP1(1) � OX(1). Since f must be flat, f∗F is locally free of
rank bounded from above by Bτ . Since dim(Fx/mxFx) ≤ rk(f∗F ), we are
done. �

Theorem 3.6. Fix g, h, C ∈ N with g ≥ 2, and a finite set P of polynomials of
degree one with integral coefficients. There is a natural number N0, depending
only on P ,C, g, and h, such that for every Cohen–Macaulay projective and
connected curve of genus g with a very ample invertible sheaf OX(1) of degree
h and every coherent sheaf of pure dimension one, F , over X with Hilbert
polynomial in P satisfying μmax(F ) ≤ C, the following holds: for all k ≥ N0,
h1(X,F (k)) = 0, and F (k) is generated by its global sections.
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Proof. Let X, OX(1) and F be as in the statement. By Serre duality theorem,
we have that h1(X,F (k)) = dim(HomOX

(F (k), ωX)), ∀k ∈ Z. Suppose that
h1(X,F (k)) 
= 0 and k ≥ 0. Then, there is a non-zero morphism f ′ : F →
ωX(−k). Let us define K and N to be Ker(f ′) and Im(f ′), respectively.
From the exact sequence 0 → K → F → N → 0, we get

deg(N ) = deg(F ) − deg(K ) = deg(F ) − αK μ(K ) ≥ deg(F ) − αK C

= PF (0) − P ′
F (n)
h

(1 − g) − αK C ≥ B0,

with B0 := min{PF (0)− P ′
F (n)
h

(1−g)−i·C|i ∈ [1, αmax], PF (n) ∈ P}. Here,
αmax is the maximum among the degree one coefficients of the polynomials
in P . Note that B0 is a constant which depends only on P , h and the genus
g. The injective morphism N ↪→ ωX(−k) induces an injective morphism
N (k) ↪→ ωX . Then, we have deg(N (k)) = αN · k + deg(N ) ≥ k + B0, and
therefore

2g − 2 = deg(ωX) = deg(N (k)) + deg(ωX/N (k))

≥ k + B0 + deg(ωX/N (k)).
(8)

Let us find a bound of deg(ωX/N (k)). Denote by J the quotient ωX/N (k).
Fix a finite surjective morphism f : X → P1, such that f∗OP1(1) � OX(1).
Since f is finite, we have a surjection f∗(ωX) → f∗J → 0. Denote by T the
torsion subsheaf of f∗J and by U = f∗J /T the locally free subsheaf. If
U = 0, deg(f∗I ) ≥ 0. On the other hand, if U 
= 0, we have f∗J = U ⊕T ,
so deg(f∗J ) ≥ deg(U ), and it is enough to give a bound of deg(U ). Observe
that we have a surjective morphism f∗(ωX) → U → 0, and that

f∗(ωX) =
h⊕

i=1

O(ai), U =
T⊕

i=1

O(bj).

From the above surjection, it follows that, given an index j = 1, . . . T , there
exists an index i = 1, . . . h such that bj ≥ ai. Therefore

deg(U ) =
T∑

i=1

bi ≥
T∑

l=1

aik ≥ T · A,

where A := min{ai}. Now, by Proposition 3.3, there exists an integer S =
S(g, h,m) depending only on g, h,m := h0(X,ωX) = g such that A ≥ S.
Therefore, deg(U ) ≥ T · S ≥ T0 · S, where T0 := min{0, h · S}. Set C0 =
min{To · S, 0}. Then, from (8), we get

2g − 2 ≥ k + B0 + C0. (9)

Let N ′
0 be the smallest integer, such that N ′

0 + B0 + C0 > 2g − 2. Then,
h1(X,F (k)) = 0 for all k ≥ N ′

0 and N ′
0 only depends on P,C, g, h.

For the last part, let x ∈ X be a closed point and Ix its ideal sheaf. Let
us define G := Im(F ⊗OX

Ix → F ) and d(x) := dimFx/mxFx. We have
μmax(G ) ≤ C and PG (n) = PF (n)−d(x). By Lemma 3.5, the function d(x) is
bounded from above by a constant Bτ that depends only on P . We can argue
now as above and we arrive at the equation 2g − 2 ≥ k + B0 − Bτ + C0. Let
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N0(≥ N ′
0) be the smallest integer such that N0+B0−Bτ +C0 > 2g−2. Then,

h1(X,F (−x)(k)) = h1(X,F (k)) = 0 for all k ≥ N0, so F (k) is generated
by its global sections and h1(X,F (k)) = 0 for every k ≥ N0 and N0 only
depends on P ,C, g, h. �
Corollary 3.7. Fix g, h, C,C ′, a ∈ N with g ≥ 2, and a finite set P of poly-
nomials of degree one with integral coefficients. There are natural numbers
N1, N

′
1 depending on g, h, C,C ′, P and g, h, C, a, P , respectively, such that for

every Cohen–Macaulay projective and connected curve of genus g with a very
ample invertible sheaf OX(1) of degree h, and every family E of equivalence
classes of coherent sheaves of pure dimension one, F , with Hilbert polynomial
in P that satisfy μmax(F ) ≤ C, the following holds:
(1) For every subsheaf F ′ ⊂ F , with F ∈ E, such that |deg(F ′)| ≤ C ′, we

have h1(X,F ′(k)) = 0 and F ′(k) is generated by its global sections for
all k ≥ N1.

(2) For every sheaf of the form H = F1 ⊗ · · · ⊗ Fa with Fi ∈ E, we have
h1(X,H (k)) = 0 and H (k) is generated by its global sections for all
k ≥ N ′

1.

Proof. 1. Let F ∈ E and F ′ ⊂ F a coherent sheaf in E′. We have
μmax(F ′) ≤ C. Since |deg(F ′)| ≤ C ′, there are only finitely many
possible polynomials in the set of Hilbert polynomials of the members
of E′. Then, applying Theorem 3.6, we conclude.

2. By Theorem 3.6, it is enough to show that if F ,G are coherent sheaves
of OX -modules that are k1- and k2-regular, respectively, then F ⊗ G
is (k1 + k2)-regular. Let j : X ↪→ Pn be a closed immersion, such
that j∗OPn(1) = OX(1). Since j : X ↪→ Pn is a finite morphism,
we know that Hi(X,F (n)) = Hi(Pn, j∗(F )(n)) and Hi(X,G (n)) =
Hi(Pn, j∗(G )(n)). This implies that j∗F and j∗G are k1- and k2-regular,
respectively, and obviously, (j∗F )y = (j∗G )y = 0 for every y ∈ Pn\X.
Therefore, by [28, Proposition 1.5], j∗F ⊗j∗G is (k1+k2)-regular. That
is, H1(Pn, (j∗F ⊗ j∗G )(k1 + k2 − 1)) = 0 for every i ≥ 0. Since j is a
closed immersion, we deduce that j∗F⊗j∗G = j∗(F⊗G ) and, therefore,
h1(X, (F ⊗ G )(k1 + k2 − 1)) = h1(Pn, (j∗F ⊗ j∗G )(k1 + k2 − 1)) = 0.

�
Corollary 3.8. Let F be a finite-dimensional vector space, k ∈ Z, l0 ∈ N,
P (n) ∈ Z[n], and X a Cohen–Macaulay projective and connected curve of
genus g ≥ 2 with a very ample invertible sheaf OX(1) with h1(X,OX(l0)) = 0.
Then, there exists a natural number L ∈ Z depending only on k, l0, g, P (n),
such that for every quotient sheaf q : F ⊗ OX(k) → F → 0 with Hilbert
polynomial P (n) and for every vector subspace F ′ ⊂ F , the following holds:
h1(X,FF ′(l)) = 0 and H0(q(l))(F ′ ⊗ W ) = H0(X,FF ′(l)) for every l > L,
where W = H0(X,OX(l + k)) and FF ′ is the subsheaf q(F ′ ⊗ OX(k)) ⊂ F .

Proof. Let X be a Cohen–Macaulay projective and connected curve of genus
g ≥ 2 together with a very ample invertible sheaf OX(1) with the conditions
of the statement, let q : F ⊗OX(k) → F → 0 be a quotient sheaf with Hilbert
polynomial P (n), and let F ′ ⊂ F be a vector subspace. Let us consider the
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exact sequence 0 → KF ′(l) → F ′ ⊗ OX(l + k) → FF ′(l) → 0. Taking global
sections, we get a surjection F ′ ⊗ H1(X,OX(l + k)) → H1(X,FF ′(l)) →
0. Clearly, h1(X,OX(p)) = 0 for every p ≥ l0, since h1(X,OX(l0)) = 0.
Therefore, l > −k + l0 implies h1(X,FF ′(l)) = 0. On the other hand, it
follows from Lemma 3.4 that every sheaf K of the form Ker(q), for some
q : F ⊗ OX(k) → F as in the statement, satisfies that μmax(K ) is bounded
from above by a constant depending only on the numerical input data. Also,
there is a finite set P of polynomials with integral coefficients, depending
only on the numerical input data as well, to which PH (n) belongs. Now,
by Theorem 3.6, we deduce that there is a constant l1 ∈ N, depending only
on the numerical input data, such that for every l ≥ l1, h1(X,KF ′(l)) = 0
and KF ′(l) is generated by its global sections. Thus, for every l ≥ L :=
max{−k + l0, l1}, we have H0(q(l))(F ′ ⊗ W ) = H0(X,FF ′(l)). �
3.3. δ-Semistable Swamps

A direct consequence of Theorem 3.6 is that there is a bound of the regularity
of coherent OX -modules appearing in δ-semistable swamps (and, therefore,
in δ-semistable singular principal bundles) that works for every curve in Mg.
This result is necessary to find a universal parameter space over Mg for such
objects.

Theorem 3.9. Let a, g, h ∈ N with g ≥ 2 and let P (n) ∈ Z[n] be a polynomial
of degree one and δ ∈ Q>0. There exists a natural number N2 ∈ N depending
only on P (n), a, δ, g, h, such that for every Cohen–Macaulay projective and
connected curve of genus g, X, with very ample invertible sheaf OX(1) of
degree h and for every coherent sheaf of pure dimension one F with Hilbert
polynomial P (n) appearing in a δ-(semi)stable swamp of type (a,−,−), the
following holds: F (k) is generated by its global sections and h1(X,F (k)) = 0
for every k ≥ N2.

Remark 3.10. The notation (a,−,−) means that we allow swamps of type
(a, b,D), whatever b ∈ N and D ∈ Pic(X) are.

Proof. Let (F , φ) be a δ-semistable swamp of type (a, b,D) with Hilbert
polynomial P (n). Let F1 ⊂ F be a subsheaf and consider the one-step flag
0 ⊂ F1 ⊆ F2 = F . The computation of the semistability condition given in
Definition 2.2 leads to the inequality

μ(F1) ≤ C := μ(F ) +
a(α − 1)

α
δ,

C being a constant depending only on P, h, a, δ, g. Now, by Theorem 3.6,
there exists a natural number N2 ∈ N depending only on P (n), C, g, h (thus,
on P (n), a, δ, g, h), such that h1(X,F (k)) = 0 and F (k) is generated by its
global sections for every k ≥ N2. �

Let a, b, g, h, l0 ∈ N be natural numbers with g ≥ 2, and let P (n) ∈ Z[n]
be a polynomial of degree one and δ ∈ Q>0. Let X be a Cohen–Macaulay
projective and connected curve of genus g with a very ample invertible sheaf
of degree h, such that h1(X,OX(l0)) = 0 for a fixed natural number lo ∈ N.
Let D ∈ N be a natural number, e ∈ Z an integer, and let D be an invertible
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sheaf on X of degree e with h0(X,D) = D. Given k ∈ N, let Q(X, k, P ) denote
the Quot scheme QuotP

CP (k)⊗OX(−k)/X/C. By Theorem 3.9 and Lemma 3.3,
there is a natural number N ′ ∈ Z, depending only on the numerical input
data, such that for every k ≥ N ′ and for each δ-(semi)stable swamp, (F , φ),
of type (a, b,D) and Hilbert polynomial P , we have that F (k) and D(k)
are generated by its global sections, and h1(X,F (k)) = h1(X,D(k)) = 0.
Fix such a natural number k > N ′ and denote by F the vector space CP (k).
Let L be as in Corollary 3.8. For l ≥ L, there is a projective embedding
(Grothendieck embedding composed with the Plücker embedding)

Q(X, k, P ) ↪→ P

⎛

⎝
P (l)∧

(F ⊗ H0(X,OX(l − k)))

⎞

⎠ .

Consider now the functor rigSwk
P,D ,a,b which assigns the set of isomorphism

classes of tuples (FT , φT ,N , gT ) to a scheme T , where (FT , φT ,N ) is a fam-
ily of swamps with Hilbert polynomial P and gT is a morphism gT : F ⊗OT →
πT∗FT (k), such that the induced morphism F⊗OX×T → FT (k) is surjective.
The functor rigSwk

P,D ,a,b is represented by a closed subscheme W k,l
P,D ,a,b(X) of

Q(X, k, P ) × P(Z1), with Z1 = ((F⊗a)⊕b)∨ ⊗ H0(X,D(ak)) (see [7, Section
3] for smooth projective varieties and [13, Theorem 2.1.36] for nodal curves).
Let Zk,l

P,D ,a,b(X) ⊂ W k,l
P,D ,a,b(X) be the closure of the locus representing δ-

semistable swamps. Consider the projections pQ : Zk,l
P,D ,a,b(X) → Q(X, k, P )

and pP(Z1) : Zk,l
P,D ,a,b(X) → P(Z1), and define a polarization on Zk,l

P,D ,a,b(X)
by OZk,D (X)(n1, n2) := p∗

QOQ(X,k,P )(n1)⊗p∗
P(Z1)

OP(Z1)(n2), n1 and n2 being
positive integers, such that

n1

n2
=

P (l) − P (k)
P (k) − aδ

δ. (10)

The natural action of SL(F ) on Q(X, k, P ) × P(Z1) preserves Zk,l
P,D ,a,b(X)

and the linearizations on OQ(X,k,P )(1) and OP(Z1)(1) induce a linearization
on the invertible sheaf OZk,l

P,D ,a,b(X)(n1, n2). Then, the GIT quotient given by

T δ-(s)s
P,D ,a,b(X) := Zk,l

P,D ,a,b(X)//SL(F )

exists and is projective, and if k, l are large enough, it is a coarse moduli space
of δ-semistable swamps of the corresponding type (see [7, Theorem 1.8], [11,
Theorem 3.5] and [13, Theorem 2.1.44]).

Now, we can show that we may choose k and l, so that they work for
every Cohen–Macaulay projective and connected curve of genus g. To do so,
we need only to prove the following result.

Theorem 3.11. Let g, h,D, a, b ∈ N be natural numbers with g ≥ 2 and P (n) ∈
Z[n] a polynomial of degree one. There are natural numbers N (≥ N ′), L ∈ N

depending only on the numerical input data, such that for every k ≥ N
and every l ≥ L, the following holds: for every Cohen–Macaulay projective
and connected curve of genus g with a very ample invertible sheaf OX(1)
of degree h, a point (q,Φ) ∈ Zk,l

P,D ,a,b(X) is GIT-(semi)stable with respect
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to OZk,l
P,D ,a,b(X)(n1, n2) if and only if the corresponding swamp (F , φ) is δ-

(semi)stable and the linear map fq : F → H0(X,F (k)) is an isomorphism,
where F := CP (k).

Remark 3.12. This result can be found in [7, Theorem 3.6] without the uni-
formity property for N and L, in case X is a smooth projective variety. The
special case dim(X) = 1 can be generalized for reduced projective and con-
nected curves [13, Theorem 2.1.41], and the proof is valid for a fixed Cohen–
Macaulay projective and connected curve. It only remains to show that we
can choose N and L, so that they work for any curve. To avoid repetition,
we will only mention at which steps (see [13, Section 2.1.5]) Theorem 3.6 and
its corollaries must be applied to get the desired result.

Proof. First, a short calculation shows that the constants appearing in [13,
Lemma 2.1.23] do not depend on the base curve. Apply Theorem 3.6 and
Corollary 3.7 1) in [13, Lemma 2.1.24, Lemma 2.1.25]. The above, together
with Corollary 3.7 2), allows us to show that the constant appearing in [13,
Theorem 2.1.26] and [13, Corollary 2.1.27] does not depend on the base curve
either. Corollary 3.8 implies that the constant appearing in the numerical
criterion [13, Proposition 2.1.39] depends only on the numerical input data.
Finally, applying the above results, it follows that the constant appearing in
[13, Theorem 2.1.41] is, again, independent on the base curve. �

4. The Universal Moduli Space of Swamps

Let a, b, g ∈ N be natural numbers with g ≥ 2, δ ∈ Q>0 a positive rational
number, and P a polynomial with integral coefficients of degree one. Consider
the moduli functor given by

Sw
δ-(s)s
P,g,a,b(T ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

isomorphism classes of pairs (XT , (FT , φT ,N )),
where XT is a stable curve of genus g flat over
T and (FT , φT ,N ) is a family of δ-(semi)stable
swamps over T with Hilbert polynomial P and
type (a, b,OXT

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(11)

Two pairs (XT , (FT , φT ,N )) and (X ′
T , (F ′

T , φ′
T ,N ′)) are isomorphic if there

is an isomorphism of T -schemes, u : XT � X ′
T , such that u∗(F ′

T , φ′
T ,N ′)

and (FT , φT ,N ) are isomorphic (see Sect. 2.1).
Our goal is to prove the following theorem.

Theorem 4.1. There exists a projective scheme, T δ-(s)s
P,g,a,b, and a morphism

Θsw : T δ-(s)s
P,g,a,b → Mg, such that Θ−1

sw ([X]) = T δ-(s)s
P,OX ,a,b(X)/Aut(X) for any

stable curve [X] ∈ Mg.

4.1. Gieseker Construction of Mg

Let us summarize the construction of Mg [6]. Let g ≥ 2 be a natural number
and set d := 10(2g − 2) and M := d − g. These data determine a polynomial
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h(s) = ds−g+1. Consider the Hilbert scheme Hd,g,M representing projective
curves of genus g and degree d in PM . There exists a projective embedding

is : Hd,g,M ↪→ Grass(h(s),H0(PM ,OPM (s))∨) ↪→ P(H1),

with H1 =
∧h(s)

H0(PM ,OPM (s)), for each s ∈ N greater than a particular
natural number s0 ∈ N. Every pair given by a stable curve X of genus g
and an isomorphism CM+1 � H0(X,ω⊗10

X ) determines a point [X] ∈ Hd,g,M .
Let us denote by Hg ⊂ Hd,g,M the quasi-projective variety of non-degenerate,
10-canonical stable curves of genus g. The action of SLM+1 on PM induces
an action on Hg. Then, there exists a natural number s1, such that for every
s ≥ s1, the following holds: (1) is(Hg) belongs to the stable locus, and (2)
is(Hg) is closed in the semistable locus. It follows that Mg = Hg/SLM+1

exists and is projective. The scheme Hg is endowed with a universal family,
μ : Ug → Hg, of genus g stable curves and a diagram

Ug
� � closed

ψ
��

μ

flat
����

���
���

���
���

�� Hg × PM pr2 ��

pr1

��

PM

Hg

.

For any closed point h ∈ Hg, ψ induces a closed immersion ψh : Xh ↪→ PM ,
Xh being the fiber of μ over h ∈ Hg, which satisfies that ψ∗

hOPM (1) � ω⊗10
Xh

.
Denote by ν the composition pr2 ◦ψ : Ug → PM and by OUg

(1) the relatively
very ample invertible sheaf ν∗OPM (1). Then, OUg

(1)|Xh
� ω⊗10

Xh
for every

h ∈ Hg. Since h1(X,ω⊗10
X ) = 0 and h0(X,ω⊗10

X ) = 10(2g − 2) − g + 1 for
every stable curve, we have that R1μ∗OUg

(1) = 0, μ∗OUg
(1) is locally free

and commutes with any base change.

4.2. Grothendieck Embedding of the Relative Quot Scheme

Let us fix a natural number k ∈ N and denote by F the vector space CP (k). Let
Qg(μ, k, P ) ⊂ QuotPF⊗OUg (−k)/Ug/Hg

be the subscheme parametrizing quo-
tients of pure dimension one. The forgetful functor gives a proper morphism
π : Qg(μ, k, P ) → Hg and the fibered product

Qg(μ, k, P ) ×Hg
Ug

θ ��

φ

��

Qg(μ, k, P )

π

��
Ug μ

�� Hg

is equipped with a universal quotient, flat over Qg(μ, k, P ) (see [9])

qQg
: F ⊗ φ∗OUg

(−k) → F → 0. (12)

There exists an integer l1, such that, for all l > l1(l > k), there is an im-
mersion π × il : Qg(μ, k, P ) ↪→ Hg ×Grass(P (l), F ⊗ H0(PM ,OPM (l − k))).
Composing π×il with the Plücker map, we get an immersion, that we denote
in the same way
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π × il : Qg(μ, k, P ) ↪→ Hg × P(H2),

where H2 :=
∧P (l)(F ⊗ H0(PM ,OPM (l − k))).

4.3. Projective Embedding of Swamps Data

By Theorem 3.9, there exists N ∈ N with the following property: given a
stable curve of genus g (with polarization OX(1) := ω⊗10

X ), any δ-semistable
swamp (F , φ) of type (a, b,OX) with Hilbert polynomial P defines a point in
the projective bundle π : P(((F⊗a)⊕b)∨ ⊗ μ∗OUg

(ak)) → Hg for any k ≥ N

(recall that F = CP (k)). Since μ∗OUg
(ak) = pr1∗ψ∗(ψ∗pr∗

2OPM (ak)), the nat-
ural surjection pr∗

2OPM (ak) → ψ∗ψ∗pr∗
2OPM (ak) → 0, induces a morphism

OHg
⊗C H0(PM ,OPM (ak)) � pr1∗pr∗

2OPM (ak) −→ μ∗OUg
(ak),

which will be denoted by v′
k. By [10, Théorème 2.2.1. (ii)], there is a natural

number N ′ ∈ N that we can take greater than N , such that if k ≥ N ′, then
vk is surjective. Hence, we have a closed immersion of Hg-schemes

P(((F⊗a)⊕b)∨ ⊗ μ∗OUg
(ak)) �

� �� Hg × P(H3),

if k ≥ N ′, where H3 = ((F⊗a)⊕b)∨) ⊗ H0(PM ,OPM (ak)).

4.4. Universal Parameter Space for Swamps

Let k be a natural number with k ≥ N ′. Let

Y := Qg(μ, k, P ) ×Hg
P(((F⊗a)⊕b)∨ ⊗ μ∗OUg

(ak))

be the pullback of π : P(((F⊗a)⊕b)∨⊗μ∗OUg
(ak)) → Hg by π : Qg(μ, k, P ) →

Hg. We denote by π1 and π2 the projections of Y onto the first and the second
factor, respectively. Let w : Y → Hg be the induced projection. Giving π2 is
the same as giving a non-zero morphism

ϕ′
Y : ((F⊗a)⊕b) ⊗ OY → w∗μ∗OUg

(ak) ⊗ L , (13)

while giving π1 is the same as giving a quotient sheaf

qY : F ⊗ OY ×HgUg
→ E (k) → 0 (14)

on Y ×Hg
Ug. Let πY and πUg

be the projections of Y ×Hg
Ug onto Y and

Ug, respectively. Now, we can pull (13) back to Y ×Hg
Ug, and we get

ϕ′′
Y : ((F⊗a)⊕b) ⊗ OY ×HgUg

→ π∗
Y w∗μ∗OUg

(ak) ⊗ π∗
Y L → 0.

Note that π∗
Y w∗μ∗OUg

(ak) ⊗ π∗
Y L = π∗

Ug
μ∗μ∗OUg

(ak) ⊗ π∗
Y L . Composing

ϕ′′
Y with the surjection π∗

Ug
μ∗μ∗OUg

(ak)⊗π∗
Y L → π∗

Ug
OUg

(ak)⊗π∗
Y L → 0,

we get a morphism ϕY : ((F⊗a)⊕b) ⊗ OY ×HgUg
→ π∗

Ug
OUg

(ak) ⊗ π∗
Y L . Let

K be the kernel of (q⊗a
Y )⊕b and denote by ϕY : K → π∗

Ug
OUg

(ak) ⊗ π∗
Y L

the restriction of ϕY to K . Since π∗
Ug

OUg
(ak) ⊗ π∗

Y L is flat over Y , there
exists a closed subscheme Z ⊂ Y characterized by the fact that ϕY |Z = 0.
The restriction of ϕY to Z lifts to (E (k)⊗a)⊕b; that is, it factorizes through
a morphism ϕZ : (E (k)|⊗a

Z )⊕b → π∗
Ug

OUg
(ak) ⊗ π∗

Z(L |Z), where πZ is the
projection of Z ×Hg

Ug onto Z, E (k)|Z is the restriction of E (k) to Z ×Hg
Ug,
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and L |Z is the restriction of L to Z. Then, the closed subscheme Z ⊂ Y
carries a universal family of swamps over Hg

qZ : F ⊗ OZ×HgUg
(−k) → E |Z ,

ϕZ : (E (k)|⊗a
Z )⊕b → π∗

Ug
OUg

(ak) ⊗ π∗
Z(L |Z).

(15)

4.5. The Polarization of the Universal Parameter Space

The action of SLn on F induces, naturally, actions on both spaces, Qg(μ, k, P )
and P(((F⊗a)⊕b)∨ ⊗ μ∗OUg

(ak)). Likewise, the action of SLM+1 on Hg in-
duces an action on them. The induced action on the first space is described
in [17, Section 1.4], and the action on the second space can be described in
the same terms. Thus, the group SLM+1×SLn acts on Y . On the other hand,
we may choose k, l, and s large enough (see Sects. 4.1, 4.2 and 4.3) to get an
immersion

js,l,k : Y ↪→ P(H1) × P(H2) × P(H3),

which is (SLM+1 ×SLn)-equivariant. For each i = 1, 2, 3, we denote by πi the
projection of P(H1) × P(H2) × P(H3) onto P(Hi). Given natural numbers,
β and γ, there are isomorphisms

H0(P(H2),OP(H2)(β)) � SβH2, H0(P(H3),OP(H3)(γ)) � SγH3.

The Segre embedding, sg : P(H2) × P(H3) → P(SβH2 ⊗ SγH3), is a closed
immersion, and is determined by a surjection

(SβH2 ⊗ SγH3) ⊗ OP(H2)×P(H3) → π∗
2OP(H2)(β) ⊗ π∗

3OP(H3)(γ) → 0.

Let us denote by J the vector space SβH2 ⊗ SγH3. Then, we have an iso-
morphism sg∗OP(J)(1) � π∗

2OP(H2)(β) ⊗ π∗
3OP(H3)(γ). Let us consider now

the map

π1 × sg : P(H1) × P(H2) × P(H3) ↪→ P(H1) × P(J). (16)

For the polarization O(α, 1) on P(H1) × P(J), with α ∈ N, we have

(π1 × sg)∗O(α, 1) = π∗
1OP(H1)(α) ⊗ π∗

2OP(H2)(β) ⊗ π∗
3OP(H3)(γ).

From now onwards, β and γ are assumed to satisfy
β

γ
=

P (l) − P (k)
P (k) − aδ

δ, (17)

as in the fiber-wise problem (10).

4.6. Proof of Theorem 4.1

The action of SLM+1 on Y induces a representation, ξi : SLM+1 → SL(Hi),
for each i = 1, 2, 3. Furthermore, ξ2 and ξ3 induce a representation ω :
SLM+1 → SL(J). We will denote just by ξ the representation ξ1 and by
ρH1 : P(H1) × P(J) → P(H1) the projection onto P(H1). Recall that π1

denotes the projection of P(H1) × P(H2) × P(H3) onto P(H1). From now
onwards, the superscripts {s′, ss′}, {s′′, ss′′}, and {s, ss} will denote stability
(semistability) with respect to the action of SLM+1,SLn and SLM+1 × SLn,
respectively, while the subscripts [·, ·] (or [·, ·, ·]) will denote the polarization
respect which we analyze the semistability condition.
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4.6.1. Step 1: Existence of the Quotient. Our aim is to show that js,l,k(Z)
is closed in (P(H1) × P(H2) × P(H3))ss

[α,β,γ].

Lemma 4.2 [17, Proposition 7.1.1]. There exists an integer α0 = α0(ξ, ω),
such that ∀α > α0, ρ−1

H1
(P(H1)s′

) ⊂ (P(H1) × P(J))s′
[α,1].

Lemma 4.3 [17, Proposition 7.1.2]. There exists an integer α1 = α1(ξ, ω),
such that ∀α > α1, (P(H1) × P(J))ss′

[α,1] ⊂ ρ−1
H1

(P(H1)ss′
).

Proposition 4.4. There exists a natural number α ∈ N, such that (1) js,l,k(Z)
lies inside (P(H1) × P(H2) × P(H3))s′

[α,β,γ] and (2) js,l,k(Z) is closed inside

(P(H1) × P(H2) × P(H3))ss′
[α,β,γ].

Remark 4.5. Since js,l,k is an immersion, we can identify Z with a subscheme
of P(H1) × P(H2) × P(H3).

Proof. Due to the previous lemmas, if α > max{α0, α1}, then

ρ−1
H1

(P(H1)s′
) ⊂ (P(H1) × P(J))s′

[α,1], (18)

(P(H1) × P(J))ss′
[α,1] ⊂ ρ−1

H1
(P(H1)ss′

). (19)

If we apply (id × sg)−1 to (18) and (19), we find the relations

π−1
1 (P(H1)s′

) = (id × sg)−1ρ−1
H1

(P(H1)s′
), (20)

(id × sg)−1ρ−1
H1

(P(H1)s′
) ⊂ (id × sg)−1(P(H1) × P(J))s′

[α,1], (21)

(id × sg)−1(P(H1) × P(J))s′
[α,1] = (P(H1) × P(H2) × P(H3))s′

[α,β,γ],

(22)

(P(H1) × P(H2) × P(H3))ss′
[α,β,γ] = (id × sg)−1(P(H1) × P(J))ss′

[α,1],

(23)

(id × sg)−1(P(H1) × P(J))ss′
[α,1] ⊂ (id × sg)−1ρ−1

H1
(P(H1)ss′

), (24)

(id × sg)−1ρ−1
H1

(P(H1)ss′
) = π−1

1 (P(H1)ss′
). (25)

(1) Since Hg ⊂ P(H1)s′
and (20), (21), (22) hold, we have an inclusion

Z ⊂ Hg × P(H2) × P(H3) ⊂ (P(H1) × P(H2) × P(H3))s′
[α,β,γ]. (26)

(2) Hg is closed in P(H1)ss′
(see Sect. 4.1), so Hg ×P(H2) ×P(H3) is closed

in ρ−1
H1

(P(H1)ss′
). Also, Z is closed in Hg × P(H1) × P(H3) because it is

proper over Hg. Thus, it is so also as a subscheme of π−1
1 (P(H1)ss′

). The
relations (23), (24), (25), (26) yield

Z ⊂ (P(H1) × P(H2) × P(H3))ss′
[α,β,γ] ⊂ π−1

1 (P(H1)ss′
).

Therefore, Z is closed in (P(H1) × P(H2) × P(H3))ss′
[α,β,γ]. �

Let us define Zss
[α,β,γ] := Z ∩ (P(H1) × P(H2) × P(H3))ss

[α,β,γ]. Since

(P(H1) ×P(H2) ×P(H3))ss
[α,β,γ] lies inside (P(H1) ×P(H2) ×P(H3))ss′

[α,β,γ],
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it follows that Zss
[α,β,γ] is closed in (P(H1)×P(H2)×P(H3))ss

[α,β,γ]. Therefore

T δ-(s)s
P,g,a,b := Zs(s)

[α,β,γ]//(SLM+1 × SLn)

exists and is projective, and there is a well-defined map Θsw : T δ-(s)s
P,g,a,b → Mg,

such that Θ−1
sw ([X]) = T δ-(s)s

P,OX ,a,b(X)/Aut(X) for any stable curve [X] ∈ Mg.

4.6.2. Step 2: Closed Points of the Quotient.

Proposition 4.6. There is a one-to-one correspondence between closed points
of Zs(s)

[α,β,γ] and pairs (X, (q, φ)), where X is a 10-canonical stable curve of
genus g, q : F ⊗ OX(−k) → F → 0 is a quotient of uniform rank r, such
that H0(q(k)) : F → H0(X,F (k)) is an isomorphism, and (F , φ) is a δ-
(semi)stable swamp of type (a, b,OX) with Hilbert polynomial P .

Proof. Note that we have the inclusion Zs(s)
[α,β,γ] ⊂ Zs′′(s′′)

[α,β,γ] . If we prove the

equality Zs(s)
[α,β,γ] = Zs′′(s′′)

[α,β,γ] , then the result will follow from Theorem 3.11
and the construction of Zss

[α,β,γ]. We use the Hilbert–Mumford criterium to
prove it. Let us consider the representations

ξα :SLM+1 × SLn → SLM+1 → SL(Sα(H1)),

ω1 :SLM+1 × SLn → SL(Sβ(H2)),

ω2 :SLM+1 × SLn → SL(Sγ(H3)).

The representations ω1 and ω2 give us a representation ω = ω1⊗ω2 : SLM+1×
SLn → SL(J). Let η ∈ Zs′′(s′′)

[α,β,γ] be a closed point and let us define (η1, η2) :=
((π1 × sg) ◦ js,l,k)(η). Let λ : Gm → SLM+1 × SLn be a non-trivial 1-PS
given by λ1 : Gm → SLM+1 and λ2 : Gm → SLn. Now, the equality is proved
through the same argument as the one given in [17, Proposition 8.2.1]. �

4.6.3. Step 3: The Universal Natural Transformation.

Proposition 4.7. There exists a universal natural transformation

Ψ : mathbfSw
δ-(s)s
P,g,a,b −→ Hom(−, T δ-(s)s

P,g,a,b).

Proof. Let T be a scheme and η ∈ Swδ-(s)s
P,g,a,b(T ) a T -point, which consists of

a tuple (π,FT ,N , φ), where π : XT → T is a flat family of stable curves
of genus g with relative polarization OXT

(1) := ω⊗10
XT /T , FT is a flat family

of coherent sheaves of pure dimension one with Hilbert polynomial P and
uniform rank r, N is an invertible sheaf on T , and φ : (F⊗a

T )⊕b → π∗N
is a δ-(semi)stable swamp. Let k ≥ N ′ be the natural number fixed for the
construction of T δ-(s)s

P,g,a,b (see Sect. 4.3). Then, R1π∗FT (k) = 0 and π∗FT (k)
is locally free of rank n = P (k). On the other hand, R1π∗OXT

(1) = 0 and
π∗OXT

(1) is locally free of rank N + 1 = 10(2g − 2) − g + 1. Let {Ui} be an
open cover of T , such that (π∗FT (k))|Ui

� F ⊗ OUi
and (π∗OXT

(1))|Ui
�

CM+1 ⊗ OUi
, where F = Cn. This trivializations induce surjections

q2,Wi
: CM+1 ⊗ OXT

|Wi
→ OXT

(1)|Wi
→ 0, (27)
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q1,Wi
: F ⊗ OXT

(−k)|Wi
→ FT |Wi

→ 0, (28)

where Wi = π−1(Ui). Composing φ(ak)|Wi
with (q1,Wi

(k)⊗a)⊕b and taking
the pushforward by π, we get a morphism

φi : (F⊗a)⊕b ⊗ OT |Ui
→ (N |Ui

) ⊗ π∗OXT
(ak)|Ui

.

The first surjection, (27), gives an embedding q2,Wi
: Wi ↪→ Ui × PM , while

the second surjection, (28), defines a map q1,Wi
: Ui → Qg(μ, k, P ). Finally,

the morphism φi defines a map φi : Ui → P(((F⊗a)⊕b)∨ ⊗ μ∗OUg
(ak)) as

well. Therefore, q1,Wi
and φi define a map ψi : Ui → Y. Consider two open

subsets Ui, Uj , and let Uij = Ui ∩ Uj be the intersection. Then, φi and φj

define maps Uij → Y which differ by a Uij-valued point of the group scheme
SLn × SLM+1. Furthermore, Im(Uij → Y ) lies inside Zss

[α,β,γ], because η is

δ-semistable. Therefore, there is a well-defined morphism T → T δ-(s)s
P,g,a,b. This

shows the existence of a natural transformation

Ψ : Swδ-(s)s
P,g,a,b −→ Hom(−, T δ-(s)s

P,g,a,b).

Let M be a scheme and suppose that there exists a natural transformation
Ψ′ : Swδ-(s)s

P,g,a,b −→ Hom(−,M). There is a canonical φuniv ∈ Swδ-(s)s
P,g,a,b(Z

(s)s
[α,β,γ])

corresponding to the universal family (see (15)). The morphism Ψ′(φuniv) is
SLn × SLM+1-invariant, so it descends to a morphism T δ-(s)s

P,g,a,b −→ M, which

defines a map Ψ′′ : Hom(−, T δ-(s)s
P,g,a,b) → Hom(−,M). Clearly, Ψ′′◦Ψ = Ψ′. �

5. A Compactification of the Universal Moduli Space of
Principal G-bundles

Let G be a semisimple linear algebraic group and ρ : G ↪→ SL(V ) a faithful
representation of dimension r. Let g ≥ 2 be a natural number, δ ∈ Q>0 a
rational number, and P a polynomial of degree one with integral coefficients.

5.1. The Parameter Space

Let Qg(μ, k, P ) be the Quot scheme that was considered in the case of
swamps. Let us consider the affine Hg-scheme defined by

H(V, s, k) :=
s⊕

i=1

HomHg
(Si(V ⊗ Cn) ⊗ OHg

, μ∗OUg
(ik)) κ−→ Hg.

By [14, Section 6.1] and the results of Sect. 3, every δ-semistable singular
principal G-bundle over a semistable curve of genus g determines a point in
Qg(μ, k, P )×Hg

H(V, s, k) if s and k are large enough. Denote by κ and μ the
projections

(Qg(μ, k, P ) ×Hg
H(V, s, k)) ×Hg

Ug −→ Ug,

(Qg(μ, k, P ) ×Hg
H(V, s, k)) ×Hg

Ug −→ Hg,
(29)

respectively. The goal now is to put a scheme structure on the locus given by
the points ([q], [k]) ∈ Qg(μ, k, P ) ×Hg

H(V, s, k) that come from a morphism
of algebras S•(V ⊗ F )G → OX . For the sake of clarity, let us denote Eg :=
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(Qg(μ, k, P )×Hg
H(V, s, k))×Hg

Ug. For each i ∈ N, we consider the universal
morphism

ϕ′i : Si(V ⊗ W ) ⊗ OEg
→ μ∗μ∗(κ

∗OUg
(ik))

on Eg. It leads to Si(V ⊗W )⊗OEg
→ κ∗OUg

(ik) = OEg
(ik) when composed

with the evaluation map μ∗μ∗(κ
∗OUg

(ik)) → κ∗OUg
(ik) → 0. Summing up

these morphisms, we get ϕEg
: VEg

: =
⊕s

i=1 Si(V ⊗ W ⊗ OEg
(−k)) → OEg

.
Let τ ′

Eg
: S•(VEg

) → OEg
be the corresponding morphism of algebras. Con-

sider the universal quotient (12), qQg
: F ⊗ φ∗OQg×HgUg

(−k) → E → 0,
on Qg(μ, k, P ) ×Hg

Ug. Pulling it back to Eg, we get a quotient qQg×HgH :
F ⊗ OEg

(−k) → E → 0, and, therefore, a chain of surjections

S•VEg
−→ S•(V ⊗ F ⊗ OEg

(−k)) −→ S•(V ⊗ E ) −→ S•(V ⊗ E )G.

Then, there exists a closed subscheme Dg ⊂ Qg(μ, k, P )×Hg
H(V, s, k) (follows

as in [20, Section 5.1]) over which the morphism τ ′
Eg

: S•VEg
→ OEg

lifts to
a morphism of algebras τDg

: S•(V ⊗ E |Dg
)G → ODg

, where E |Dg
is the

restriction of E to Dg ×Hg
Ug ⊂ Eg. This scheme carries a universal family

of singular principal bundles, (qDg
, τDg

).

5.2. The Group Action and the Existence of the Quotient

There are two groups acting on Dg. The action of the group SLM+1 on Hg

lifts to an action on Dg, while the group GLn is acting on both, Qg(μ, k, P )
and H(V, s, k). The group GLn leaves invariant Dg, so GLn is acting on Dg

as well. Again, as in the fiber-wise problem, we can study the quotient by
studying separately the actions of C∗ and SLn (see [20, Section 5.2]).

Let Z be the parameter space for swamps of the form φ : ((V ⊗
F )⊗a)⊕b → OX (see Sect. 4.4). The injective map (4) shows that there
is a well-defined morphism of Hg-schemes Swamp : Dg −→ Z which is C∗-
invariant and SLn-equivariant, injective and proper. Thus, it induces a mor-
phism Swamp : Dg := Dg//C

∗ −→ Z which is SLn-equivariant, injective and
proper. Finally, by Definition 2.5 and Theorem 4.4 we conclude that

SPB(ρ)δ-(s)s
P,g := Dg//(SLM+1 × SLn)

exists and is projective, and there is a well-defined map Θsb : SPB(ρ)δ-(s)s
P,g →

Mg satisfying that Θ−1
sb ([X]) = SPB(ρ)δ-(s)s

P,X /Aut(X) for any stable curve
[X] ∈ Mg.

5.3. Proof of Theorem 1.1

Using the same arguments as those given in [20, Proposition 5.1, Proposition
5.2, Theorem 5.3.], and the results of Sect. 4, it follows that SPB(ρ)δ-(s)s

P,g is a
projective coarse moduli space for the moduli functor

SPB
δ-(s)s
P,g (ρ)(T ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

isomorphism classes of pairs (XT , (FT , τT ,N )),
where XT is a stable curve of genus g flat over
T and (FT , τT ,N ) is a family of δ-(semi)stable
singular principal G bundles over T with Hilbert
polynomial P and type (a, b,OXT

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.
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Let r ∈ N and h = 10(2g−2). Assume now that P (k) = (rh)k+r(1−g). This
is the Hilbert polynomial of coherent sheaves of uniform rank r and degree 0
over any stable curve X with polarization ω⊗10

X . By [17, Lemma 8.1], there
exists a closed, hence projective, subscheme SPB(ρ)δ-(s)s

r,g coarsely representing
the sub-functor given by pairs (X, (F , τ)), where F has uniform rank r. The
restriction of Θsb to SPB(ρ)δ-(s)s

r,g gives the desired map, which we denote
by Θb. By [21, Theorem 3.7], there exists δ∞ ∈ Q>0, depending only on
a, b, P , such that the associated swamp of any δ-semistable singular principal
G-bundle on a smooth projective curve of genus g, (F , τ), is generically
semistable, and by [24, Corollary 4.1.2] and [25, Remark 2.3.4.4], this means
that (F , τ) is honest. Finally, [20, Paragraph 6.1] implies SPB(ρ)δ-(s)s

r,X =
MX(G) for any δ > δ∞ and any smooth projective curve of genus g. Therefore,
if δ > δ∞, we have Θ−1

b ([X]) = MX(G)/Aut(X) for every smooth projective
curve of genus g, so SPB(ρ)δ-(s)s

r,g is a compactification of the moduli problem
defined by pairs (X,P), where X is a smooth projective curve of genus g
and P is a principal G-bundle.

Acknowledgements

Some results of this paper were obtained during the author’s Ph.D. thesis
period at Freie Universität Berlin. The author would like to thank Professor
Alexander Schmitt for his encouragement and support.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement
with Springer Nature.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Balaji, V.: Torsors on semistable curves and degenerations. (2020).
arXiv:1901.01529 [v4]

[2] Bhosle, U.: Tensor fields and singular principal bundles. Int. Math. Res. Not.
2004, 3057–3077 (2004)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1901.01529


54 Page 22 of 23 Á. L. M. Castañeda MJOM

[3] Caporaso, L.: A compactification of the universal Picard variety over the mod-
uli space of stable curve. J. Am. Math. Soc. 7, 589–660 (1994)

[4] Deligne, P., Mumford, D.: The irreducibility of the space of curves of given
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Exposé (1), p. 37 (1958)

[27] Seshadri, C.S.: Space of unitary vector bundles on a compact Riemann surface.
Ann. Math. 85, 303–336 (1967)

[28] Siedman, J.: On the Castelnuovo–Mumford regularity of products of ideal
sheaves. Adv. Geom. 2, 219–229 (2002)

[29] Sun, X.: Degenerations of SL(r)-bundles on a reducible curve. Proceedings of
the Symposium on Algebraic Geometry in East Asia, pp. 3–10 (2001)

[30] Sun, X.: Moduli spaces of SL(r)-bundles on singular irreducible curves. Asian
J. Math. 7, 609–626 (2003)
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