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Abstract: The early detection of Non-Melanoma Skin Cancer (NMSC) is crucial to achieve the best
treatment outcomes. Shape is considered one of the main parameters taken for the detection of some
types of skin cancer such as melanoma. For NMSC, the importance of shape as a visual detection
parameter is not well-studied. A dataset of 993 standard camera images containing different types of
NMSC and benign skin lesions was analysed. For each image, the lesion boundaries were extracted.
After an alignment and scaling, Elliptic Fourier Analysis (EFA) coefficients were calculated for the
boundary of each lesion. The asymmetry of lesions was also calculated. Then, multivariate statistics
were employed for dimensionality reduction and finally computational learning classification was
employed to evaluate the separability of the classes. The separation between malignant and benign
samples was successful in most cases. The best-performing approach was the combination of EFA
coefficients and asymmetry. The combination of EFA and asymmetry resulted in a balanced accuracy
of 0.786 and an Area Under Curve of 0.735. The combination of EFA and asymmetry for lesion
classification resulted in notable success rates when distinguishing between benign and malignant
lesions. In light of these results, skin lesions’ shape should be integrated as a fundamental part of
future detection techniques in clinical screening.

Keywords: Non-melanoma skin cancer; Elliptic Fourier Analysis; shape analysis; skin lesion
asymmetry; clinical images; computer vision

1. Introduction

Non-melanoma skin cancer (NMSC) is one of the most common malignancies, with
an especially high incidence rate among elderly and white-skinned populations. NMSC
includes different pathologies, with Basal Cell Carcinoma (BCC) and Squamous Cell Carci-
noma (SCC) being the most common. The early detection and diagnosis of NMSC reduces
the risk of bad prognoses, as well as the costs these pathologies entail on health systems
due to their high incidence [1,2].
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The first step in skin cancer diagnosis, including melanoma and NMSC, is a visual
examination. For the detection of melanoma, the ABCDE mnemonic is a widely used
tool [3,4], which considers the following variables: Asymmetry, Border irregularity, Colour
uniformity, Diameter, and Evolution. In ABCDE, shape can be considered a combination
of asymmetry and border irregularity. Other identification methodologies also include
parameters that can be considered an important component of overall morphology, such as
border irregularities, as presented by MacKie [5].

For NMSC, the dermoscopic features of its lesions are well-studied [6]. Nevertheless,
studies taking shape into consideration are very limited, while this parameter is mostly
evaluated in combination with others, such as lesion colour and texture [7].

While asymmetry is considered an important parameter for the visual detection of
skin cancer, there is a lack of empirical data that relates the shape of the lesion to the
probability of it being malignant. From this perspective, an objective characterisation and
definition of lesions’ shape may not only be useful for visual examination but could also
aid the development of more precise and non-invasive methodologies. This variable can
additionally be integrated into more developed methodologies using images and Artificial
Intelligence, a field of research that has been of growing importance over the last few
years [8,9].

The study of morphology is of growing interest in several fields of science [10], fueled
primarily by the integration and improvement of advanced computer vision techniques
towards the manipulation of different types of data. Many methods exist for the study of
morphology, varying mostly by the means in which the data are defined and extracted.
One common approach to the study of morphology is that of Geometric Morphometrics
(GMM) [11–13]. GMM is a growing protagonist in fields related to biology and evolu-
tion [10], with other interesting applications in forensic sciences [14,15] and the study of
microscopic elements on bones [16–18]. Nevertheless, GMM analyses are often hindered
by the definition of landmark data; landmarks are precise homologous loci, of biological or
geometric significance, that must always be identifiable across the sample [12,19].

In response to this, analysts began developing a different yet closely linked approach,
making use of Fourier descriptors as a function of shape [20–22]. The principle of Fourier
Analyses (FA) is to describe shape as a series of periodic functions along the curvature
of an outline [21]. From this perspective, FA overcomes the limitations presented by
GMM approaches, providing a means of analysing forms without a strict definition of
homologous landmarks [11,13]. This type of methodology has been employed in a wide
array of applications, ranging from the study of leaf shapes in biology [23], anthropological
applications [24], or even the analysis of object design over time [25,26].

In this study, we present a novel approach to analysing skin lesions’ shape, employing
FA to investigate the shape of different skin lesion outlines. Thus, the aim of this research
is to highlight the possible differences among NMSCs and benign skin lesions, proposing
shape as a useful parameter for skin lesion classification. From this perspective, the
data presented may provide an empirical approximation to the characterisation of skin
lesions’ shape.

2. Materials and Methods
2.1. Image Dataset

The images used for the analysis were obtained from the Dermofit Dataset [7]
(Figure 1), provided by the University of Edinburgh. This dataset has proven to be useful
for the training of neural networks for skin lesion classification [27,28] and the segmentation
of images via generative adversarial networks [29]. The scale of each image is unknown,
and they were taken using a standard camera, thereby covering the visible area of the
electromagnetic spectrum. No dermoscopes were employed for the collection of data. The
Dermofit dataset additionally contains a mask delimiting each lesion area.
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Figure 1. Example images for the different skin lesions, including BCC (a), IEC (b), SCC (c), and BEN:
Seborrhoeic Keratosis (d) and Melanocytic Nevus (e).

The original dataset consists of 10 classes, covering different cutaneous lesions. For
the present study, the number of classes included was reduced, giving preference to well-
defined NMSC lesions, and joining benign pathologies into one class, as a distinction
between them was not considered clinically relevant. Under this premise, this study
analyses a total of 4 different skin lesion types: Basal Cell Carcinoma (BCC, n = 239;
Figure 1a), Intraepithelial Carcinoma (IEC, n = 78; Figure 1b), Squamous Cell Carcinoma
(SCC, n = 88; Figure 1c), and a collection of benign lesions (BEN, n = 588), joining Seborrhoeic
Keratosis (Figure 1d) and Melanocytic Nevus (Figure 1e).

2.2. Definition of Lesion Boundaries

To define the borders of the lesions, a combined approach was followed. First, the
original image segmentation provided by the Dermofit dataset was considered. This
segmentation was manually established by the medical experts who curated the dataset.
Nevertheless, in some cases, these classifications were found to have important differences
regarding visual segmentation (the visual appearance of lesions; Figure 2a), resulting
in a simplification of the boundaries (Figure 2b). The expert definition of boundaries is
considered the optimal segmentation from a medical point of view; nevertheless, pixel
level analyses to fit these boundaries to the point of highest spectral change can yield a
higher level of detail and precision, thus providing a more empirical definition of the visual
shape of the lesion. From this perspective, the automated refinement of segmentations
using computer vision-based techniques allow for a more reproducible segmentation of the
image, while the criteria given by the dermatologist remains crucial.

J. Clin. Med. 2022, 11, 4392 4 of 16 
 

 

 
Figure 2. Example of original image (a), lesion mask provided as part of Dermofit dataset (b), 
recalculated lesion mask using k-means clustering (c), and obtained lesion boundary (d). 

2.3. Elliptic Fourier Analyses 
Once outlines had been extracted, geometries were aligned and centered using 

variance–covariance matrices and eigenvalues. This step ensures that further calculations 
are invariant of the outline location, rotation, and origin. Outlines were also scaled using 
geometry centroid sizes as a scale factor (measured in pixels) to ensure pixel size and 
camera distance were not conditioning factors for the description of morphology. 
Centroid size was calculated as the distance from the edge to the centre (centroid) of each 
lesion along multiple points along the outline. Size features could not be further 
considered in the analyses because the Dermofit dataset does not provide a scale bar for 
each photo, which also obstructs any type of analysis of the lesion’s form (shape + size; 
[32]). After normalisation procedures, outlines were analysed using an FA approach. 

Fourier series are used to describe shapes by decomposing a periodic function into a 
sum of simpler trigonometric functions, such as sine and cosine values. These periodic 
functions can consider: (1) the distance of any point on the outline to the centroid [33], (2) 
the variation of the tangent angle for any point [33], or (3) a series of linearly transformed 
circular coordinates [34,35]. These approaches are known as Fourier Radius Variation, 
Fourier Tangent Angle, and Elliptic Fourier analyses, respectively. While each approach 
has its advantages and disadvantages, Elliptic Fourier Analyses (EFA) are more robust to 
irregularities along the outline [34,35] without the need for points to be equally spaced, 
thus enabling EFA to be easily fitted to any type of geometry. For this reason, EFA was 
selected as the most optimal approach for the present study. 

Once calculated, each of these periodic functions can then be decomposed using 
Fourier series, resulting in a harmonic sum of trigonometric functions weighted with 
harmonic coefficients. Using EFA, Fourier coefficients are divided into 4 main groups, 
labelled a through d. Coefficients a and b can be simply defined as the trigonometric 
moments around x coordinate values, while coefficients c and d define the y coordinate 
projection from circular to linear space [21,34,35]. Depending on the number of harmonics 
(n) used to describe the Fourier series, a set of coefficients—an, bn, cn and dn—can then be 
subjected to multivariate statistical analyses to empirically define each outline. 

2.4. Multivariate Statistics 
For the present study, the first 19 harmonics of the elliptical Fourier series were used 

as descriptors of skin lesions’ outlines. The optimal number of harmonics was calculated 
by estimating the cumulative power for each harmonic, with 19 harmonics representing 
up to 98.3% of the cumulative power. As is common practice in EFA, coefficients a1, b1, 
and c1 were then used to normalise data [21], eliminating any remaining influence that 
size or rotation may have on subsequent analyses. This resulted in a final dataset of 73 
morphological descriptors per individual. 

Following this, dimensionality reduction was performed across coefficients through 
Principal Components Analyses (PCA). Principal Component (PC) Scores were then 
carefully assessed to evaluate the percentage of variance represented, selecting only those 
PC scores representing up to 95% of variance. Following PCA, analyses were carried out 

Figure 2. Example of original image (a), lesion mask provided as part of Dermofit dataset (b),
recalculated lesion mask using k-means clustering (c), and obtained lesion boundary (d).

To obtain pixel-level segmentation, the present approach modified the manual tech-
nique by including an automatic computer vision technique. For this, each image was
segmented using a k-means clustering algorithm [30] with 4 classes, defining areas mostly
inside the pre-established boundary as a lesion, and thus refining the manual segmentation,
based on their characteristics in the visual spectrum. Then, this was followed by a morpho-
logical closing algorithm [31], removing isolated areas and thus cleaning the segmented
image to provide a single outline. This technique facilitated a better definition of lesion
borders, especially in images where manual segmentation was observed to not fit well
around the visual edges of the lesion (Figure 2b,c).
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The obtained lesion boundary for each image was defined by 300 points, which were
considered enough for a detailed representation of shape (Figure 2d).

Segmentation processes were performed using the Python programming language
(v.3.7.6) and the OpenCV library.

2.3. Elliptic Fourier Analyses

Once outlines had been extracted, geometries were aligned and centered using variance–
covariance matrices and eigenvalues. This step ensures that further calculations are invari-
ant of the outline location, rotation, and origin. Outlines were also scaled using geometry
centroid sizes as a scale factor (measured in pixels) to ensure pixel size and camera distance
were not conditioning factors for the description of morphology. Centroid size was calcu-
lated as the distance from the edge to the centre (centroid) of each lesion along multiple
points along the outline. Size features could not be further considered in the analyses
because the Dermofit dataset does not provide a scale bar for each photo, which also
obstructs any type of analysis of the lesion’s form (shape + size; [32]). After normalisation
procedures, outlines were analysed using an FA approach.

Fourier series are used to describe shapes by decomposing a periodic function into
a sum of simpler trigonometric functions, such as sine and cosine values. These periodic
functions can consider: (1) the distance of any point on the outline to the centroid [33],
(2) the variation of the tangent angle for any point [33], or (3) a series of linearly transformed
circular coordinates [34,35]. These approaches are known as Fourier Radius Variation,
Fourier Tangent Angle, and Elliptic Fourier analyses, respectively. While each approach
has its advantages and disadvantages, Elliptic Fourier Analyses (EFA) are more robust to
irregularities along the outline [34,35] without the need for points to be equally spaced,
thus enabling EFA to be easily fitted to any type of geometry. For this reason, EFA was
selected as the most optimal approach for the present study.

Once calculated, each of these periodic functions can then be decomposed using
Fourier series, resulting in a harmonic sum of trigonometric functions weighted with
harmonic coefficients. Using EFA, Fourier coefficients are divided into 4 main groups,
labelled a through d. Coefficients a and b can be simply defined as the trigonometric
moments around x coordinate values, while coefficients c and d define the y coordinate
projection from circular to linear space [21,34,35]. Depending on the number of harmonics
(n) used to describe the Fourier series, a set of coefficients—an, bn, cn and dn—can then be
subjected to multivariate statistical analyses to empirically define each outline.

2.4. Multivariate Statistics

For the present study, the first 19 harmonics of the elliptical Fourier series were used
as descriptors of skin lesions’ outlines. The optimal number of harmonics was calculated
by estimating the cumulative power for each harmonic, with 19 harmonics representing
up to 98.3% of the cumulative power. As is common practice in EFA, coefficients a1, b1,
and c1 were then used to normalise data [21], eliminating any remaining influence that
size or rotation may have on subsequent analyses. This resulted in a final dataset of
73 morphological descriptors per individual.

Following this, dimensionality reduction was performed across coefficients through
Principal Components Analyses (PCA). Principal Component (PC) Scores were then care-
fully assessed to evaluate the percentage of variance represented, selecting only those
PC scores representing up to 95% of variance. Following PCA, analyses were carried out
to assess the homogeneity of sample distributions using multiple Shapiro tests [36]. If
samples were found to fit a Gaussian distribution, then subsequent analyses adopted a para-
metric approach, while non-Gaussian distributions were studied using robust statistical
methods [8,37].

To assess statistical differences and similarities among groups, Multivariate Analyses
of Variance (MANOVA) were performed. For normally distributed PC scores, the Hotelling–
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Lawley test statistic was used [38]. When normality was rejected, robust alternatives such
as the Wilk’s Lambda test statistic were used [39].

Additional analyses considered the use of Mahalanobis distances. For this purpose,
within-group covariance distributions were first calculated, and then compared with dis-
tances to members of other groups. Statistical assessments of distribution differences were
performed using either univariate Analysis of Variance tests (ANOVA) or Kruskal–Wallis
tests, for Gaussian and Non-Gaussian distributions, respectively [40].

Changes in outline shape were visualised with the aid of transformation grids and
warpings, computed using Thin Plate Splines (TPS) [41]. TPS grids minimise the bending
between shapes to express changes in the relative position of points along the outline as the
deformation of a grid. Therefore, TPS were used to fit central shape configurations for each
of the groups separately and to visually calculate deformations when compared with other
samples. Final calculations of outline deformations were then performed with the help
of an isoline contour function. Additionally, oscilloscopes were used to evaluate changes
in x and y coordinates across outlines. A trapezoidal integration was then computed to
approximate an estimation of the area of each function (α), thus evaluating the smoothness
of oscilloscope curves. To provide a frame of reference, a perfect theoretical ellipsoid was
computed to have an α = 0.0.

Considering recent criticism on the “blind” use of p-values in applied statistics, the
present study evaluated the hypothetical results while excluding the p < 0.05 rule for
defining “statistical significance”. In accordance with the most recent recommendations
set forth by the American Statistician [42,43], p-values were evaluated by accompanying
calculations of the probability of observations being a Type I statistical error, or the False
Positive Risk (FPR) [44]. FPR values were calculated using the Sellke–Berger approach to
define the likelihood ratio of the null hypothesis against the alternative hypothesis [45,46].
In general, prior probabilities of 0.5 were used for p-value calibrations, as suggested by
Colquhoun [44,47]. Nevertheless, where possible, calibration confidence intervals were
constructed using prior probabilities of 0.8 and 0.2 as well [8]. Throughout the study, FPR
value calculations were only excluded for p-values over a 0.368 threshold, considering these
values to be too high to accept the alternative hypothesis on any grounds [8]. Finally, a more
robust p-value threshold of 0.003 was adopted as a threshold for more conclusive results,
considering how this value is 3 standard deviations (3σ) from the mean, and associated
with a 4.5% chance of being a Type I statistical error when using 0.5 prior probabilities [8].

All statistical applications were performed in the R (v.4.0.4) programming language.
The R code to calculate EFA coefficients is available in the Supplementary Materials. Visu-
alisations of EFA results were performed, in part, using the Momocs R library [48].

2.5. Asymmetry Calculations

To empirically quantify and analyse lesion asymmetry, an index was designed and
implemented. For each lesion, the centroid was calculated and then used to transpose
outlines so that the x or y axis aligned with 0. Once centered, the absolute values of the
axis in question were calculated, removing the line of “symmetry” between each value
(x or y) and the corresponding point on the opposite side of the outline (x′ or y′). The
Euclidean distance, d (xi, x′i), was then calculated between each point, and used to derive a
quantitative measurement of outline displacement. An asymmetry index (a(x) or a(y)) was
then assigned to axis x and axis y, respectively, through the root mean square Euclidean
distance across each outline (Equation (1));

a(x) =

√
1
n

n

∑
i=1

d(xi, |x′ i|)2, a(y) =

√
1
n

n

∑
i=1

d(yi, |y′ i|)
2, (1)

The final asymmetry index for each skin lesion was calculated as the maximum index
among the x and y axes.
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Once asymmetry indices had been obtained for each sample, samples were tested
for normality using Shapiro–Wilk tests, and then described using either traditional or
robust statistical approaches [8,37,49]. For traditional descriptive statistics, sample mean
and standard deviation were used to calculate central tendency and dispersion, respec-
tively. For robust statistics, these were replaced by the median and the Square Root
of the Biweight Midvariance (

√
BWMV). Similarly, 95% confidence intervals were also

constructed using a [0.05, 0.95] interquartile range. Next, distributions of samples were
analysed for statistical differences via ANOVA or Kruskal–Wallis tests. In addition to this,
all aforementioned Fourier analyses were then repeated incorporating the asymmetry index
into PCA, including the calculation of multivariate differences through MANOVA and
Mahalanobis distances.

2.6. Machine Learning

To test the degree of separation amongst samples, classification tasks were performed
using machine learning techniques. Therefore, a k-fold cross-validated (k = 10) Support
Vector Machine (SVM) with a Radial Basis Function (RBF) was used [50]. SVMs are cus-
tomizable and flexible models that use a kernel-trick to adjust for the existence or inexistence
of parametric components, such as normality. Thus, this kernel-trick allows SVMs to con-
struct non-linear decision boundaries. The SVM is additionally characterised using a soft
maximised-margin as a decision boundary, thus avoiding overfitting of the data used
for training.

SVMs were trained on 70% of data, separating the remaining 30% for testing and
model evaluation. SVMs were mostly trained on raw PC scores, filtering only those PC
scores representing up to 95% sample variance. For this purpose, the first experiment
trained SVMs on PC scores obtained from EFA coefficients (Figure 3), while the second
experiment trained SVMs on PC scores calculated when asymmetry indices were also
included. Nevertheless, two additional experiments were also performed (Figure 3): one
calculating the degree of univariate separability on asymmetry indices alone, and a final
experiment appending the PC scores obtained from EFA coefficients with the asymmetry
indices, enabling an assessment of the effect asymmetry has on classification results prior
to a combined dimensionality reduction (Figure 3).
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Figure 3. Methodological workflow.

For the selection of each SVM’s optimal cost (c) and gamma (γ) hyperparameters,
Bayesian Optimization Algorithms (BOAs) were employed [51–53]. BOA was initialised
using a random optimization algorithm, thus defining the prior distribution for hyperpa-
rameter selection [53]. This was then followed by an Expected Improvement (EI) BOA
algorithm for 50 iterations. While Gaussian Process Upper Confidence Bound (GPUCB)
and Probability of Improvement (PI) selection functions were also experimented with, they
did not provide notable differences from their EI counterpart [53,54].

SVMs were evaluated on test sets, taking into consideration the general balance
and imbalance of different sample sizes within the dataset while choosing appropriate
evaluation criterion. While the selection of lesions from the Dermofit dataset does not
present an extreme imbalance between benign and malignant tumours (≈29:20), when
comparing between individual samples, this imbalance increases greatly (≈97:13 in the
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worst of cases). From this perspective, the present study chose to use evaluation metrics
less susceptible to changes in sample balance [55], namely, Accuracy, Precision, Recall, the
F1 Score, and the Area Under the precision–recall Curve (AUC). Each of these metrics,
except for AUC, were calculated using confusion matrices, measuring the ratio of correctly
classified individuals (True Positive & True Negative), as well as miss-classified individuals
(False Positive & False Negative). AUC curves were calculated on the probability of label
association values.

Machine learning applications were performed in the R programming language
(v.4.0.4), primarily using the “caret” library.

3. Experimental Results
3.1. Elliptic Fourier Analyses

The analyses of the skin lesion morphologies revealed border irregularity to be a
fundamental descriptive component of mainly malignant tumours. In general, PCA di-
mensionality reduction produces a high number of inhomogeneous PC scores (Shapiro
w = 0.86, p = 1.1 × 10−28, FPR = 2.0 × 10−24%), with the first 15 PC scores representing
≈90% of variance and 21 PC scores reaching ≈95% cumulative variance. The PCA plots
(Figure 4) reveal a strong concentration of benign lesions (red colour in Figure 4) in the cen-
tre of each dimension (median [x, y] shape space coordinates = [0.009, 0.0009]), represented
by more circular lesions, while all three malignant samples present much higher variance
across the shape space (

√
BWMV Benign = 0.094 and Malignant = 0.115).
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Figure 4. Principal Component Analysis (PCA) scatter plots with 95% confidence intervals presenting
variance in skin lesions’ shape, as represented by Elliptic Fourier Analyses. Morphological variance
calculated through Thin Plate Spline grid warpings are presented at the extremity of each PC score
in grey. Shape space coordinate (0,0) is represented by circular lesions with no border irregularities.
BCC = Basal Cell Carcinoma, BEN = Benign, IEC = Intraepithelial Carcinoma, SCC = Squamous
Cell Carcinoma.
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Upon analysing the projection and the morphological variations along the curvilinear
abscissa (Figure 5), the oscilloscopes confirmed Benign samples to be the most elliptical
lesions in nature (α = 0.78), with hardly any deviations from a theoretical ellipsoid (Figure 5).
The SCC (α = 3.46) and IEC (α = 4.22) samples, on the other hand, appear to deviate the
most along the outline, with frequent irregularities along the lesion borders. Interestingly,
the BCC samples present a relatively smooth curve, where the malignant samples are of
the greatest spherical nature (α = 1.06).
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Figure 5. Oscilloscope curves reflecting variations along the outline of each of the samples according
to elliptical Fourier descriptors. α values represent the results obtained from computing the area
of each oscilloscope function. Perfect elliptical outlines would be presented by smooth sinusoidal
curves with no irregular deviations (α = 0.0).

When analysing the differences between each of the malign lesions in comparison
with the benign samples, the Thin Plate Splines (TPS) and isoline plots confirm these
deformations (Figure 6), with samples such as SCC and IEC presenting distinct lateral
constrictions. The BCC samples, on the other hand, are characterised by a more irregular-
oval shape. Overall, the isoline heatmaps reveal all the malignant samples to present
highly localised deformations, which would indicate shape variation to be a product of
edge irregularities, as opposed to an overall change across the entire elliptical nature of
the lesion. From this perspective, it could be assumed that lesion asymmetry is a powerful
conditioning factor in diagnoses of malignant and benign lesions.

The multivariate quantification of the sample differences based on EFA shows that
benign lesions frequently separate from all three types of malignant samples (MANOVA
p = 0.002, FPR = 3.3 +/− [0.8, 11.9]%). When considering the Fourier coefficients alone,
the separation between the Benign and IEC samples becomes a little less clear (Table 1),
with a 5.7 +/− [1.5, 19.4]% chance of being a Type I statistical error when using MANOVA
testing. Similarly, while the MANOVA results hint towards a possible separation among
some of the malignant samples, the FPR calculations are too high to consider these ob-
servations conclusive, indicating that the malignant tumours are morphologically similar
among themselves.

When considering the Mahalanobis distances (Table 1), the calculations reveal much larger
differences between the sample distributions, especially when separating between the Benign
and Malignant lesions as a whole (p = 2.5 × 10−74, FPR = 1.2 × 10−69 +/− [2.9 × 10—70,
4.6 × 10−69]%). In this case, none of the malignant lesions appear to be similar, while
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benign lesion multivariate distributions appear to be notably separate from each of the
carcinoma samples.
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Figure 6. Deformation grid visualisations via isoline plots, projecting each of the central configura-
tions for malignant samples onto the central shape of benign skin lesions. Red areas reflect areas of
greater deformation from benign samples.

Table 1. Multivariate Analysis of Variance (MANOVA) and Mahalanobis distance testing to as-
sess the degree of statistical differences between sample outlines. BCC = Basal Cell Carcinoma,
BEN = Benign, IEC = Intraepithelial Carcinoma, SCC = Squamous Cell Carcinoma.

MANOVA Mahalanobis Distances

BCC BEN IEC BCC BEN IEC

BEN p-Value 0.001 9.7 × 10−47

FPR 1.8% 2.8 × 10−42%
IEC p-Value 0.756 0.004 0.228 1.6 × 10−27

FPR - 5.7% 37.9% 2.7 × 10−23%
SCC p-Value 0.030 0.001 0.023 0.738 2.9 × 10−22 0.292

FPR 22.2% 1.8% 19.1% - 2.9 × 10−10% 49.4%

3.2. Lesion Asymmetry

Upon calculating the asymmetry indices for each of the samples, great differences
emerged between the benign lesions and each of the carcinoma samples (Table 2, Figure 7).
In most of the cases, the malignant lesions present much higher variability (Interquantile
Range = 0.37,

√
BWMV = 0.093) as opposed to benign lesions (Interquantile Range = 0.19,√

BWMV = 0.046). The differences between these samples are also of great importance
(χ2 = 103.3, p = 2.2 × 10−16, FPR = 2.2 × 10−12 +/− [5.4 × 10−13, 8.6 × 10−12]%). When
considering each malignant sample separately, boxplots indicate that BCC is the sample
with the greatest degree of asymmetry (Figure 7); nevertheless, robust metrics (Table 2)
reveal the IEC and BCC to have the same central index, with IEC presenting the largest
robust interquartile range (BCC = 0.375, SCC = 0.400, IEC = 0.435).

Integrating asymmetry indices into the multivariate statistical analyses produces similarly
complex non-gaussian PCA distributions (w = 0.86, p = 1.1 × 10−28, FPR = 2.0 × 10−24%), with
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≈90% of the cumulative sample variance appearing in the first 15 PC scores and ≈95% in
the first 21. As can be seen in the sample biplots (Figure 8), the asymmetry index represents
the variable of greatest importance in the description of the sample morphology, correlating
strongly with both PC1 (24.8% variance, p = 2.1 × 10−238, FPR = 3.1 × 10−233%) and PC2
(16.6%, p = 6.5 × 10−24, FPR = 9.5 × 10−20%).

Table 2. Descriptive statistics for the asymmetry indices of each of the samples. For space restrictions,
FPR values were excluded from the present table considering all p-values were far below the 3σ
threshold. L (0.05) = Lower bound 95% confidence interval; U (0.95) Upper bound 95% confidence
interval;

√
BWMV = Square Root of the Biweight Midvariance.

Shapiro

w p Min. L (0.05) Median
√

BWMV U (0.95) Max.

BCC * 0.782 2.2 × 10−16 0.131 0.179 0.292 0.099 0.554 1.064
IEC * 0.647 2.6 × 10−12 0.168 0.186 0.292 0.081 0.621 1.285
SCC * 0.566 1.2 × 10−14 0.097 0.172 0.270 0.084 0.572 1.390
BEN 0.616 2.2 × 10−16 0.134 0.183 0.239 0.046 0.373 1.213

Cancer * 0.679 2.2 × 10−16 0.097 0.183 0.289 0.093 0.554 1.390
Benign 0.616 2.2 × 10−16 0.134 0.183 0.239 0.046 0.373 1.213

* Malignant (cancerous) samples.
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Through an in-depth analysis of the PCA scatter plots, it was observed that the
asymmetry index produces a notable irregular dispersion among the malignant samples
(skewness = −3.0, kurtosis = 12.0), pushing the benign lesions into a much more concen-
trated distribution (skewness = −3.9, kurtosis = 33.8), which is better described by the
original elliptic Fourier coefficients.

As opposed to the calculations performed on Fourier coefficients alone, the inclusion
of asymmetry presents a notable improvement in both the MANOVA and Mahalanobis
results (Table 3), with all malignant lesions appearing clearly separable from benign le-
sions (MANOVA p = 0.001, FPR = 1.8 +/− [0.5, 7.0]%; Mahalanobis p = 3.6 × 10−75,
FPR = 1.7 × 10−70 +/− [4.2 × 10−71, 6.7 × 10−70]%).

Thus, all the multivariate statistical results conclude asymmetry to be a considerable
component for the identification of malignant lesions, with benign lesions being mostly
characterised by their elliptical shape and greater overall symmetry.
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3.3. Machine Learning

The SVMs were found to successfully learn from the morphological data on most
accounts (Table 4), with the worst performing models being univariate SVMs trained
solely on asymmetry indices. The evaluation metrics also concur with the multivariate
statistical results, revealing the combination of EFA data with the asymmetry index to be
the most efficient means of differentiating between malignant and benign tumours (Table 5).
Interestingly, SVMs appear to identify benign lesions with much greater accuracy than
malignant lesions. This is likely because not all malignant lesions present an irregular
border, while a much greater percentage of benign lesions are found to be concentrated
around the elliptical-symmetric portion of the shape space. Nevertheless, the true positive
to true negative rates remain high, resulting in a fairly balanced AUC metric.

J. Clin. Med. 2022, 11, 4392 11 of 16 
 

 

 
Figure 8. PCA biplot combining asymmetry indices with elliptical Fourier coefficients. For visual 
simplicity, only the first 5 most important variables were included in the biplot. Variables a, b, and 
d represent elliptic Fourier coefficients. 

Through an in-depth analysis of the PCA scatter plots, it was observed that the 
asymmetry index produces a notable irregular dispersion among the malignant samples 
(skewness = −3.0, kurtosis = 12.0), pushing the benign lesions into a much more 
concentrated distribution (skewness = −3.9, kurtosis = 33.8), which is better described by 
the original elliptic Fourier coefficients. 

As opposed to the calculations performed on Fourier coefficients alone, the inclusion 
of asymmetry presents a notable improvement in both the MANOVA and Mahalanobis 
results (Table 3), with all malignant lesions appearing clearly separable from benign 
lesions (MANOVA p = 0.001, FPR = 1.8 +/− [0.5, 7.0]%; Mahalanobis p = 3.6 × 10−75, FPR = 
1.7 × 10−70 +/− [4.2 × 10−71, 6.7 × 10−70]%). 

Table 3. Multivariate Analysis of Variance (MANOVA) and Mahalanobis distance testing to assess 
the degree of statistical differences between sample morphologies combining shape information and 
asymmetry. 

  MANOVA Mahalanobis Distances 
  BCC BEN IEC BCC BEN IEC 

BEN p-Value 0.001   3.6× 10—45   
 FPR 1.8%   1.0 × 10—40 %   

IEC p-Value 0.814 0.001  0.242 3.4 × 10—27  
 FPR - 1.8%  48.3% 5.6 × 10—23 %  

SCC p-Value 0.058 0.001 0.021 0.452 4.0 × 10—23 0.051 
 FPR 31.0% 1.8% 18.1% - 5.6 × 10—19 % 29.2% 

Figure 8. PCA biplot combining asymmetry indices with elliptical Fourier coefficients. For visual
simplicity, only the first 5 most important variables were included in the biplot. Variables a, b, and d
represent elliptic Fourier coefficients.

Table 3. Multivariate Analysis of Variance (MANOVA) and Mahalanobis distance testing to assess
the degree of statistical differences between sample morphologies combining shape information
and asymmetry.

MANOVA Mahalanobis Distances

BCC BEN IEC BCC BEN IEC

BEN p-Value 0.001 3.6× 10−45

FPR 1.8% 1.0 × 10−40%
IEC p-Value 0.814 0.001 0.242 3.4 × 10−27

FPR - 1.8% 48.3% 5.6 × 10−23%
SCC p-Value 0.058 0.001 0.021 0.452 4.0 × 10−23 0.051

FPR 31.0% 1.8% 18.1% - 5.6 × 10−19% 29.2%
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Table 4. Overall evaluation metrics on test sets using Support Vector Machines for the classification
of Benign and Malignant lesions. AUC = Area Under the precision–recall Curve. The combined EFA
& Asymmetry category represents PCA dimensionality reduction techniques performed on both EFA
coefficients and Asymmetry indices, prior to SVM training.

Training Variables Accuracy Precision Recall F-Statistic AUC

Asymmetry 0.690 0.646 0.447 0.528 0.696
EFA Coefficients 0.772 0.887 0.717 0.794 0.693

EFA & Asymmetry 0.765 0.883 0.711 0.788 0.685
Combined EFA & Asymmetry 0.786 0.915 0.717 0.804 0.735

Table 5. Confusion Matrix calculated on test sets using the Combined EFA & Asymmetry dataset.

True

Benign Malignant

Predicted
Benign 71.67% 10.53%

Malignant 28.33% 89.47%

4. Discussion

A well-known feature for the characterisation of malignant and benign skin lesions
is their shape. While most diagnostic criteria try to assess these variables as a function of
border regularity and overall symmetry, few studies have tried to empirically quantify these
morphological traits. The present study analyses the morphological differences amongst
NMSC and benign lesions using Fourier descriptors and asymmetry calculations. To the
authors’ knowledge, this is one of the first approximations to objectively defining these
dermatological criteria using computer vision and multivariate statistical techniques.

In recent years, morphological tools such as GMM and EFA have proven highly ef-
ficient in the evaluation of medical data. From this perspective, interesting studies have
employed landmark-based techniques for the diagnosis and evaluation of patients with
several diseases and syndromes. These include, but are not exclusive to, Beta Thalas-
saemia [56], Glut1 Deficiency Syndrome [57], Fetal Alcohol Syndrome [58], Obstructive
Sleep Apnea Syndrome [59], and (though not strictly using GMM) the study of Down
Syndrome patients [60]. Fourier descriptors, on the other hand, have been used to a lesser
extent, with applications in ovarian tumour analysis [61], as well as the study of optic
nerve head morphology and glaucoma [62]. The present study contributes to these efforts,
expanding dermatological analyses to include these types of tools as well.

While GMM has proven to be more popular in medical analyses over EFA, this is
likely due to the large corpus of pre-existing research using GMM in the analysis of
cranial morphology in physical anthropology [10]. From this perspective, the definition
of landmarks for these types of analyses are already well-defined, while post-cranial soft-
tissue research in medicine is notably lacking. Considering the difficulties that may exist in
defining truly homologous landmarks on soft tissue, EFA presents the distinct advantage
of being able to describe morphological data in elements where landmarks may not exist.
Nevertheless, a fundamental component in any of these studies is the method though
which these data are obtained.

A correct and objective definition of skin lesions’ boundaries is a complex task, with
most advanced techniques involving methodologies such as spectroscopy or hyperspectral
imaging [8,29,63,64]. The task is especially challenging given the nature of the images used
for this study, covering only the visible area of the spectrum. Similarly, while benign sam-
ples are composed mostly of pigmented lesions, NMSC classes often contain un-pigmented
lesions, whose delimitation is especially complex. For this reason, the present study worked
with a dataset of visually delimited lesions, whose boundaries could later be refined using
K-means algorithms. From this perspective, future research should address the use of
morphological analyses on boundaries that have been extracted using automated methods.
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These could include techniques such as those provided when combining multispectral or
hyperspectral imagery, alongside advanced computational learning techniques.

Employing image segmentation techniques on ultrasound images, a methodologically
similar study by Martínez-Más and colleagues [61] was able to successfully characterize
ovarian tumours, reaching up to ≈87% accuracy and an ≈0.87 Area under the Receiver
Operator Characteristic Curve. While applied to a different medical case study, these
authors present an additional account of how Fourier shape descriptors and machine
learning algorithms can be considered useful tools in medical diagnostics.

The present study revealed notable statistical differences between benign and malig-
nant skin samples, wherein most of the statistical tests appeared conclusive (FPR < 6%). In
addition, machine learning algorithms were able to reach up to 78.6% accuracy
(AUC = 0.735). If integrated into a practical tool, combining both the use of automated
outline extraction using computer vision techniques and the additional analyses of these
outlines via Fourier shape descriptors, this methodological workflow could prove to be a
powerful tool, especially at the screening stage of skin cancer diagnoses.

Clearly, the present results reveal shape and asymmetry to be more of an indicator of
malignancy than the type of malignancy. The results obtained within this study hint that
all malignant cutaneous tumours are mainly characterised by morphological irregularities
in comparison with asymmetry, while not much else can be obtained through the current
methodology. Nevertheless, it is important to note that most diagnostic criteria in skin
lesion research are based on a combination of variables [3–5] and no single variable alone.
At present, the EFA approaches described herein have been limited to a description of
pure shape, while the lack of a scale bar in the Dermofit dataset hinders the possibility
of studying form (shape & size; [32]). Likewise, an important component of skin lesion
diagnostics is found in colour [3–5], a variable that may be integrated into future analyses
through more advanced computer vision techniques.

In conclusion, this study describes a new methodological approach to the character-
isation of non-melanoma- as well as benign-type skin lesions. Through a combined use
of computer vision techniques, elliptical Fourier analyses, and computational learning,
a ≈79% separation has been achieved between malignant and benign lesions, supported
by notable statistical results (p < 0.003). Similarly, asymmetry has been found to be a
fundamental variable in the description of cutaneous carcinomas. Nevertheless, future
investigation should be dedicated to the analysis of more efficient and accurate segmenta-
tion procedures, while searching for means to integrate morphological and electromagnetic
information into a more robust and well-rounded diagnostic tool.
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