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Abstract

This thesis proposes and evaluates new machine learning techniques and models for

different tasks in the field of speech processing. It mainly addresses the identification of

speakers, languages, and accents using several descriptor proposals based on different

sound representations. In addition, it presents a new transfer learning technique based

on a new descriptor, and two new architectures for deep learning models based on com-

plementary audio representations.

The new transfer learning technique is based on a descriptor we call Grad-Transfer,

which is based on the model interpretability method Gradient-weighted Class Activation

Mapping (Grad-CAM). Grad-CAM generates a heat map of the most relevant zones in the

input data according to their influence on a given model prediction. For the develop-

ment of Grad-Transfer, we experimentally demonstrate, using Birch and k-means clus-

tering algorithms, that the heat maps generated by the Grad-CAM method are able to

store part of the knowledge acquired by a deep learning speech processing model fed by

spectrograms during its training process. We exploited this capability of Grad-CAM to

formulate a new technique that transfers knowledge from a pre-trained model to an un-

trained one, through the Grad-Transfer descriptor, which is responsible for summarizing

and reusing such knowledge. Several Grad-Transfer-based models were evaluated for the

accent identification task using the Voice Cloning Toolkit dataset. These models include

Gaussian Naive Bayes, Support Vector Machines, and Passive Aggressive classifiers. Ex-

perimental results show an increase in performance of up to 23.58% in models fed by

Grad-Transfer descriptors and spectrograms compared to models fed by spectrograms

alone. This demonstrates the ability of Grad-Transfer to improve the performance of

speech processing models and opens the door to new implementations for similar tasks.

On the other hand, new transfer learning approaches based on embedding generation

models were evaluated. Embeddings are generated by machine learning models trained

for a specific task on large datasets. By exploiting the knowledge already acquired, these

models can be reused for new tasks where the amount of available data is small.

This thesis proposes a new architecture for deep learning models, called Mel and

Wave Embeddings for Human Voice Tasks (MeWEHV), capable of generating robust em-

beddings for speech processing. MeWEHV combines embeddings generated by a pre-



trained wave encoder model fed with raw audio and deep features extracted from Mel Fre-

quency Cepstral Coefficients (MFCCs) using convolutional neural networks. We demon-

strated the complementarity between the two representations and exploited it through

neural layers specifically designed for their combination. We evaluated the performance

of MeWEHV on three tasks: language identification, accent identification, and speaker

identification. For the first task, we used the VoxForge and Common Language datasets.

For the accent identification task, we used the Latin American Spanish Corpora and Com-

mon Voice datasets. Finally, for the speaker identification task, we used the VoxCeleb1

dataset and created YouSpeakers204, a new publicly available dataset for English speaker

identification. YouSpeakers204 contains 19607 audio clips from 204 speakers with six dif-

ferent accents, allowing other researchers to work with a highly balanced dataset and

build new models that are robust to multiple accents. This approach significantly im-

proved the performance of the most advanced state-of-the-art models in all evaluated

datasets, obtaining improvements of up to 88.27% in speaker identification, 14.86% in

language identification, and 20.38% in accent identification. This was achieved at a low

additional computational cost, with only 1.04M additional parameters, which represents

between 0.33% and 1.09% more parameters than the pre-trained models used as a base-

line.

In addition, a second architecture based on embedding generation models, called

Squeeze-and-excitation for Embeddings Network (SaEENet), is proposed. SaEENet em-

ploys 1D depthwise separable convolution layers, GRU layers, and introduces, for the first

time, the use of squeeze-and-excitation blocks for audio embedding weighting. The use

of squeeze-and-excitation allows the model to assign a higher or lower relevance to each

embedding generated from small audio segments, thus discarding information generated

from voiceless segments or segments with non-relevant information. Furthermore, for

the same architecture, we present experimental results using three different variations of

squeeze-and-excitation blocks, identifying the most useful ones for the evaluated tasks.

SaEENet outperforms MeWEHV and similar state-of-the-art models in the tasks of lan-

guage identification, accent identification and speaker identification, achieving improve-

ments of up to 0.90%, 1.41% and 4.01%, respectively, with 31.73% fewer trainable param-

eters than MEWHEV.

Overall, this thesis involves several advances in the areas of speaker, language, and

accent identification, and proposes new techniques and models that use transfer learning

to improve the performance of the state-of-the-art models evaluated.

Keywords: Languages identification, Accents identification, Speakers identification,

Grad-CAM, Grad-Transfer, Speech processing, MeWEHV, SaEENet, Embeddings, YouS-

peakers204



Resumen

Esta tesis propone y evalúa nuevas técnicas y modelos de aprendizaje automático en

diferentes tareas dentro del campo del procesamiento del habla. Aborda principalmente

la identificación de hablantes, idiomas y acentos, utilizando varias propuestas de des-

criptores basados en diversas representaciones del sonido. Además, presenta una nueva

técnica de aprendizaje por transferencia basada en un nuevo descriptor, y dos nuevas ar-

quitecturas para modelos de aprendizaje profundo basadas en representaciones de audio

complementarias.

La nueva técnica de aprendizaje por transferencia se basa en un descriptor al que he-

mos denominado Grad-Transfer y que está basado en el método de interpretabilidad de

modelos Gradient-weighted Class Activation Mapping (Grad-CAM). Grad-CAM genera un

mapa de calor de las zonas más relevantes en los datos de entrada, según su influencia en

una determinada predicción de un modelo. Para el desarrollo de Grad-Transfer demos-

tramos experimentalmente, mediante los algoritmos de clustering Birch y k-means, que

los mapas de calor generados por el método Grad-CAM son capaces de almacenar parte

del conocimiento adquirido por un modelo de aprendizaje profundo de procesamiento

del habla alimentado por espectrogramas, durante su proceso de entrenamiento. Apro-

vechamos esta capacidad de Grad-CAM para desarrollar una nueva técnica que transfie-

re conocimiento de un modelo preentrenado a uno sin entrenar, a través del descriptor

Grad-Transfer encargado de resumir y reutilizar dicho conocimiento. Se evaluaron diver-

sos modelos basados en Grad-Transfer para la tarea de identificación de acentos, usando

el conjunto de datos Voice Cloning Toolkit. Entre estos modelos se encuentran los Gaus-

sian Naive Bayes, Support Vector Machines, y clasificadores Passive Aggressive. Los resul-

tados experimentales muestran un incremento de hasta el 23,58% en el rendimiento en

los modelos alimentados por descriptores Grad-Transfer y espectrogramas, en compara-

ción de los modelos alimentados únicamente por espectrogramas. Esto demuestra que

Grad-Transfer es capaz de mejorar el rendimiento de los modelos de procesamiento de

voz y abre la puerta a nuevas implementaciones en tareas similares.

Por otra parte, se evaluaron nuevas aproximaciones de aprendizaje por transferencia

basadas en modelos de generación de embeddings. Los embeddings son creados median-

te modelos de aprendizaje automático entrenados en una tarea específica con grandes



conjuntos de datos. Aprovechando los conocimientos ya adquiridos, estos modelos pue-

den reutilizarse en nuevas tareas en las que la cantidad de datos disponibles es reducida.

Esta tesis propone una nueva arquitectura para modelos de aprendizaje profundo,

denominada Mel and Wave Embeddings for Human Voice Tasks (MeWEHV), capaz de

generar embeddings robustos para el procesamiento del habla. MeWEHV combina los

embeddings generados por un modelo wave encoder, preentrenado, alimentado por au-

dio en bruto y características profundas extraídas de los Mel Frequency Cepstral Coef-

ficients (MFCCs) mediante redes neuronales convolucionales. Su objetivo es demostrar

experimentalmente la complementariedad entre ambas representaciones, y aprovechar-

la mediante capas neuronales específicamente diseñadas para su combinación. Evalua-

mos el rendimiento de MeWEHV en tres tareas: identificación de idiomas, identificación

de acentos, e identificación de hablantes. Para la primera, utilizamos los conjuntos de

datos VoxForge y Common Language. Para evaluar la tarea de identificación de acentos

utilizamos los conjuntos de datos Latin American Spanish Corpora y Common Voice. Por

último, para la tarea de identificación de hablantes utilizamos el conjunto de datos VoxCe-

leb1 y presentamos YouSpeakers204, un nuevo conjunto de datos puesto a disponibilidad

del público para la identificación de hablantes de inglés. YouSpeakers204 contiene 19607

clips de audio de 204 personas que hablan con seis acentos diferentes, lo que permite

a otros investigadores trabajar con un conjunto de datos altamente balanceado y crear

nuevos modelos que sean robustos a múltiples acentos.

Nuestro enfoque permite aumentar significativamente el rendimiento de los mode-

los más avanzados del estado del arte, en todos los conjuntos de datos evaluados, consi-

guiendo una mejora de hasta el 88,27% en identificación de hablantes, 14,86% en iden-

tificación de idiomas, y 20,38% en identificación de acentos. Necesitando para ello un

bajo coste computacional adicional, al tener únicamente 1,04M parámetros adicionales,

lo que representa entre un 0,33% y 1,09% más parámetros que los modelos preentrena-

dos usados como baseline.

Adicionalmente, se propone una segunda arquitectura basada en modelos de gene-

ración de embeddings, llamada Squeeze-and-excitation for Embeddings Network (SaEE-

Net). SaEENet emplea capas 1D depthwise separable convolutions, capas GRU, e intro-

duce, por primera vez, el uso de bloques squeeze-and-excitation para la ponderación de

embedddings de audio. El uso de squeeze-and-excitation permite al modelo asignar una

relevancia mayor o menor a cada embedding generado a partir de pequeños segmentos

de audio y descartar así la información generada a partir de segmentos sin voz o segmen-

tos con información no relevante. Además, para esta misma arquitectura, presentamos

resultados experimentales utilizando tres variaciones distintas de bloques squeeze-and-

excitation, identificando, de esta forma, las más útiles para las tareas evaluadas. SaEENet

supera a MeWEHV y a modelos similares del estado del arte en las tareas de identificación

de idiomas, identificación de acentos e identificación de hablantes, logrando una mejora

de hasta el 0,90%, 1,41% y 4,01%, respectivamente, con un 31,73% menos de parámetros

entrenables que MEWHEV.



En conjunto, esta tesis presenta varios avances en las áreas de identificación de ha-

blantes, idiomas y acentos, y propone nuevas técnicas y modelos que utilizan el apren-

dizaje por transferencia para mejorar el rendimiento de los modelos del estado del arte

evaluados.

Palabras clave: Identificación de idiomas, Identificación de acentos, Identificación

de hablantes, Grad-CAM, Grad-Transfer, Procesamiento del habla, MeWEHV, SaEENet,

Embeddings, YouSpeakers204
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Chapter 1

Introduction

1.1. Motivation

Speech-processing models have become increasingly important in various fields,

such as law enforcement and cybersecurity. These models are used to fight against crimes

such as child exploitation and human trafficking, as well as to identify suspects and pro-

vide evidence in criminal investigations. They can also be used for other applications,

such as speech recognition in personal assistants, voice control systems, and language

learning tools.

However, speech-processing models face several challenges being one of the main

ones the lack of data. Since speech data are often limited and difficult to obtain, it can

be challenging to train speech processing models that are accurate and robust on given

tasks. In addition, speech processing models are often complex and require significant

computing resources for training and running, which can be costly and time-consuming.

In this thesis, we address three tasks in speech processing: language identification,

accent identification, and speaker identification.

1.1.1. Language identification

Language identification systems are essential tools in many different domains, from

academia to industry and from homeland security to social network monitoring. These

systems have a wide range of applications such as enhancing machine translation sys-

tems, filtering and classifying content in social networks, and facilitating communication

in multilingual environments (Wang et al., 2022a; Nie et al., 2022).

One of the main challenges in developing effective language identification systems is

data availability. Often, insufficient labeled data are available to train a model effectively,

or the available data are unbalanced. Furthermore, even when a sufficient amount of

labeled data is available, model training can require significant computational resources,

which can be a bottleneck for many applications.

To address these challenges, there is a growing interest in developing language iden-

tification models that can achieve competitive performance with minimal data and com-

putational resources (Shor et al., 2020; Conneau et al., 2021; Hsu et al., 2021; Chen et al.,

2022).
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These models have important implications for cybersecurity, as they can be used to

detect and classify malicious content on the Web and other digital platforms. They can

also support Law Enforcement Agencies (LEAs) in identifying suspects or monitoring on-

line activities that pose a threat to national security.

The critical role of language identification systems in cybersecurity is underscored by

the increasing use of social networks and online platforms. To effectively process and

classify suspicious content in such environments, the automation provided by machine

learning models has become essential (Fabien et al., 2021).

Interconnected model pipelines are often used in audio processing so that an Au-

tomatic Speech Recognition (ASR) model can generate the input of another model re-

sponsible, for example, for detecting suspicious language in the generated text. In these

pipelines, language identification models are often crucial because the models in these

pipelines are usually developed for specific languages, and their correct identification is

critical (Fabien et al., 2021).

1.1.2. Accent identification

The ability to identify accents in speech is a critical problem in speech processing.

Accents are influenced by the phonological, grammatical, and semantic aspects of the

speaker’s native language and can vary significantly from region to region and country to

country (McArthur et al., 2018). Accent identification is a critical area of research with

important applications in a wide range of fields.

Cybersecurity is a key application of accent identification. With the increasing re-

liance on authentication and voice recognition systems in security protocols, the ability

to accurately identify accents has become essential. Identifying a speaker’s country or

region of origin can help identify potential threats and make tracking criminal activities

across national borders easier (Zeng et al., 2019a; Najafian and Russell, 2020).

LEAs can benefit from accurate accent identification. By identifying the speaker’s ac-

cent, investigators can narrow the list of potential suspects to people who match the same

region of origin.

Accent identification can also help in fighting against child exploitation and other

forms of delinquency. Children forced into sexual exploitation are often moved across

borders and regions to avoid detection. Accent identification can help locate victims by

identifying their country or region of origin. In addition, it can help identify the perpetra-

tors of these crimes by tracking their accents and movements across borders.

In addition to its usefulness as a method for characterizing speaker traits, it has po-

tential in a variety of fields, such as improving current ASR systems (Zeng et al., 2019a;

Najafian and Russell, 2020). In general, accent is one of the most important factors in-

fluencing the performance of ASR systems, along with gender (Gupta and Mermelstein,

1982; Huang et al., 2001). Previous research has shown that accent is one of the biggest

problems in creating variation-resistant ASR systems (Huang et al., 2004).
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1.1.3. Speaker identification

The problem of speaker identification has important implications for various appli-

cations such as forensics, surveillance, and authentication. It involves determining the

identity of an individual from his or her voice. Speaker identification systems have be-

come increasingly popular due to the widespread use of voice-controlled devices, as well

as the need for reliable and effective speaker recognition technology in various fields.

However, one of the main challenges in developing speaker identification systems is

the need for large amounts of labeled data for training as well as significant computational

resources. This makes difficult the application of these systems to real situations where

resources are limited (Hsu et al., 2021; Chen et al., 2022). Therefore, there is a critical

need to develop robust speaker identification models that can be trained with little data

and require minimal computational resources while maintaining high accuracy (Nagrani

et al., 2017; Garofolo, 1993; Cui et al., 2013; Pratap et al., 2020; Panayotov et al., 2015; Kahn

et al., 2020).

To address these challenges, this thesis proposes two model architectures that can

achieve competitive performance, while requiring minimal training data and computa-

tional resources. The proposed architectures leverage the latest advances in deep learn-

ing, including transfer learning, to improve the efficiency and accuracy of speaker identi-

fication systems.

In addition, this thesis also presents a new dataset that takes into account speaker ac-

cents, which is a crucial factor in the development of robust speaker identification models

that can perform well in real-world scenarios.

A reliable and effective speaker identification system can help identify and track sus-

pects, verify the identity of individuals and prevent crimes, as well as be able to identify

missing persons (Fabien et al., 2021). In addition, the ability to develop these models

with minimal data and computational resources makes them more accessible and cost-

effective for organizations with limited resources.

Finally, a common challenge in language identification, accent identification, and

speaker identification tasks is the lack of experimental configurations available in many

of the publicly available datasets, which makes it difficult to fairly compare the results of

new proposals with respect to the state-of-the-art.

For this reason, in this thesis, we propose a set of experimental setups for datasets that

had no such configurations. We present the results achieved with our models using these

experimental setups so that our results can be used as a baseline for future research.

1.2. Objectives

The main objective of this thesis is to develop new approaches and solutions for audio

classification tasks, which outperform the state-of-the-art results at the time of publica-

tion. With this general objective in mind, we define the following particular objectives:
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1. To create a large-scale dataset of labeled audio files to train machine learning mod-

els focused on accent identification, and identification of speakers with accents, to

solve the problem of lack of balanced datasets and help the research community to

develop robust models.

2. To develop a new transfer learning technique for speech classification that in-

creases the performance of models trained from scratch.

3. To develop new architectures for deep learning models that take advantage of the

benefits of using available transfer learning techniques while improving the perfor-

mance of state-of-the-art models.

4. To study the complementarity between different types of acoustic representations

to generate new types of robust audio representations.

5. To apply our research to a real-world problem focused on speaker profiling, aiming

to extract relevant information from offenders and victims, as part of the European

GRACE project.

1.3. Main Contributions

The main contributions of this dissertation are summarized as follows:

1. A novel feature extractor, called Grad-Transfer, which represents distinctive au-

dio features, that combines information from the Convolutional Neural Networks

(CNNs) based class discriminative localization technique Gradient-weighted Class

Activation Mapping (Grad-CAM) (Selvaraju et al., 2017) and from spectrograms.

2. A new method for transfer learning that uses Grad-Transfer, so that the method

transfers knowledge from CNNs to classic machine learning algorithms.

3. A new speaker identification dataset, called YouSpeakers204, highly balanced in

terms of speaker accents and gender, which was extracted from publicly avail-

able YouTube videos, and can be used for speaker, accent, and gender identifica-

tion. This dataset was made publicly available, along with a proposed experimental

setup, so that other researchers could compare their results in a fair way.

4. A new pipeline for the generation of rich audio embeddings, by merging multiple

representations, which establishes a possible basis for new architectures that aim

at improving large pre-trained models.

5. Two new model architectures, called Mel and Wave Embeddings for Human

Voice Tasks (MeWEHV), and Squeeze-and-excitation for Embeddings Network

(SaEENet), that achieve better results than the state-of-the-art models in speaker,
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language, and accent identification tasks, requiring a relatively low number of train-

able parameters.

6. For the first time in literature, we introduce squeeze-and-excitation neural layer

blocks for weighing and filtering the information compressed in the embeddings

generated by pre-trained models in speech processing tasks.

7. New publicly available experimental setups of the Voice Cloning Toolkit, Latin

American Spanish Corpora, VoxForge, Common Language, Common Voice

datasets, which can be used by other researchers to make a fair comparison of their

results.

1.4. Publications and Research Results

1.4.1. Publications related to this Thesis

Carofilis, Andrés, Fernández-Robles, Laura, Alegre, Enrique, & Fidalgo, Eduardo

(2023). “Improvement of accent classification models through Grad-Transfer from

Spectrograms and Gradient-weighted Class Activation Mapping" in IEEE/ACM

Transactions on Audio, Speech, and Language Processing, vol. 31, pp. 2859-2871,

2023, doi: 10.1109/TASLP.2023.3297961.

Journal Impact Factor (JCR 2022): 5.4, Rank by Journal Impact Factor: Acous-

tics 3/31 (Q1), Engineering, Electrical & Electronic 61/275 (Q1).

Carofilis, Andrés, Fernández-Robles, Laura, Alegre, Enrique, & Fidalgo, Eduardo

(2023). “MeWEHV: Mel and Wave Embeddings for Human Voice Tasks" in IEEE Ac-

cess, vol. 11, pp. 80089-80104, 2023, doi: 10.1109/ACCESS.2023.3300973.

Journal Impact Factor (JCR 2022): 3.9, Rank by Journal Impact Factor: Com-

puter Science, Information Systems 72/158 (Q2), Engineering, Electrical &

Electronic 100/275 (Q2), Telecommunications 41/88 (Q2).

Carofilis, Andrés, Fernández-Robles, Laura, Alegre, Enrique, & Fidalgo, Eduardo

(2023). “Squeeze-and-excitation for embeddings weighting in speech classification

tasks" in IEEE/ACM Transactions on Audio, Speech, and Language Processing. (Un-

der Review).

Journal Impact Factor (JCR 2022): 5.4, Rank by Journal Impact Factor: Acous-

tics 3/31 (Q1), Engineering, Electrical & Electronic 61/275 (Q1).
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1.4.2. Attended Conferences

Applications of Intelligent Systems, 2023, 23-27 January, Gran Canaria, Spain

2022 Language Recognition Evaluation (LRE) Workshop, 2023, 31 January, Online

VIII Jornadas Nacionales de Investigación en Ciberseguridad (JNIC 2023), 2022, 21-

23 June, Vigo, Spain

ECCV 2022: 17th European Conference on Computer Vision, 2022, 23–27 October,

Online

VII Jornadas Nacionales de Investigación en Ciberseguridad (JNIC 2022), 2022, 27-

29 June, Bilbao, Spain

1.4.3. Oral presentations at conferences

Age and gender estimation from speech to support the detection of Child Sexual

Abuse Material. Applications of Intelligent Systems, 2023, 23-27 January, Gran Ca-

naria, Spain

Presentation of the description of the system submitted by the University of León.

2022 Language Recognition Evaluation (LRE) Workshop, 2023, 31 January, Online.

1.4.4. Intellectual Property Registrations

Patent: System, method, and program product for automatic accent classification

in audio signals1 (Registration ID: 202231062, Date: 13/12/2022, Status: Requested)

1.4.5. Awards and Grants

This thesis was supported by the “Comunidad de Castilla y León”, through the

scholarship order EDU/875/2021: "Ayudas para financiar la contratación predoc-

toral de personal investigador" (15/08/2021 - date of publication of this thesis)

1.4.6. Other Activities

Teaching Activities

Direction of the Bachelor degree thesis: Santos A. (2020). Evaluación y mejora de la

identificación del hablante utilizando deep learning (Assessment and improvement

of speaker identification using deep learning). University of León.

1Spanish Patent and Trademark Office, published in Spanish.
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Direction of the Master’s degree thesis: Castro M. (2023). Uso de Grad-CAM y redes

convolucionales preentrenadas para detectar y clasificar poros presentes en super-

ficies de piezas fabricadas con moldes de arena y cerámica (Use of Grad-CAM and

pretrained convolutional networks to detect and classify pores present in surfaces

of parts made with sand and ceramic molds). University of Vigo and University of

León.

Projects

“Acuerdo de Colaboración para la continuidad de los trabajos de un equipo de in-

vestigación aplicada en visión artificial y aprendizaje automático”. Addendum 01 to

the Framework Agreement between INCIBE (Spanish National Cybersecurity Insti-

tute) and the University of León.

European GRACE Project: Global Response Against Child Exploitation. Grant agree-

ment ID: 883341. DOI: 10.3030/883341.

Co-author in the following Registered Intellectual Property:

Intellectual property: Application for the classification of fraudulent e-commerces1

(Registration ID: 765-1019484, Date: 04/11/2022, Status: Accepted)

Intellectual property: Application for the classification of Phishing URLs1. (Regis-

tration ID: LE-3-2021, Date: 05/01/2021, Status: Accepted)

1.4.7. Other Publications

Martínez-Mendoza, Alicia, Sánchez-Paniagua, Manuel, Carofilis, Andrés, Jáñez-

Martino, Francisco, Fidalgo, Eduardo & Alegre Enrique (2023). Applying Machine

Learning to login URLs for phishing detection. VIII Jornadas Nacionales de Investi-

gación en Ciberseguridad 2023, 487-488.

Carofilis, Andrés, Chaves, Deisy, Martínez-Mendoza, Alicia, Fidalgo, Eduardo,

González-Castro, Victor & Alegre, Enrique (2023). Impact of facial occlusions in

age estimation algorithms for forensic applications. VIII Jornadas Nacionales de

Investigación en Ciberseguridad 2023, 497-498.

Biswas, Rubel, Del Río, Aitor, Vasco-Carofilis, Andrés, Swaroop, Guru, De Mata,

Verónica & Alegre, Enrique. Image hashing based on frequency dominant neighbor-

hood structure (2022). VII Jornadas Nacionales de Investigación en Ciberseguridad

2022, 294-295.

Castaño, Felipe, Velasco, Javier, Vasco-Carofilis, Andrés, Fidalgo, Eduardo, Fernán-

dez, Luis & Azzopardi, George (2022). Evaluation of supervised learning models
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using TCP traffic for the detection of botnets. VII Jornadas Nacionales de Investi-

gación en Ciberseguridad 2022, 259-260.

Blanco-Medina, Pablo, Fidalgo, Eduardo, Alegre, Enrique, Vasco-Carofilis, Roberto

A.; Janez-Martino, Francisco & Fidalgo, Victor (2021). Detecting vulnerabilities in

critical infrastructures by classifying exposed industrial control systems using deep

learning. Applied Sciences, 11(1), 367.

1.4.8. Summer Schools

REGINNA 4.0 Summer School: Deep Tech training with impact on entrepreneur-

ship and innovaton. Organizer: University of Nova Gorica, Nova Gorica, Slovenia,

3-14th July 2023.

1.5. Thesis Structure

This chapter describes the structure of the doctoral thesis. This first introductory

chapter focuses on motivating the work presented in this dissertation, its main objectives,

and its original contributions. The remainder of this manuscript is organized as follows.

Chapter 2 contains a detailed review of state-of-the-art approaches related to the

problems addressed in this thesis: language identification, accent identification, speaker

identification, and related work on the proposed contributions. We also mention the

main limitations of the methods reviewed and improvements that can be applied.

In Chapter 3, entitled “Improvement of accent classification models through Grad-

Transfer from Spectrograms and Gradient-weighted Class Activation Mapping” the per-

formance of popular CNNs architectures and Classical Machine Learning Algorithms

(CMLAs) was evaluated for native English accent classification. Furthermore, we present

Grad-Transfer, a novel descriptor based on the concatenation of a flattened spectrogram

and dimensionality-reduced heat maps of Grad-CAMs. This descriptor takes advantage

of the knowledge extracted by a CNN to be used as additional information to improve the

distinctiveness of an audio descriptor and thus achieves higher performance with CMLA

classifiers. The presented descriptor is especially useful in situations where a CMLA

yields better performance than CNN models, thus further boosting the performance of

the CMLA.

Chapter 4, entitled “MeWEHV: Mel and Wave Embeddings for Human Voice Tasks”

presents a novel embedding enrichment procedure that combines the outputs of two

models. On the one hand, a pre-trained embedding generation model from raw audio

clips. On the other hand, the outputs of a neural network (NN), fed by the Mel Frequency

Cepstral Coefficients (MFCCs) of the raw audios, which have among their advantages the

capability of error reduction and robustness to noise. The main feature of MFCCs is that
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they focus on extracting relevant audio components to identify speech features and fil-

tering other features, such as background noise, pitch, loudness, and emotion. The pro-

posed architecture complements the high level of detail that the model exploits with the

wave encoder, being this a non-imposed representation, and the extraction of relevant

information through the MFCCs, as an imposed representation. For the correct comple-

mentarity of both types of representations, we designed an architecture capable of in-

teracting with them through a set of layers, including LSTM layers and attention mecha-

nisms. In this way, we managed to overcome the results obtained by other state-of-the-art

models, at the same time requiring only a small number of trainable parameters. We also

introduced a new manually labeled audio dataset called YouSpeakers204. Next, the chap-

ter provides details of the empirical evaluation performed by us to verify our proposal.

Chapter 5, entitled “Squeeze-and-excitation for embeddings weighting in speech clas-

sification tasks”, presents a Squeeze-and-excitation for Embeddings Network (SaEENet).

SaEENet is a novel architecture that improves the state-of-the-art results in speaker iden-

tification, language identification and accent identification tasks. SaEENet is built using

novel neural layers and several optimizations inspired by recent advances in other ma-

chine learning fields, such as the use of depthwise separable convolutions, and squeeze-

and-excitation blocks, initially proposed in the field of image processing, and GRU layers,

initially used in text processing. In the SaEENet model, we introduce a novel squeeze-and-

excitation block that processes the stacked embeddings considering time as a dimension

containing the target channels. Instead of weighting the relevance of the 2D channels of a

convolutional network, SaEENet weights each 1D embedding according to its relevance.

This allows the next layer to have context as to which embedding is more relevant, reduc-

ing the impact of embeddings generated from segments that do not contain speech or

contain unnecessary information, and increasing the relevance of the segments that have

information of interest to the model.

Chapter 6 summarizes the conclusions of this thesis and provides an outlook for pos-

sible future work lines to extend the presented work.





Chapter 2

State of the art

Multiple approaches have been applied in speech processing, which can be grouped

into approaches using phonotactic modeling and approaches using acoustic model-

ing (Etman and Beex, 2015). Phonotactic modeling focuses on phoneme recognition and

subsequent analysis, while acoustic modeling focuses on the spectral characteristics of

sound waves or the raw waveform.

2.1. Phonotactic Modeling

All languages spoken by humans are composed of sets of phonemes, which are the ba-

sic theoretical units of sound that represent the minimum articulation of a vowel or a con-

sonant and which are postulated to study spoken human language (Yallop and Fletcher,

2007)

Phonotactic modeling is characterized by processing an audio signal through its pho-

netic transcription, which is obtained through phoneme recognizers (Etman and Beex,

2015). A phoneme recognizer transcribes the voice into a sequence of known phonemes.

The phoneme recognizer produces phonetic sequences that are used to feed systems

called language models (LMs), which are in charge of estimating a probability distribution

model for each accent. LMs are models that assign probabilities to a sequence of words,

such as the probability of a word appearing in a sentence given the previous set of words.

Also, an LM can determine the probability that an n-gram (sequence of n words) belongs

to a previously analyzed set of n-grams, which could represent a given accent (Martin and

Jurafsky, 2018).

Most phonotactic modeling methods are based on statistical LMs, which are LMs that

use traditional statistical techniques and linguistic rules to learn the probability distribu-

tion of words (Martin and Jurafsky, 2018).

Among the approaches that have used phonotactic modeling is the one presented by

Kumpf and King (1996) who used an accent-dependent parallel phoneme recognizer to

classify native Australian English speakers and foreign-accented speakers whose mother

languages are Lebanese Arabic and South Vietnamese, using data extracted from the AN-

DOSL dataset (Vonwiller et al., 1995). The accuracies achieved are 85.3% and 76.6% for

the classification of two and three accents, respectively.



14 2. State of the art

Angkititrakul and Hansen (2006) implemented an accent classification system based

on stochastic and parametric trajectory models using the CU-Accent corpus, an accent-

sensitive word corpus. The corpus contains five English speaker groups with native Amer-

ican English and English spoken with Mandarin Chinese, French, Thai, and Turkish ac-

cents. This system achieved an accent classification accuracy of 90%.

Similar approaches have been used for language classification, such as (Safitri et al.,

2016), in which they trained a statistical phonotactic model to classify the Indonesian

languages Minangkabau, Sundanese, and Javanese. Using phone recognition followed by

language modeling and parallel phone recognition followed by language modeling they

achieved an accuracy of 77.4% and 75.94% respectively, using a non-public dataset.

Nie et al. (2022) proposed BERT-LID, based on a conjunction network for phoneme

recognition and BERT with a linear output layer. They evaluated their proposal on the

datasets AP20-OLR (Li et al., 2020), TAL_ASR, and a combination of the datasets THCHS-

30 (Wang and Zhang, 2015) and TIMIT (Garofolo, 1993), achieving up to 5% improvement

in audios of more than three seconds and 18% in audios of less than one second, with

respect to models based on n-grams Support Vector Machines (SVM) and x-vectors.

Phonotactic modeling exhibits certain limitations. First, by focusing on patterns

and linguistic features at the phoneme and word level, phonotactic modeling loses de-

tailed acoustic information, such as intonation and rhythm, which are expressive aspects

present in the voice signal. Additionally, this approach relies on precise transcriptions,

which can be challenging in situations where accurate transcriptions are unavailable or

when working with under-resourced languages. Furthermore, phonotactic models may

struggle to capture individual variability among speakers, as they primarily focus on gen-

eral phonetic patterns, resulting in a lack of personalization and adaptability to different

voices and speaking styles. These limitations can affect the accuracy and robustness of

phonotactic modeling in noisy environments or under adverse conditions Matejka (2009);

Etman and Beex (2015). Due to this, although phonotactic modeling has been used in nu-

merous studies, advances in deep learning have made speech processing research focus

mostly on acoustic modeling (Baevski et al., 2020; Hsu et al., 2021; Chen et al., 2022).

2.2. Acoustic Modeling

In general, acoustic models can be fed by raw audio waveforms (Hsu et al., 2021; Chen

et al., 2022) or other spectral characteristics and representations extracted from them.

Among these representations are spectrograms (Mulimani and Koolagudi, 2018; Zeng

et al., 2019b; Sarthak et al., 2019), and Mel Frequency Cepstral Coefficients (MFCCs) (Lee

and Jang, 2018; Ahmad et al., 2015), which can be competitive depending on the task and

the dataset used, and in general both can obtain similar results (Meghanani et al., 2021).

Multiple investigations have used spectrograms as a representation of audio (Garain

et al., 2021). A spectrogram is a result of calculating in frames the spectrum of a signal
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divided into windows; the result is a matrix containing information about the time, fre-

quency, and energy of each instant (represented by color).

One of the ways to work with spectral characteristics of audio is through embeddings,

which are representations capable of expressing statements with a variable number of

observations as a single vector that retains most of the statement variations. There are

several types of embeddings, such as i-vectors and x-vectors. Both have been widely used

in audio classification tasks (Wang et al., 2020; Weninger et al., 2019; Krishna et al., 2019;

Adeeba and Hussain, 2019).

The use of classification systems based on the attributes modeled by i-vectors has

shown to be able to achieve superior results to those obtained by classic models based on

phonotactic modeling, in tasks such as language recognition (Singer et al., 2012). A small

set of speech attributes is sufficient for a complete characterization of spoken languages.

Robust universal speech attribute detectors can be designed by sharing data between dif-

ferent languages, as shown by Siniscalchi et al. (2011).

Behravan et al. (2015) used i-vectors to define a common set of “universal” fundamen-

tal units that describe the manner and place of articulation as attributes of speech in all

evaluated spoken accents. They evaluated the method on two datasets, the first dataset

contains one native English group and another 7 groups of English speakers with a for-

eign accent, and the second dataset comprehends 7 groups of non-native speakers. They

obtained an average detection cost of 5.02, and 6.30, respectively, representing an im-

provement of up to 8% and 15% over the result achieved with an approach based on the

work of Siniscalchi et al. (2011).

Due to the improvement of Deep Neural Networks (DNNs) in recent years, a new type

of embeddings has become popular, which are generated by extracting the outputs of a

hidden layer of a pre-trained DNN. These embeddings are generated to store relevant

information of an audio wave, to be later used in the learning of a new specific task.

Therefore, it takes advantage of the modeling capabilities of a network trained with a large

amount of data and reuses it with a small dataset.

A specific type of these embeddings are the x-vectors, which usually require the appli-

cation of another model, such as Probabilistic Linear Discriminant Analysis (PLDA) after

the generation of the embeddings, in order to determine which x-vectors are most similar

to each other, and thus to determine the class of new x-vectors.

X-vectors have been used in related tasks. Wang et al. (2020) used x-vectors for speaker

verification with Tagalog and Cantonese languages from the NIST SRE 2004-2010 datasets

and achieved an equal error rate (EER) of 9.86%, and 2.96%, which represents an improve-

ment of 15.4% and 34.7%, respectively, when comparing the results of x-vectors with the

results of i-vectors.

Sun (2020) used x-vectors for language classification, with the NIST LRE07 dataset

containing 14 languages and the Arabic dialect identification dataset containing 17 di-

alects, achieving an average accuracy of 75.64% and 71.85% with short audios respec-

tively, representing an improvement of up to 10.5% and 9.8% when comparing x-vectors
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with i-vectors.

2.2.1. Approaches trained from scratch

In speech processing, several solutions and approaches that require training an acous-

tic model from scratch have been developed for individual tasks. Tang and Ghorbani

(2003) made a comparison in accent identification between SVM and Hidden Markov

Model (HMM), concluding that both approaches obtain similar performances and a sim-

ilar speed of convergence.

The recent developments in the field of deep learning are focused on the use of mod-

els like DNNs, Recurrent Neural Networks (RNNs), and Convolutional Neural Networks

(CNNs), as well as, in the fusion of these models with classic algorithms like SVM (Hon-

navalli and Shylaja, 2021; Zeng et al., 2019a; Ahmed et al., 2019; Zuo et al., 2015). Jiao

et al. (2016) explored the combination of traditional and deep learning approaches for

the task of automatic accent classification, using different combinations of models to

classify 11 accents, and measuring the error rate by means of unweighted average recall

(UAR). Among the results presented, SVM obtained a UAR of 45.1%, a model combining

DNN+RNN achieved a UAR of 52.2% and a model combining DNN+RNN+SVM yielded a

UAR of 55.8%.

With the evolution of CNNs and RNNs, much research in audio processing has fo-

cused on exploiting the representative capacity of CNNs and the ability to model temporal

features of RNNs (Zuo et al., 2015). In language identification, architectures that combine

CNN with RNN have been used, as in the case of the work of Bartz et al. (2017), where an

architecture called Convolutional Recurrent Neural Network (CRNN) is proposed, specif-

ically designed for learning from spectrograms. Later, Singh et al. (2020) applied CRNN

and CNN to automatically classify accents, achieving 4.73% higher accuracy with CRNN

than with CNN.

Another research where a CNN was used is the work of Zeng et al. (2019a), where a

modified ResNet architecture was presented and applied to the multilabel classification

of accents and speakers. With the purpose of accent classification, they achieved 89.67%

accuracy on the VCTK dataset. This work combines the task of speaker classification and

accent classification in the same model, so they do not separate the test and training set

speakers. By having the same speakers in both subsets, the model is likely to learn to

recognize the speakers, not the accent itself, and through speaker recognition, infer the

accent.

Accent identification models have also been used as part of other systems, such as

in the case of Ghangam et al. (2021), which focuses on creating an ASR system that is

robust to speaker accent. To do this, they use language identification models and accent

identification models to find the accent of an input audio, and subsequently analyze it

with an ASR model specifically trained for that accent. The accent identification model

used is composed of two Long Short-Term Memory (LSTM) layers of 200 neurons, and
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they tested it with Indian, Chinese and Malay accented audios, achieving a word error

rate of 15.89, 26.05, 11.59, respectively. This is an improvement of up to 65.41%, 54.38%,

and 72.87%, respectively, over other baseline models.

Wang et al. (2022b) presented a language identification system based on conformer

layers, and a temporal pooling mechanism, which was tested on their own dataset with

65 languages and achieved an accuracy up to 4.27% higher than other approaches based

on LSTM and transformers.

In speaker identification, Nassif et al. (2021) introduced the CASA-GMM-CNN model,

in which they seek to clean a noisy audio through a Computational Auditory Scene

Analysis (CASA). Then a classification of emotions is made by a Gaussian Mixture Mod-

els (GMM) and a CNN (GMM-CNN), and the output of both components feeds an-

other GMM-CNN in charge of identifying the speaker. They tested their approach on

SUSAS (Hansen and Bou-Ghazale, 1997), Arabic Emirati Speech Database (Shahin et al.,

2020), RAVDESS (Livingstone and Russo, 2018), and Fluent Speech Commands (Lugosch

et al., 2019) datasets, achieving up to 59.37% improvement in accuracy over other state-

of-the-art works.

Nassif et al. (2022) presented another speaker identification model based on capsule

networks, which is composed of two convolutional layers and one capsule layer, and it

was compared using standard CNNs, random forests, GMM-DNNs, and SVMs as base-

line models, on the Arabic Emirati Speech Database, SUSAS, and RAVDESS datasets. This

model achieved improvements of up to 9.98%, 10.95%, and 9.81% accuracy, respectively,

with respect to the best baseline model.

2.2.2. Transfer Learning Approaches

Transfer learning and domain transfer have been extensively studied in machine

learning (Zhuang et al., 2021). Recent research related to transfer learning in speech pro-

cessing has mainly focused on embeddings generation (Shor et al., 2020).

Wang et al. (2021b) presented an accent identification model generated from a pre-

trained speech-to-text model, to which transfer learning was applied to be reused in their

new task. To evaluate their proposal, they used the AP20-OLR dataset, achieving a reduc-

tion of up to 10.79% in the EER compared to other approaches based on x-vectors and

i-vectors.

The most recent approaches are based on the use of pre-trained models and self-

supervised learning methods for embeddings generation. These types of embeddings

represent a position in an abstract multidimensional space, known as latent space, which

encodes a meaningful internal representation of externally observed events. In these

spaces, similar embeddings, or embeddings that have features in common, are close to-

gether, while less similar items are far apart (Kingma et al., 2014) One of these models is

TRILL (Shor et al., 2020), which was trained using a subset of the AudioSet dataset (Gem-

meke et al., 2017) and then evaluated across different domains using transfer learning and
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fine-tuning. The results achieved with TRILL were, in most cases, superior to those of the

state of the art, and in other cases, close to them, being able to highlight its performance

in speaker identification, with an accuracy of 17.9% on the VoxCeleb1 dataset (Nagrani

et al., 2017), 94.1% for language identification on the VoxForge dataset (5.7% improve-

ment) (MacLean, 2018), 91.2% for command identification on the Speech Commands

dataset (Warden, 2018) (0.1% improvement), among others.

Other embedding generation models are the Wav2Vec2 (Baevski et al., 2020) model,

which focused on English speech-to-text conversion, and XLSR-Wav2Vec2 (Conneau

et al., 2021) model. XLSR-Wav2Vec2 is based on Wav2Vec2 but has been adapted for

speech-to-text conversion in 53 languages, where the use of embeddings is useful to adapt

the model to the different languages. To train the XLSR-Wav2Vec2 model, the MLS (Pratap

et al., 2020), CommonVoice (Ardila et al., 2020), and the BABEL (Cui et al., 2013) datasets

were used. The XLSR-Wav2Vec2 model was able to achieve a word error rate reduction of

72% compared to other published results on the Common Voice dataset, and 16% com-

pared to the state-of-the-art results on BABEL.

Hsu et al. (2021) presented a new self-supervised approach for embedding generation

based on BERT, called HuBERT. HuBERT uses an offline clustering step to provide aligned

target labels for a BERT-like prediction loss. The HuBERT model matches or improves the

performance of Wav2Vec2 on Librispeech (Panayotov et al., 2015) and Libri-Light (Kahn

et al., 2020) datasets, achieving WER improvements of up to 19%.

A limitation of the HuBERT model is the fact that the Librispeech and Libri-Light

datasets contain only English audio. Therefore, it is not demonstrated if the HuBERT

model can work optimally in a multi-language environment.

Chen et al. (2022) presented the WavLM model extending the HuBERT framework

for speech-to-text and denoising modeling, which enables pre-trained WavLM models to

perform well on both speech-to-text and non-speech-to-text tasks. To achieve this, some

WavLM inputs are noisy/overlapping speech simulations, and the expected outputs are

the original speech labels. In addition, they optimized the model structure and training

data of HuBERT and Wav2Vec2. The model was tested in the SUPERB Challenge (Yang

et al., 2021) achieving an overall score 3.16% higher than HuBERT and 4.95% higher than

Wav2Vec2.

Like HuBERT, WavLM was trained with the LibriSpeech and LibriLight datasets, but

also used the GigaSpeech (Chen et al., 2021) and VoxPopuli (Wang et al., 2021a) datasets.

WavLM has been trained taking into account multiple languages, thanks to the use of the

VoxPopuli dataset, which contains 23 languages. Models based on Wav2Vec2, HuBERT

and WavLM are fed with raw audio waveforms.

A common limitation in the embedding generation models mentioned above is the

intensive use of resources to retrain them since they have a large number of parameters

(318.42M in the case of Wav2Vec2-large, and 314.65 in the case of HuBERT-large). Con-

sequently, a practical approach often employed is to reuse the embeddings generated by

these models using transfer learning. This technique efficiently transfers the knowledge
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acquired during their initial training to new tasks. However, since the weights are not

optimized for each specific new dataset, there is latent potential for improving model

performance.

Deng et al. (2021) used the Wav2Vec2 model, in its large version, in the accent iden-

tification task and accented speech recognition. They worked with the Accented En-

glish Speech Recognition Challenge dataset (AESRC2020) (Shi et al., 2021), which contains

120000 training audio files, highly balanced among 8 accents, of which 6 are non-native.

For accent identification, they propose a model that, by adding a set of fully connected

layers, generates an accent prediction for each embedding generated by the model, and

then combines the predictions into a single final prediction, instead of directly generating

a single sentence-level prediction. They achieved up to 73.9% accuracy for accent identi-

fication, representing a 1.65% improvement over a model that generates a sentence-level

prediction, and an 18.05% improvement over an i-vector-based approach.

Song et al. (2023) presented a model that uses WavLM to improve the speech enhance-

ment task. Experiments were conducted on the DNS challenge dataset and on a simu-

lation dataset. WavLM is used to generate embeddings of fixed-size windows, and that

information is combined with information extracted from the original audio to generate

new clean audio. The results show that the use of WavLM allows the improvement of

speech enhancement systems, showing that the developed system achieves better per-

formance than the other baseline models.

Apart from the models focused on speech processing, there are also models for general

audio processing, such as the PANN model. The PANN model (Kong et al., 2020) was

trained on the AudioSet dataset and evaluated using transfer learning and fine-tuning,

in general content audio classification tasks. For environmental sound classification and

audio taggings, PANN yielded accuracies of 94.7% and 96.0% on the ESC-50 (Piczak, 2015)

and the MSoS (Kroos et al., 2019) datasets, respectively, surpassing the state-of-the-art

results.

For acoustic scene classification, PANN was evaluated on the datasets DCASE-

2019 (Mesaros et al., 2018) and DCASE-2018 (Fonseca et al., 2018), obtaining an accu-

racy of up to 76.4%, and 95.4%, respectively, in both cases lower than the state of the

art. Whereas for music genre classification, PANN achieved an accuracy of 91.5% on the

dataset GTZAN (Tzanetakis and Cook, 2002), lower than the state of the art. In all cases,

the accuracy reported is higher than or close to the state-of-the-art results.

In addition to the well-known transfer learning methods, it is interesting to explore

novel approaches that focus on specific cases where the available data is limited and

unbalanced. Among the useful techniques in the development of new transfer learning

methods is Gradient-weighted Class Activation Mapping (Grad-CAM).

Grad-CAM is a technique that weights data according to their relevance in the train-

ing process of a neural network. It is very popular in fields where it is necessary to have

certainty about the reasons for the decisions made by machine learning models, such as,

for example, the medical field, where it has been widely used because it allows the inter-
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pretability of the generated models and the consequent search for explanations of their

outputs (Zhang et al., 2021; Moujahid et al., 2021; Kim et al., 2022; Nunnari et al., 2021).

Grad-CAMs have also been used in the field of audio processing, specifically in the iden-

tification of acoustic events, allowing the interpretation of areas of interest in other visual

representations of audio, such as MFCCs (Kim et al., 2021).

In this dissertation, we propose a new embedding enrichment method that makes use

of the Grad-CAM algorithm in its process to extract features from the knowledge learned

by a CNN and use it to improve the performance of another machine-learning model. To

the best of our knowledge, there are no previous works that apply this approach.

2.2.3. Multi-representation Approaches

Approaches based on both reusing embedding generation models and models trained

from scratch have demonstrated competitive performance in various audio processing

tasks. However, all of them are based on a single representation of the original audio.

Therefore, enrichment of the deep representations by another representation could im-

prove the performance of such models.

Research on audio processing has significantly focused on the use of a single repre-

sentation of the audio. Different representations and features extracted from an audio

can be used at the same time to feed a model.

The combination of representations enables the extraction of complementary infor-

mation from the original audio in a format that a machine learning model can easily

process. This allows these models to outperform those that rely on a single represen-

tation. One example is FuzzyGCP (Garain et al., 2021), which is a model fed by eight

types of representations generated from the original audios and which are joined into

a single two-dimensional image. FuzzyGCP was evaluated for language identification

on the datasets IIIT Hyderabad (Prahallad et al., 2012), IIT Madras (Baby et al., 2016),

VoxForge, and MaSS (Boito et al., 2020), obtaining accuracies of 95%, 81.5%, 68%, and

98.7%, respectively. These results exceeded the ones obtained by other state-of-the-art

approaches, such as PPRLM (Zissman and Singer, 1994), i-vector (Snyder et al., 2015) and

x-vector (Snyder et al., 2018).

FuzzyGCP explores the combination of different audio representations and demon-

strates superiority over classical approaches. However, it does not include raw audio rep-

resentation as a possible input, thus not making use of the most recent developments in

the field of speech processing.

FuzzyGCP does not make public the experimental setup with the training and test

audios used, which makes it difficult to compare the obtained results.

Another model based on the combination of representations is the one proposed

by Gao et al. (2022), in which they combined three types of audio representations that

fed two models, one trained for acoustic scene classification and the other for general au-
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dio tagging. They use the DCASE 2018 Challenge dataset1, achieving a mAP@3 of 93.26%

in the audio tagging task and an accuracy of 72.48% in the acoustic scene classification

task, outperforming the results of other state-of-the-art methods based on a single repre-

sentation.

In this case, the combination of representations is done as ensemble models, where

each individual model was trained autonomously with a different representation. The

fusion of information is done in the output layer of the model through an information

aggregation unit. Merging models through the model outputs has a limitation in that the

information that can be shared in this way is limited compared to the information that

could be obtained if more information-rich deep representations were interconnected.

Zhu et al. (2020) proposed a novel architecture fed by three types of representations,

these representations fed two consecutive NNs. One network is responsible for identify-

ing and filtering erroneously labeled training data so that they do not affect the training of

the other network, thus avoiding data errors that may adversely affect the performance of

the model. They tested their architecture in audio tagging with the FSDKaggle20182 and

FSDKaggle20193 datasets, each one evaluated with a different metric, achieving a mAP@3

of 95.59%, and a label-weighted label-ranking average precision (lwlrap) of 0.7195 respec-

tively, being, in both cases, competitive with the state-of-the-art methods.

This approach proved especially valuable when dealing with improperly filtered

training data, which can impact the performance of models trained on relatively small

datasets.

In this thesis, we propose a new architecture that enriches the embeddings generated

by a pre-trained wave encoder model by combining it with embeddings extracted from

MFCC representations through specialized neural layers in the architecture. It exploits

the advantages of the benefits of embedding generation models and the combination of

representations.

2.2.4. Squeeze-and-excitation Blocks

The embedding generation models generate an embedding for each segment of a

fixed size in the original audio, this may imply that several of the generated embeddings

contain the information of segments without voice or with excessive noise. A possible

solution to reduce the impact of these embeddings is the use of Squeeze-and-excitation

(SE) (Hu et al., 2020) blocks for embedding weighting.

SE blocks are model architecture units designed to improve the representational

power of a network by allowing it to perform dynamic per-channel feature recalibration.

Initially introduced as a mechanism to weight the channels generated by a convolutional

layer, thus increasing or decreasing the values of each channel according to the relevance,

1http://dcase.community/challenge2018
2https://zenodo.org/record/2552860
3https://zenodo.org/record/3612637
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for the next layer, of the data it contains (Hu et al., 2020).

SE blocks have been used mostly in image processing. Hu et al. (2020) showed an ar-

chitecture called SENets, based on SE blocks, with which they achieved an improvement

of up to 25% in the 2017 ILSVRC competition, concerning the winning model of 2016,

using the ImageNet dataset (Russakovsky et al., 2015).

Recently, Zhang and Zhang (2022) presented SE-LPN-DPFF, a new model based on SE

blocks, and evaluated it on the identification of SAR ships using the OpenSARShip (Huang

et al., 2018), achieving an increase of up to 1.10% in accuracy over other state-of-the-art

models.

Patacchiola et al. (2022) presented a new model based on an adaptation of the SE

blocks, for few-shot image classification, improving by up to 1.5% in average accuracy

using 18 datasets from the Visual Task Adaptation Benchmark (Dumoulin et al., 2021).

SE blocks have also been used in audio processing. Koluguri et al. (2022) presented Ti-

taNet, an architecture for embedding generation in which SE blocks are applied to weight

the channels of its convolutional layers. TitaNet was evaluated in the speaker verification

task with the VoxCeleb1 dataset, achieving an EER of 0.68%, and in speaker diarization

with the datasets AMI-MixHeadset, AMI-Lapel (Carletta et al., 2005) and CH109 (Canavan

et al., 1997), achieving a diarization error rate (DER) of 1.73%, 1.99%, and 1.11%, respec-

tively.

Huang et al. (2021) presented a hierarchical multi-embedding joint model, composed

of two blocks, each with a Time Delay Neural Network (TDNN) and a RES2SETDNN

model which is based on the same TDNN but adding a Res2Net type convolution and

a squeeze-and-excitation block, and used a type of acoustic representation known as a

Phone Posteriorgram (PPG). One block was fed with 40-dimensional PPGs and another

block was fed with 120-dimensional PPGs. In addition, they used text-to-speech tools to

generate synthetic speech data with each accent determined, thus achieving an accuracy

of 83.63% on the AESRC2020 dataset.

In this thesis, we introduce a new architecture that adapts the SE blocks and uses them

in the field of audio processing. Unlike TitaNet and other state-of-the-art models apply-

ing SE blocks in audio processing (Xu et al., 2020; Xue and Zhou, 2022; Rouvier and Bous-

quet, 2021; Yu et al., 2022), in SaEENet, SE blocks do not weight the channels generated by

convolutional layers, but the information according to the relevance of the embeddings

generated from different fixed-size segments of audio. To the best of our knowledge, this

is the first time that squeeze-and-excitation blocks are used for embedding weighting in

the context of speech processing.



Chapter 3

Improvement of accent classification mod-
els through Grad-Transfer from Spectrograms and
Gradient-weighted Class Activation Mapping

This chapter focuses on the presentation of a new method called Grad-Transfer which

is able to transfer knowledge from a deep learning model to a classical machine learning

model used for accent identification.

Due to copyright issues, we have removed this chapter from the thesis. Here are the

details of the published article:

Andrés Carofilis, Enrique Alegre, Eduardo Fidalgo, Laura Fernández-Robles, “Im-

provement of Accent Classification Models Through Grad-Transfer From Spectro-

grams and Gradient-Weighted Class Activation Mapping," in IEEE/ACM Transactions

on Audio, Speech, and Language Processing, vol. 31, pp. 2859-2871, 2023, doi:

10.1109/TASLP.2023.3297961.

https://ieeexplore.ieee.org/document/10190103




Chapter 4

MeWEHV: Mel and Wave Embeddings for Human
Voice Tasks

This chapter presents a new deep learning architecture, called MeWEHV, for audio

classification models, which uses complementary information from embeddings gener-

ated through pre-trained self-supervised learning models fed by raw audio and embed-

dings generated by CNNs fed by MFCCs. A new speaker identification dataset is also in-

troduced which is highly gender-balanced and multi-accented.

Due to copyright issues, we have removed this chapter from the thesis. Here are the

details of the published article:

Andrés Carofilis, Enrique Alegre, Eduardo Fidalgo, Laura Fernández-Robles,

“MeWEHV: Mel and Wave Embeddings for Human Voice Tasks," in IEEE Access, vol. 11,

pp. 80089-80104, 2023, doi: 10.1109/ACCESS.2023.3300973.

https://ieeexplore.ieee.org/abstract/document/10198451




Chapter 5

Squeeze-and-excitation for embeddings
weighting in speech classification tasks

This chapter presents a new architecture, called SaEENet, which is an improvement

over MeWEHV, and introduces a novel mechanism for embedding weighting, which re-

duces the relevance of audio sections with missing or corrupted information. Other opti-

mizations to the architecture are also introduced which allow us to reduce the total num-

ber of model parameters. Due to copyright issues, we have removed this chapter from the

thesis. The related article is still in publication process.





Chapter 6

Conclusions and Outlook

6.1. Work Summary

This thesis evaluates and proposes new techniques and models in speech processing,

using machine learning and deep learning. Three main tasks were addressed: (i) lan-

guage identification, (ii) accent identification, and (iii) speaker identification. In recent

years, there has been a great interest in the development of transfer learning techniques

and their application in various models. This has helped to partially overcome known

limitations, such as the lack of sufficiently large and balanced datasets to train complete

models from scratch, and the need for large computational resources to execute the train-

ing phase of large models.

First, a new feature descriptor is proposed which we named Grad-Transfer. Grad-

Transfer allows transferring a part of the knowledge acquired by a deep learning model

during its training process, to a classical machine learning model, through a new imple-

mentation of the Grad-CAM model interpretability method.

In this work, we hypothesize that the position of elements in spectrograms plays a

crucial role in determining the category of audio examples. We suggest that heatmaps

generated from spectrograms using Grad-CAM, when used as inputs to a deep learning

model for accent identification, can retain valuable information about the relevant fea-

tures learned by the model, specifically in the position and shape of the identified points

of interest in the heatmap. We demonstrated the stated hypothesis by using unsuper-

vised learning methods and proposed a pipeline to generate Grad-Transfer descriptors,

with which we managed to increase the performance of the evaluated classical machine

learning models.

Another approach for applying transfer learning to speech processing is the creation

of embedding generation models. Recent activity in the field is based on training large

models with large datasets for a given task, with the purpose that the encoder layers learn

to generate embeddings that summarize the most relevant information of an audio, and

thus be able to reuse those embeddings in other tasks for which the model was not origi-

nally trained.

In this dissertation, we propose two new architectures for deep learning mod-

els, which we call Mel and Wave Embeddings for Human Voice Tasks (MeWEHV) and

Squeeze-and-excitation for Embeddings Network (SaEENet). Both architectures are
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based on the initial hypothesis that a deep learning model can take advantage of the com-

plementarity between the information contained in an imposed audio representation and

a non-imposed representation and achieve better results than those obtained by a model

fed only with one of the two types of representations.

MeWEHV takes as a baseline several of the most powerful state-of-the-art embedding

generation models, which use raw audio waves as inputs and manage to increase their

performance. The proposed architecture is composed of two branches of neural layers.

The first one includes the encoder layers of a pre-trained model with its frozen weights,

these layers generate a set of embeddings that are connected to subsequent layers in

charge of processing and converting the set of embeddings into a single one. The sec-

ond branch is fed by MFCCs that pass through a set of neural layers to generate a second

embedding. The embeddings from the first and second branches are combined and used

to generate the desired task outputs. MeWEHV was shown to outperform the state-of-the-

art models used as a baseline, fed by raw audio, and a model fed only by MFCCs, in the

tasks of language identification, accent identification, and speaker identification while

requiring a relatively small number of new parameters concerning the baseline models.

SaEENet represents an improvement over MeWEHV and adds multiple new features,

such as the use of depthwise separable convolution layers, GRU layers, and the introduc-

tion, for the first time in the context of audio processing, of an adaptation of squeeze-and-

excitation blocks for embedding weighting. Squeeze-and-excitation blocks were initially

proposed in the field of computer vision for weighting the channels of a feature map gen-

erated by convolutional layers. Thus, these blocks can increase or decrease the relevance

that the elements of each channel should have to improve the overall performance of the

model. In audio processing, embedding generation models divide any input audio into

small segments and generate an embedding of each segment. These segments can be

generated from noisy information or voiceless segments. For SaEENet, we use the new

implementation of squeeze-and-excitation blocks to automatically increase or decrease

the relevance of each of these embeddings. With the introduced changes, we managed to

outperform MeWEHV on three different datasets with the tasks of language, accent, and

speaker identification, requiring fewer trainable parameters.

In addition to this, a new audio dataset, called YouSpeakers204, was created using

several audios extracted from public YouTube videos and made publicly available. The

particularity of YouSpeakers204 is that it includes, among the metadata of each audio, a

pseudonymized identifier of the speaker, its gender, and its accent. The accent was ob-

tained by performing a manual search of each speaker’s information and it corresponds

to their country of origin. YouSpeakers204 is highly balanced in terms of gender and ac-

cent and allows the creation of robust speaker identification models for multiple accents,

age identification models, and accent identification models. It contains 19607 audio clips,

204 speakers and 6 accents.

In the rest of the chapter, we present the main conclusions of this work and potential

future lines of research.
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6.2. General Conclusions

This dissertation provided successful solutions to multiple tasks within the field of

speech processing, introducing new techniques and models. Some specific conclusions

that can be drawn from this research are:

1. Using the unsupervised learning techniques K-means and Birch, it was demon-

strated that the Grad-CAM model interpretability method can extract and store

part of the knowledge acquired by a model during its training phase for the ac-

cent identification task. For this purpose, a dimensional reduction was applied to a

set of heatmaps generated with Grad-CAM from a pre-trained accent classification

model, and it was verified, using K-means and Birch, that in most cases the clus-

ters generated correspond to the accent to which each example belongs. Hence, it

could be inferred that the heatmaps contain part of the knowledge acquired by the

pre-trained model during its training process.

2. The proposed new feature descriptor, called Grad-Transfer, is able to transfer the

knowledge acquired by a pre-trained deep learning model to a classical machine

learning model, leveraging the proven knowledge extraction and storage capabili-

ties of Grad-CAM. The application of Grad-Transfer to the task of accent identifica-

tion proved to be able to increase the performance of classical models. In this way,

classical models fed by Grad-Transfer along with spectrograms achieved better re-

sults than classical models fed by spectrograms alone and also than baseline deep

learning models fed by raw audio.

3. Using the new deep learning architecture Mel and Wave Embeddings for Human

Voice Tasks (MeWEHV), which focuses on the generation of rich embeddings, it was

experimentally demonstrated that there is a complementarity between the infor-

mation contained in embeddings generated from multiple self-supervised learning

models trained on raw audio and embeddings generated from MFCCs. MeWEHV

is composed of two inputs, on the one hand, raw audio waves, which pass through

a pre-trained model and a set of layers trained from scratch, responsible for gener-

ating an embedding E1, and on the other hand, MFCCs generated from the same

audio, which feed a set of layers trained from scratch, generating an embedding

E2. The embeddings E1 and E2 are merged and feed a set of classification layers.

MeWEHV exhibited superior performance in language identification, accent iden-

tification, and speaker identification tasks compared to baseline models fed only by

raw audio or fed only by MFCCs, requiring only a 0.21% increase in the number of

total parameters with respect to the largest baseline model evaluated.

4. In the same line, a second architecture for deep learning models, called Squeeze-

and-excitation for Embeddings Network (SaEENet), demonstrated multiple im-

provements over the MeWEHV architecture. SaEENet implements several new fea-
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tures with respect to MeWEHV, including the reduction of the number of trainable

parameters through the use of GRU layers, Depthwise Separable Convolutions, and,

for the first time, the presentation of squeeze-and-excitation neuron blocks applied

to the weighting of embeddings. By using the proposed squeeze-and-excitation

blocks, SaEENet can increase or decrease the relevance of embeddings generated

from different segments of the original audio, thus reducing the impact of embed-

dings generated from noisy or irrelevant information. SaEENet proved to be able

to achieve better results on language, accent, and speaker identification tasks than

MeWEHV and other state-of-the-art models on several of the datasets evaluated.

SaEENet reduced the number of trainable parameters by 31.73% with respect to the

reference model MeWEHV.

5. Through a comparative analysis of different types of squeeze-and-excitation blocks,

it was determined which squeeze-and-excitation block variations achieve the best

results, taking into account the branch of the SaEENet architecture in which they

are used. The variations evaluated are: Spatial Squeeze and Channel Excitation

(cSE), Channel Squeeze and Spatial Excitation Block (sSE), and Spatial and Channel

Squeeze & Excitation (scSE). It was experimentally concluded that for the weight-

ing of feature maps of a set of Depthwise Separable Convolutions layers, the best

results were achieved with scSE blocks, and for the weighting of embeddings the

best results were achieved with cSE blocks. These results can serve as a reference

for future research related to the enrichment of audio embeddings.

6.3. Open Problems and Future Work

In this section, we summarize the main lines of work that remain open, as well as

potential future work.

First, we discuss the presentation of the Grad-Transfer descriptor and its use for

knowledge transfer between a deep learning model and a classical machine learning

model. Hence, we can extract the following potential future work:

1. The implementation of Grad-Transfer focused on the task of accent identification,

but a potential line of future research is the application of the proposal to other

audio processing tasks, since the premise of Grad-Transfer is to take advantage of

spectrogram regions derived from heat maps. In general, this principle can be ap-

plied to any spectrogram-fed task.

2. It would also be interesting to compare the performance of Grad-Transfer with

other audio representations, such as MFCCs, and to evaluate its impact on the per-

formance of different models.
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Secondly, the MeWEHV and SaEENet architectures for voice processing models were

presented. Next, the open research directions based on these architectures are men-

tioned:

1. Both MeWEHV and SaEENet demonstrate that combining raw audio with MFCCs

in the same architecture yields better results than both representations used sepa-

rately. In future research, an alternative to be explored is the use of other imposed

representations in addition to MFCCs. Moreover, both architectures are composed

of two branches of neural layers, each one fed by a different type of representation.

Based on this, it is interesting to work with architectures composed of more than

two branches, where different combinations between several types of audio repre-

sentations, such as spectrograms and cochleograms, can be evaluated.

2. SaEENet introduces a new implementation of squeeze-and-excitation blocks for

embedding weighting. A potential future research line is the creation of “cross

squeeze-and-excitation" blocks that weigh the embeddings of a model, taking as

inputs not only the previous layer in its corresponding branch but also information

from the other branch of the model. A future cross squeeze-and-excitation block

could infer which information is redundant in different representations of the in-

puts and reduce their relevance. Similarly, it could increase the relevance of infor-

mation that is only in one corresponding branch for subsequent layers.

3. In order to build the SaEENet architecture, several variations were tested, includ-

ing the use of bidirectional LSTMs, and multi-head self-attention layers, but in our

experimentation they did not outperform the results obtained with the proposed

architecture. A possible future line of research would be to perform a deeper anal-

ysis with other architectures based on these layers, or other new state-of-the-art

layers.

4. Taking into account the results of MeWEHV and SaEENet, it is verified that there

is a complementarity between the embeddings generated by a pre-trained model

from raw audio and the MFCCs extracted from the same audios, since the results

obtained using both representations outperform the results achieved using each

representation separately. A future line of research would consist of determining

the causes of this complementarity, establishing what is the missing information in

both representations, in order to be able to propose, for example, a new represen-

tation that contains enough information to compete with the results presented in

this thesis, using only one type of input.
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