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Abstract: Invasive plants are non-native species that establish and spread in their new location,
generating a negative impact on the local ecosystem and representing one of the most important
causes of the extinction of local species. The first step for the control of invasion should be directed
at understanding and quantification of their location, extent and evolution, namely the monitoring
of the phenomenon. In this sense, the techniques and methods of remote sensing can be very
useful. The aim of this paper was to identify and quantify the areas covered by the invasive plant
Hakea sericea using high spatial resolution images obtained from aerial platforms (Unmanned Aerial
Vehicle: UAV/drone) and orbital platforms (WorldView-2: WV2), following an object-oriented image
analysis approach. The results showed that both data were suitable. WV2reached user and producer
accuracies greater than 93% (Estimate of Kappa (KHAT): 0.95), while the classifications with the
UAV orthophotographs obtained accuracies higher than 75% (KHAT: 0.51). The most suitable data
to use as input consisted of using all of the multispectral bands that were available for each image.
The addition of textural features did not increase the accuracies for the Hakea sericea class, but it did
for the general classification using WV2.
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1. Introduction

Invasive alien plants are non-native species which become established and disperse in their
new location, generating a negative impact on ecosystem services, economy and social welfare,
and representing the second most significant cause of species extinction [1]. In the case of alien trees
and shrubs, they often form dense stands which reduce surface water resources, diminish biological
diversity and increase fire hazards [2].

In Europe, more than 12,000 alien species are listed, from which 10 to 15% are predicted to
be invasive, with an estimated cost of 12 billion euros per year [3]. These numbers have led the
European Parliament to adopt new legislation to prevent and manage this threat. In Portugal, more
than 600 exotic species have been catalogued, which corresponds to ca. 18% of the total Continental
Portuguese flora [4]. Eight per cent of those exotic species are considered to be invasive and they
threaten the native flora and biodiversity [5]. Portuguese legislation [6] acknowledges 29 plan species
as invasive, while some authors have already raised that number to 49 [7], highlighting that 66 more
alien plant species are potentially invasive risks. In this context, assessing the size and location of
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the populations of these species is crucial to prevent their spread into new environments and also for
setting management priorities for invasive plants [1,8–10].

This situation is aggravated in habitats and ecosystems which are particularly vulnerable [11] and
prone to periodic wildfires [12], like the North of Portugal, where the National Park of Peneda-Gerês is
located. Hakea sericea (Schrad and Wendl) is an invasive shrub which is colonizing large areas in the
North of Portugal [1], and has been added to the list of invasive alien plants that was developed by the
European and Mediterranean Plant Protection Organization (EPPO) in 2012. The distribution of this
species is spatially irregular, since the seeds are largely dispersed by wind, creating new outbreaks
which are usually located in disturbed areas and/or with low soil nutrients [1,2]. Where it invades,
Hakea sericea forms dense impenetrable stands [13] and causes several negative impacts, including the
reduction in indigenous species diversity [1] and increases in biomass, fuel loads and the intensity of
wildfires [13]. Its quick spread in the North of Portugal has probably been caused by the large number
of wildfires which have affected the area [14,15], since the seeds are only released when the plant
dies or it is burnt [2,8,11,16]. Since the frequency and intensity of the fires in Portugal is growing [17],
the risk of Hakea sericea spreading is growing too. In order to mitigate its effects and expansion, it is
crucial to know the geographical location, extension and evolution of this species [10,18]. The tasks
related to locating the populations of invasive plant species in space and time can be overcome with
the use of different remote sensing sources and techniques, as stated by Bradley [12] and Huang and
Asner [19] in two comprehensive reviews.

Although the identification and mapping of land cover are typical tasks in remote sensing, specific
works about mapping invasive plant species were not common until the mid-1990s [19]. Since then,
the resulting distribution maps have been used to target the management of early infestations [19,20],
find the optimal time periods to apply the mitigation treatments [21], model the future invasion
risk [12,19,22] or monitor the effectiveness of the management actions [23]. Most works use just spectral
information from the sensors to identify the invasive plants [20–29], although some studies have found
that differences in texture and phenology are also effective for their detection [12,19,27,30], as well as
the fusion with non-optical data, like LiDAR (Light Detection And Ranging) point clouds [19,26,31].

Moderate spatial resolution imagery (pixel size larger than 10 m) has been widely used to detect
and monitor invasive plants; however, it is only effective when the patches and stands are large [21] and
it is usually unsatisfactory for detecting alien plants in the ecotone or for detailed mapping in a small
area [22,30,32–34]. In most cases, obtaining successful results with moderate spatial resolution datasets
requires the data from the sensors pushing the limits of the temporal or the spectral resolution [28,35,36],
in order to find a unique feature which helps differentiate the invasive species [30].

Approaches using moderate spatial resolution imagery can be a more appropriate solution
for large areas and for management at a large scale [30], while high-spatial resolution imagery
(pixel size smaller than 10 m) is necessary for a local or fine scale to provide more detailed
information [19,23,24,27,30] critical for targeted monitoring and eradication control. In some cases,
the increased spectral or temporal resolution compensates for the low spatial resolution [19,37],
as when comparing Pleiades versus Sentinel-2 imagery to detect two alien plant species in Kenya [24].
Bradley [12], Huang and Asner [19] and Müllerová et al. [30] have summarized the advantages and
constraints of different types of remote sensing imagery in invasive species monitoring, and show that
the choice of the most suitable imagery is case-specific, depending largely on both the target plant and
the management goal to be achieved. Regarding Hakea sericea, Ounuan [29] used IKONOS and SPOT
(Satellites Pour l'Observation de la Terre) imagery to map the bush in Portugal; the most accurate
results (Estimate of Kappa (KHAT): 0.32) were achieved with IKONOS imagery.

Although high spatial resolution remote sensing has been proven to be a valid method to map
these plants, there are still several drawbacks to these approaches, such as acquiring the data in a
timely manner and at an affordable cost (from airborne or satellite sensors) [19,27,37] or pre-processing
the images (Unmanned Aerial Vehicle (UAV) data) [30]. Another issue to consider is the classification
approach to apply. The traditional classification techniques that are based on pixels involve numerous



Remote Sens. 2017, 9, 913 3 of 17

constraints when they are applied to very high spatial resolution imagery (e.g., salt and pepper effect,
noise due to small shadows) [38,39]. Some of those limitations can be overcome by an object oriented
image analysis (OBIA), which defines a segment (also called object) as the minimum processing unit.
A comprehensive review of the fundamentals of OBIA and its applications can be read in Blaschke [40].
In this context, Fernandez-Luque et al. [41] and Fernandez-Luque et al. [42] found that OBIA was
suitable to map pervious and impervious areas using very high spatial resolution imagery (Archival
orthophotographs, GeoEye-1, WorldView-2 (WV2)). Regarding alien invasive species, [23,24,30] found
the object based approach successfully monitored and detected invasive grasses and trees in different
environments using multiple high spatial resolution imagery, while Boelman [30] concluded that
the choice between an object oriented or a pixel based approach depended on the plant monitored,
the characteristics of the imagery (UAV versus Pleiades) and the time of acquisition.

Shamsoddini et al. [43] showed the importance of choosing a suitable feature space as input
data and the relevance of using texture as a predictor when mapping vegetation using high spatial
resolution imagery (WV2). Along the same lines, Bradley [12], Jones et al. [27] and Tsai and Chou [44]
also found that the use of textural features improved the detection of invasive alien species, while
West et al. [22] found vegetation indices useful to predict the distribution of Bromus tectorum (cheatgrass)
in a post-wildfire landscape.

Since there is not a single straightforward approach which can be used to map most of the invasive
shrubs, there is a research gap that needs to be filled in order to obtain an operational tool to detect and
monitor the invasive species Hakea sericea using remote sensing techniques. Exploring the suitability of
two different types of high spatial resolution imagery and the use of derived vegetation indices and
textures to increase the accuracy of the results can help fill that gap. The working hypothesis is that
if both sources of imagery are suitable, they can be used together to access different spatio-temporal
scales of observation. The goal of this paper was to identify and quantify the areas covered by Hakea
sericea in the study area, using high spatial resolution data from UAV and WV2, using an object
oriented approach. The three objectives were: (i) to determine the suitability of WV2 and UAV imagery
to map this species; (ii) to identify the optimal combination of bands, indices and textures; (iii) to assess
if the accuracy of the classifications increases when textures are used.

2. Study Area

The study area was located in Viana de Castelo (the North of Portugal), in the “freguesías”
(parishes) of Sopo, Covas, Villar de Mouros, Arga de Sao Joao and Arga de Baixo, which belong to
the municipalities of Caminha and Vila Nova de Cerveira (Figure 1). The study area is comprised of
several river basins, where the agricultural lands are located in the lowest parts of the valleys and
account for 20% of the total area. Most of the land is covered by forests, shrubs or uncultivated fields.
It was chosen due to the numerous areas that were colonized by Hakea sericea, and the ecological
interest of Serra d’Arga (located in the study area), and which is aimed to be protected by Portuguese
law due to its unique landscape.



Remote Sens. 2017, 9, 913 4 of 17Remote Sens. 2017, 9, 913  4 of 17 

 

 

Figure 1. Study area located in Viana de Castelo (the North of Portugal), in the municipalities of 
Caminha and Vila Nova de Cerveira. Most of the land is covered by forests, shrubs or uncultivated 
fields. Coordinate reference system: WGS84 UTM29. 

3. Materials and Methods  

3.1. Data 

The following imagery was used as spectral input data: (i) WV2 multispectral and panchromatic 
images gathered on 15 February 2012; (ii) R-G-B and NIR-R-B orthoimages obtained from two UAV 
flights carried out on 1 August 2013. 

The WV2 images covered almost 2,550 ha of the study area (Figure 1). The acquisition date was 
selected by taking into account the flowering period of Hakea sericea, which takes places in winter and 
precedes the flowering period of the other species located in the study area. Thus, the spectral 
signature of Hakea sericea would be easier to identify. The WV2 image was an Ortho-Ready Standard 
2A product, geometrically corrected to WGS84 UTM Zone 29. The multispectral image consisted of 8 

Figure 1. Study area located in Viana de Castelo (the North of Portugal), in the municipalities of
Caminha and Vila Nova de Cerveira. Most of the land is covered by forests, shrubs or uncultivated
fields. Coordinate reference system: WGS84 UTM29.

3. Materials and Methods

3.1. Data

The following imagery was used as spectral input data: (i) WV2 multispectral and panchromatic
images gathered on 15 February 2012; (ii) R-G-B and NIR-R-B orthoimages obtained from two UAV
flights carried out on 1 August 2013.

The WV2 images covered almost 2550 ha of the study area (Figure 1). The acquisition date was
selected by taking into account the flowering period of Hakea sericea, which takes places in winter and
precedes the flowering period of the other species located in the study area. Thus, the spectral signature
of Hakea sericea would be easier to identify. The WV2 image was an Ortho-Ready Standard 2A product,
geometrically corrected to WGS84 UTM Zone 29. The multispectral image consisted of 8 bands (coastal
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blue (CB), blue (B), green (G), yellow (Y), red (R), red edge (RE), and two NIR (Nir1, Nir2)), with
a spatial resolution (GSD) of 2 m and 16 bits of radiometric resolution. The panchromatic image
(GSD: 0.5 m) had the same radiometric resolution.

The UAV imagery was gathered during two flights carried out along the same flight line at noon
on 1 August 2013. The drone Ebee® (https://www.sensefly.com/fileadmin/user_upload/images/
eBee-BROCHURE.pdf) carried the two cameras which were used during the flights. The visible data
(R,G,B) was gathered by a Canon IXUS 220 HS and the R, G and Nir data were captured by a Canon
PowerShot ELPH 300HS. The images from each flight were orthorectified to the WGS84 UTM Zone 29
coordinate system, using 50 ground control points and senseFly, with accuracies of 0.95 m for XY
and 0.89 m for Z. As a result, a R-G-B and a Nir-R-B orthoimage with a GSD of 0.07 m and 8 bits of
radiometric resolution were obtained. These orthoimages covered approximately 160 ha of the study
area (Figure 1).

3.2. Methods

The workflow was structured in three main tasks (Figure 2): data pre-processing, classification
and validation. Each process is described in the following sections.
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Figure 2. Summary of the workflow followed in this research. The processes are in circles, and the 
outputs in rectangles. 

3.2.1. Preprocessing 

The WV2 image was calibrated to at-sensor reflectance [45] and pan-sharpened using the 
panchromatic band. We used the Gram-Schmidt (GS) pan-sharpening approach [46] in order to make 
the spatial resolution of the WV2 and the UAV orthoimages more comparable. The spectral 
dimensionality of the WV2 data was increased by calculating vegetation indices and textural features. 
The following indices were computed: NDVI (Normalized Difference Vegetation Index), NDGI 
(Normalized Difference Green Index), NDYI (Normalized Difference Yellow Index), NDREI 
(Normalized Difference Red Edge Index), NDCBI (Normalized Difference Coastal Blue Index) and 
NDBI (Normalized Difference Blue Index). Their equations are available in Jensen [47] and 

Figure 2. Summary of the workflow followed in this research. The processes are in circles, and the
outputs in rectangles.

3.2.1. Preprocessing

The WV2 image was calibrated to at-sensor reflectance [45] and pan-sharpened using the
panchromatic band. We used the Gram-Schmidt (GS) pan-sharpening approach [46] in order to
make the spatial resolution of the WV2 and the UAV orthoimages more comparable. The spectral
dimensionality of the WV2 data was increased by calculating vegetation indices and textural
features. The following indices were computed: NDVI (Normalized Difference Vegetation Index),
NDGI (Normalized Difference Green Index), NDYI (Normalized Difference Yellow Index), NDREI
(Normalized Difference Red Edge Index), NDCBI (Normalized Difference Coastal Blue Index)
and NDBI (Normalized Difference Blue Index). Their equations are available in Jensen [47]

https://www.sensefly.com/fileadmin/user_upload/ images/eBee-BROCHURE.pdf
https://www.sensefly.com/fileadmin/user_upload/ images/eBee-BROCHURE.pdf
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and Fernandez-Luque et al. [41]. Regarding the textural features, we selected the local variance
and the 3 × 3, 5 × 5 and 7 × 7 pixel window sizes as texture indicators, due to their suitability to map
land cover from WV2 images and orthoimages [42]. The three textural features were computed for the
PAN (Panchromatic) image (T3, T5, T7), since it had the highest spatial resolution. Therefore, the final
feature space for the WV2 image comprised of 18 bands: 8 multispectral bands, 1 PAN, 6 vegetation
indices and 3 textural features (Figure 2).

The spectral dimensionality of the UAV orthoimages was also increased by calculating the
vegetation indices and textural features. Two NDVIs were derived: (i) NDVI-1: using the red and Nir
bands from the NirRG orthoimage; and (ii) NDVI-2: using the red band from the RGB orthoimage and
the Nir band from the NirRG orthoimage. The textural features were computed following a similar
procedure as the one that was used for WV2, so the local variance was calculated for each band of the
RGB orthoimage using 3 × 3, 5 × 5 and 7 × 7 pixel window sizes [10] (T3R, T3G, T3B, T5R, T5G, T5B,
T7R, T7G, T7B). As a result, the final feature space for the UAV orthoimages comprised of 15 bands:
4 multispectral bands (RRGB, GRGB, BRGB, NirNirRG), 2 vegetation indices and 9 textural features
(Figure 2).

All of the tasks were completed using the software ENVI 5.0.

3.2.2. Processing and Analysis (Classification)

An object-based image analysis was carried out in order to identify seven different classes of land
cover in the study area (Hakea sericea, Woodlands, Infrastructures, Bare soil, Shrubs, Agricultural lands
and Water), using a supervised classification approach with the nearest neighbor algorithm (Figure 2).
This approach requires creating objects from pixels, a process which is known as segmentation. We used
the multiresolution segmentation algorithm implemented in eCognition 8.9 [48], which has been
successfully applied to segment WV2 imagery and very high spatial resolution orthoimages [40–42].
The parameters which had to be defined in order to apply the algorithm were: the input data (layers),
the scale parameter, and the homogeneity criteria. The characteristics of each parameter are described
in Definiens Imaging [49]. The WV2 image was segmented using the 8 multispectral pan-sharpened
bands as input data, with the R, G, RE, Nir1 and Nir2 bands having double the weight of the CB, B,
and Y bands. After several tests, a scale parameter of 20, a shape of 0.3 and a compactness of 0.5 were
chosen, in order to obtain homogeneous objects which did not cover more than one class. Following
a similar procedure, the UAV imagery was segmented using the 3 bands of the RGB image and the Nir
band of the NirRG image as input data, with a scale parameter of 50, a shape of 0.2 and compactness
of 0.5.

The training areas for each class were defined, taking into account the sample unit and the sample
size. Table 1 shows the training areas for each land cover class. It should be noted that in the area
covered by the UAV orthoimages, two of the land cover classes were missing (Water and Agricultural
lands), so the training areas were not defined for those classes.

Table 1. Training areas and validation points for each land cover class.

Class
WorldView-2 UAV

Training Areas Validation Points Training Areas Validation Points

Forest 208 101 111 30
Hakea sericea 95 76 54 50

Shrubs 83 86 17 31
Infrastructures 288 43 12 47

Bare soil 98 51 32 54
Agriculture 98 46 - -

Water 6 8 - -
Total 876 411 226 212
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The next step consisted of defining the data (spectral bands, vegetation indices, textural features)
that were used as input to classify the images. Thus, 12 feature spaces (FS) were defined for
the VW2 classification and 8 FS for the orthoimages (Table 2), based on the results obtained by
Fernandez-Luque et al. [42]. The FS that were tested were grouped as: (i) basic information
(combinations of the available spectral bands for the WV2 and the UAV orthoimages); (ii) rates
including vegetation indices; and (iii) several combinations of texture indices based on the local
variance: Index2 plus T3, T5 or T7 (obtaining Texture3, Texture5 and Texture7), Index2 plus all the
different texture indices (obtaining TextureAll, for WV2), and Basic1 plus T3, T5, and T7 (in order to
determine the influence of the Index2 feature set).

Table 2. Set of spectral bands, indices and textures which define each feature space (FS). Notes:
for Unmanned Aerial Vehicle (UAV) imagery, bands R, G, B belong to the RGB orthoimage and the Nir
band to the NIrRG orthoimage.

FS UAV Orthoimages WorldView-2

Basic 1 R + G + B + Nir R + G + B + Nir1
Basic 2 - R + G + B + Nir1 + PAN
Basic 3 - R + G + B + Nir1 + CB + Y + RE + Nir2
Basic 4 - Basic 3 + PAN
Basic 5 - Nir1 + Nir2 + RE + R

Index 1 Basic 1 + NDVI-1 NDVI + NDGI + NDYI + NDREI +
NDCBI + NDBI

Index 2 Basic 1 + NDVI-2 Basic 1 + Index 1

Texture 1 Basic 1 + (T3R +T3G + T3B )+
(T5R + T5G + T5B) + (T7R + T7G + T7B) Basic 3 + T3PAN + T5PAN + T7PAN

Texture 3a Index 1 + T3R + T3G + T3B Index 2 + T3PAN
Texture 3b Basic 1 + T3R + T3G + T3B -
Texture 5 Index 1 + T5R + T5G + T5B Index 2 + T5PAN
Texture 7 Index 1+ T7R + T7G + T7B Index 2 + T7PAN
Texture A - Index 2 + T3PAN + T5PAN + T7PAN

The classification algorithm that was applied was the Nearest Neighbor (NN) algorithm.
This non-parametric method achieves suitable results when the number of required training samples
is not very high [50]. The 1-NN approach [51], which is implemented in the eCognition software,
was used. This approach computes the membership probability value of every object belonging to each
class [50,52]. The values of the parameters slope and minimum distance to the samples (as defined by
Baatz et al. [53]), were set to 0.2 and 0.7, respectively.

3.2.3. Validation

In order to compare the results of the classifications using the different FS, defined in Table 2,
the confusion matrix, overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA) and an
estimate of Kappa (KHAT) (one for the complete classification and another one for the Hakea sericea
class) were calculated, as described in Congalton and Green [54]. The confidence intervals for the
accuracies were calculated using the adjusted Wald method (p < 0.05), because it corresponds to the
maximum likelihood estimate when the sample size is not large [55]. A random stratified sampling
design was followed in order to choose the validation points: 411 for WV2 and 212 for the UAV
orthoimagery. The validation points were verified in the field. The Hakea sericea class was validated
using 76 and 50 validation points (for WV2 and UAV data, respectively), which is a suitable sample
according to Congalton [56]. The number of validation points for each land cover class is displayed in
Table 1.

To determine whether the classification was significantly better than a random classification,
the Z statistic for the global KHAT and the KHAT for the Hakea sericea class (p < 0.05) was calculated [54].
In addition, the test described in Fernandez-Luque et al. [41] and Congalton and Green [54] was applied,
and the statistic Zij was calculated to determine whether the two KHAT (and therefore two confusion
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matrices) were statistically different (p < 0.05 or p < 0.10) [Equation (1)]. This test was used to make
comparisons between the complete classifications (all the land cover classes) and also between the
classifications if only the Hakea sericea class was considered. If Zij ≥ 1.96, the error matrices i and j are
considered significantly different at a 95% confidence level. The threshold value for a 90% confidence
level was 1.654. Then, 144 comparisons were made for the WV2, while the number of comparisons
between the UAV classifications was 64.

Zij =

∣∣∣K̂i − K̂j

∣∣∣√
v̂ar(K̂i) + v̂ar(K̂j)

(1)

where K̂i and K̂j represent KHAT (the estimate of kappa) for the confusion matrix i and j,
correspondingly; v̂ar(K̂i) and v̂ar(K̂j) are estimates of the variance of confusion matrix i and j,
correspondingly (see [21] for further information).

3.2.4. Feature Space Selection

The criteria to choose the most suitable FS for the mapping of Hakea sericea using WV2 imagery
or UAV are listed below (in this order of priority). If two or more FS were not significantly different
considering the first criterion, the second was tested, and if needed the following ones.

1. The highest KHAT for the Hakea sericea class (with a statistically significant difference; p < 0.05).
2. The highest producer’s accuracy the Hakea sericea class (lowest omission error). The classifications

will be used to locate Hakea sericea with the aim of eliminating them; therefore it is more important
to minimize the omission error than the commission error.

3. The highest user’s accuracy for the Hakea sericea class (lowest commission error).
4. Minimum volume and complexity of the input data (i.e., feature space, need of derived data like

indices), because of their contribution to the processing time.
5. The highest overall KHAT (with a statistically significant difference; p < 0.05).
6. The highest overall accuracy of the classification.

4. Results

4.1. WorldView-2

The highest PA values for the Hakea sericea class (lowest omission errors) were obtained when
using the feature spaces “Basic 3”, “Basic 4” and “Texture 1” (93.59%) (Table 3). This result shows
that adding textural features did not diminish the omission error for this class. On the other hand,
the PA value obtained with “Index 1” (the lowest value, 51.28%) showed that the use of indices did not
increase the accuracy for this class. The UA was higher than PA in all cases for the Hakea sericea class,
so the commission errors were smaller than the omission errors. The highest UA was reached when
using Basic 3; therefore the addition of textural features did not make the commission error of the class
decrease. The lowest UA and PA were obtained using “Index 1” and “Basic 5”.

As a measure of agreement or accuracy, KHAT is considered to show strong agreement when
it is greater than 0.75 [57], while values lower than 0.40 indicate poor agreement [54]. All of the
KHAT values for the Hakea sericea class were statistically significant at a 95% confidence level
(Z > 1.96). The agreement for the Hakea sericea class was greater than 80% in all the classifications
(i.e., KHAT > 0.80) (Table 3). The test to compare the accuracies (Zij) showed that all the FS were
significantly more accurate than “Index 1” (p < 0.10). There were no significant differences among the
classifications involving textural features (p < 0.10).
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Table 3. General accuracy results for the WorldView-2 (WV2) study. Overall Accuracy (OA), Producer’s
Accuracy (PA), and User’s Accuracy (UA) values are expressed in %. The Wald adjusted confidence
intervals (p < 0.05) are shown for PA and UA. Along the KHAT column, figures presenting different
letters indicate significant differences for the KHAT statistic (p < 0.05).

Feature Space
All Classes Hakea sericea

OA (%) KHAT PA (%) UA (%) KHAT

Basic 1 (B1) 75.61 0.70 a 76.92 (66.97–85.63) 89.55 (80.96–96.03) 0.88 ab

Basic 2 (B2) 79.02 0.74 ab 89.74 (81.92–95.74) 92.11 (84.79–97.43) 0.91 ab

Basic 3 (B3) 80.98 0.77 b 93.59 (86.84–98.33) 94.81 (88.42–99.17) 0.95 b

Basic 4 (B4) 81.22 0.77 b 93.59 (86.84–98.33) 93.59 (86.84–98.33) 0.93 b

Basic 5 (B5) 78.05 0.73 ab 89.74 (78.05–93.17) 88.61 (80.58–94.88) 0.87 ab

Index 1 (I1) 70.00 0.63 c 51.28 (40.29–62.22) 83.33 (71.46–92.74) 0.81 a

Index 2 (I2) 74.63 0.69 c 76.92 (66.97–85.63) 89.55 (80.96–96.03) 0.88 ab

Texture1 (T1) 82.20 0.78 b 93.59 (86.84–98.33) 93.59 (86.84–98.33) 0.93 b

Texture3a (T3a) 80.00 0.75 ab 88.46 (80.34–94.81) 93.24 (86.16–98.23) 0.93 b

Texture5 (T5) 80.00 0.75 ab 89.74 (81.92–95.74) 93.33 (86.33–98.26) 0.93 b

Texture7 (T7) 80.24 0.76 ab 91.03 (83.52–96.64) 93.42 (86.50–98.28) 0.93 b

TextureAll (TA) 81.46 0.77 b 91.03 (83.52–96.64) 94.67 (88.12–99.07) 0.94 b

Overall, the KHAT showed that all the classifications had a moderate or strong agreement
(between 0.63 and 0.77) (Table 3). All the error matrices (classifications) were statistically significant
at a 95% confidence level, since Z > 1.96. All the FS which included textures provided results
that showed a strong agreement (KHAT ≥ 0.75). The overall KHAT values that were obtained
in this work (excluding the results from using “Index 1” or “Index 2”) were larger than the ones
in Fernandez-Luque et al. [42], which were between 0.3841 and 0.7734. The results of the Zij test
to compare the overall KHAT showed that the classifications provided by “Basic 3” and “Basic 4”
had a significantly higher agreement than “Basic 1” (p < 0,10 and p < 0.05, respectively); therefore,
the addition of the CB, Y, RE and Nir2 bands as input data improved the classification. All the FS
produced more accurate classifications than “Index 1” (p < 0.10 for “Basic 1” and p < 0.05 for the other
FS). There were no significant differences among the classifications using textural features (p < 0.10)
or indices (p < 0.10). Therefore, the most accurate classifications according to the overall KHAT were
the ones using the following feature spaces: “Basic 2”, “Basic 3”, “Basic 4”, “Texture 1”, “Texture 3a”,
“Texture 3b”, “Texture 5” and “Texture 7”, since there were no significant differences among them and
they showed the highest KHAT values.

4.2. UAV

The data set “Texture 1” (80.77%) achieved the highest PA for the Hakea sericea class (lowest
omission error), followed by “Basic 1”, “Index 1”, and “Index 2” (76.92%) (Table 4). The lowest PA was
obtained when using “Texture 5” (71.15%). This result showed that, when textural features with an
unsuitable window size (in this case, equal to or greater than 5 pixels) were included, the omission error
for the target class increased. Regarding the UA, it was lower than the PA in all cases, so the commission
errors were larger than the omission errors (opposite of the WV2 classifications). The highest UA was
obtained by the datasets “Basic 1” and “Index 2”. The latter showed that when the NDVI was included
as input data, it did not diminish the commission error for this class. The highest omission errors were
achieved by the datasets which contain textural features, in particular “Texture 7”.
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Table 4. General accuracy results for the UAV orthoimage study. OA, PA, and UA values are expressed
in %. The Wald adjusted confidence intervals (p < 0.05) are shown for PA and UA. Along the KHAT
column, figures presenting different letters indicate significant differences for the KHAT statistic
(p < 0.05).

Feature Space All Classes Hakea sericea

OA (%) KHAT PA (%) UA (%) KHAT

Basic 1 (B1) 75.47 0.68 a 76.92 (64.59–87.41) 72.90 (60.44–83.87) 0.51
Index 1 (I1) 75.00 0.68 a 76.92 (64.59–87.41) 72.90 (60.44–83.87) 0.51
Index 2 (I2) 75.47 0.68 a 76.92 (64.59–87.41) 72.90 (60.44–83.87) 0.51

Texture1 (T1) 66.98 0.57 bc 80.77 (68.98–90.46) 66.94 (55.44–77.75) 0.43
Texture3a (T3a) 69.34 0.61 b 76.92 (64.59–87.41) 70.93 (58.68–81.96) 0.48
Texture3b (T3b) 69.81 0.61 b 76.92 (64.59–87.41) 70.93(58.68–81.96) 0.48

Texture5 (T5) 67.45 0.58 c 71.15 (58.24–82.62) 67.14 (54.85–78.61) 0.43
Texture7 (T7) 65.57 0.56 c 73.08 (60.33–84.24) 71.66 (59.00–82.93) 0.49

The KHAT for the Hakea sericea class ranged between 0.43 and 0.51, which indicated a moderate
agreement [54]. The test to compare the accuracies for the target class (Zij) showed that there were
no significant differences among the classifications (p < 0.10), and therefore none of the classifications
could be considered more accurate that the others.

The overall KHAT showed moderate agreement for all the classifications (0.56 ≤ KHAT ≤ 0.68).
The classifications using the datasets “Basic 1”, “Index 1” and “Index 2” achieved the highest agreement,
since they provided the largest KHAT, and the Zij statistic indicated that there were no significant
differences among them (p < 0.05). The classifications which did not use textural features were
significantly more accurate than the ones using them (p < 0.05). Hence, using textural features did not
improve the overall agreement of the classification.

4.3. Feature Space Selection

Taking into account the criteria described in Section 3.2.4, the most suitable data set to map
Hakea sericea using the WV2 image was the dataset “Basic 3” (Table 5). This dataset led to an OA
of 80.98% (KHAT: 0.77), and a UA and PA for Hakea sericea of 94.81% and 93.59%, respectively
(KHAT: 0.81). Although it was not required, the spatial representation of the classification was
reviewed and considered satisfactory (Figure 3). Regarding the UAV orthoimages, the most accurate
results were obtained using the “Basic 1” set (Red, Green, Blue, NIR), achieving an OA of 75.47%
(KHAT: 0.68), and UA and PA for Hakea sericea of 72.90% and 78.00%, respectively (KHAT: 0.73)
(Table 5). The spatial representation of the classification was reviewed and considered satisfactory
(Figure 4).

Table 5. Characteristics of the selected feature spaces for classifying the WV2 image and the
UAV orthoimages.

Feature Space WorldView-2 UAV

Name Basic 3 Basic 1
KHAT (Hakea sericea) 0.95 0.51

Producer’s accuracy (%) 93.59 76.92
User’s accuracy (%) 94.81 72.90

Bands CB, B, G, Y, R, RE, Nir1, Nir2 R, G, B, Nir
Overall accuracy (%) 80.98 75.47

KHAT (global) 0.77 0.68
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4.4. Area Colonized by the Hakea sericea in the Study Area

The extension colonized by Hakea sericea in the study area covered by the WV2 image was
approximately 279.216 ha, which represented 10.96% of the total area (Figure 3). Regarding the area
studied using UAV imagery, the Hakea sericea occupied 63.48 ha (40.58% of the total extension) (Figure 4).
It should be noted that the area covered by the different classes was not comparable between the
classifications, since the study area was different for each case. Although the images were not captured
on the same dates or during the same season, in the area where the images overlap, the difference in
the extension provided by both sources of imagery was smaller than 15% (63.48 ha for the UAV and
55.16 ha for WV2).

5. Discussion

The WV2 and UAV (Red, Green, Blue, NIR) images produced accurate maps of the distribution
of Hakea sericea in the study area, with omission and commission errors smaller than 10% and 30%,
respectively. The use of high spatial resolution data for detecting or monitoring alien invasive species
has also provided successful results for other species, such as Spartina cordifolia by using Google
Earth images [19], Squismus arabicus [58] and Melaleuca quinquenervia [37] with IKONOS imagery,
Lythrum salicaria and others with Quickbird [59], Prosopis spp. with Pleiades and 10-m Sentinel-2
data [24], or Heracleum mantegazzianum and Fallopia japonica with Pleiades 1B and (Red, Green, Blue,
NIR) UAV images [30].

The accuracies obtained with WV2 (PA: 93.59%; UA: 94.81%) are within the range or higher
than the ones attained in the works mentioned above. Two factors may have played a significant
role in these results: the spectral resolution and the date of acquisition. On the one hand, the low
spatial resolution (compared to the UAV data, for instance) can be compensated by a more detailed
spectral signature derived from more spectral bands [24], as shown by the errors achieved, which were
smaller than the ones obtained with Pleiades [24,30] or UAV [30] for other species. On the other hand,
the WV2 image was gathered in February, when the bush is in bloom, which provides a characteristic
spectral signature which makes the detection easier, since most of the native plants are not yet in the
flowering season. Unique phenological characteristics have been successfully used by other authors
to monitor alien species, mainly during the flowering or fruiting season [12,30,60–62], demonstrating
that regardless of the imagery or classification method, phenology is the key issue for the detection
of many species [12,19,63,64]. Regarding the accuracies obtained with the UAV imagery (PA: 76.92%;
UA: 72.90%), it should be pointed out that the areas with large and thick patches of Hakea sericea,
where there were no trees, were classified more accurately than the areas where forest stands are
present (SW of the UAV study area, Figure 4).

The mapping accuracies obtained by using WV2 or UAV imagery are sufficient for its operational
implementation to create maps for locating and monitoring Hakea sericea in the North of Portugal.
Both imagery sources can be used together to access different spatio-temporal scales of observation.
There is a need for developing management strategies at different spatial scales [10,18], since the
detection at early stages, the detection of mature stands/patches or the monitoring of the control
measures do not have the same requirements of spatial accuracy and detail. In the case of Hakea
sericea, the detection should be done primarily at a regional scale (since the invasion covers large areas),
while the estimation of the effectiveness of the control (more likely to be concentrated in small areas)
requires a finer spatial and temporal assessment [8]. Therefore, we recommend the use of satellite
imagery for works with a moderate spatial and temporal coverage, and UAV data for high spatial and
temporal resolution outputs.

The use of spectral indices or textures did not increase the accuracy of the mapping of Hakea sericea
using WV2 or UAV imagery, since the two most suitable datasets consisted of all the spectral bands
available for the image. From the point of view of the processing time, these two datasets (Basic 3
and Basic 1) were some of the least complex datasets and therefore they could be used operationally.
These results for WV2 contrast with Fernandez-Luque et al. [42], which found that the most suitable
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dataset to classify pervious and impervious areas using WV2 imagery included textural features.
It should be highlighted that that work did not distinguish between vegetation land covers. Moreover,
the fact that the species was in bloom made its spectral signature easier to differentiate, and therefore
the margin for achieving significantly more accurate results was probably smaller. Along the same
lines, it should also be noted that if the aim was to map the seven land cover classes (not just the
Hakea sericea class), the most suitable feature space for WV2 would be “Texture 1” (KHAT: 0.7846;
OA: 82.20%), which is similar to the results obtained by Fernandez-Luque et al. [42]. Mapping all
the cover classes has been proven to be interesting when monitoring Hakea sericea, since fragmented
landscapes, with a multitude of anthropogenic and ecological disturbances are more prone to alien
plant invasion [11]. Thus, the land cover maps can be used to estimate the degree of fragmentation,
which would be then input into the risk model for the spread of the bush.

It should be highlighted that, for the UAV imagery, although using the texture (“Texture 1”) led
to a smaller omission error (PA: 80.77%), this data set was not selected because it was significantly
less accurate for the rest of the criteria and the spatial representation of the classification was not
suitable. Large areas of Hakea sericea were misclassified as woodlands, which did not happen when
the textures were not used. The next criterion (commission error) was applied and therefore “Basic 1”
was chosen as the optimal dataset, since (i) there were no differences between this data set and the
ones which included the indices and (ii) “Basic 1” required the least amount of time to be created
and processed. In a similar work, Fernandez-Luque et al. [41] mapped impervious areas using
archival orthophotographs and found that the classifications were improved by using textural features.
However, their work did not involve mapping vegetation land covers. Jones et al. [27] also found that
the use of textures increased the accuracy for mapping Japanese knotweed from aerial images, but they
did not provide an assessment of accuracy so their results are difficult to compare. Franklin et al. [65]
succeeded in detecting knotweed using a classifier based on pixels combined with textural information
derived from a moving kernel. The low impact of the use of the texture in our work might be related to
the size of the window used to calculate it, which maybe was not optimal for the image. The influence
of the window size has been recognized by several authors [44,66,67], but so far there is no general
method to determine the optimum size.

The approach and the results obtained in this paper are not meant to be used for the early detection
of a small, nascent population of Hakea sericea. The areas tested and the maps obtained correspond
with heavily infested locations. This information is not just useful to map the invasion and plan its
mitigation [1,8,10], but it is also a valuable tool for risk assessment by growing the knowledge about
temporal and spatial patterns of the invasion [12]. At a regional scale, the risk of invasion could be
also evaluated by mapping burnt areas, which are more likely to be infested by Hakea sericea [2,12],
using remote sensing. WV2 or Sentinel 2B imagery could be used for that purpose [68–70].

We propose the use of the tools tested in this paper in the frame of a management plan to control
the invasion of Hakea sericea in the North of Portugal, focusing on the largest and most infested areas.
That plan should, at least, include the following steps (in chronological order):

(i) identify the areas where invasive Hakea sericea is already installed;
(ii) develop a working protocol in a procedural framework for quick and easy monitoring of

the species;
(iii) identify the key areas that need to be controlled for intervention and eradication of the species;
(iv) after controlling the species, promote the recovery or installation of mixed forests in the area,

when possible;
(v) maintain and manage the new forest.

6. Conclusions

The results show that both UAV and WV2 imagery are suitable for mapping the invasive
species Hakea sericea. WV2 had user’s and producer’s accuracies greater than 93% (KHAT: 0.95),



Remote Sens. 2017, 9, 913 14 of 17

while the classifications with the UAV orthophotographs obtained accuracies higher than 75%
(KHAT: 0.51). The acquisition date might have been crucial in order to achieve these high accuracies
using WV2, and therefore it is recommended that the data used corresponds with the flowering period
(December–February). Both sources of imagery can be used together to access different spatio-temporal
scales of observation, which is very useful from an operational point of view since the detection and
control phases have different spatial and temporal requirements.

The most suitable data to use as input consisted of all the multispectral bands that were available
for each image. For WV2, the use of indices made the accuracies decrease, while for the classification
of the UAV orthoimages, their use did not modify the results significantly.

Regarding the use of textural features (variance), it did not increase the accuracies for the Hakea
sericea class (p < 0.05) for either the WV2 or the UAV imagery. However, for the general classification
(all the land cover classes) using WV2, the use of textures increased the accuracy, and its use is therefore
recommended since the land cover maps can be used to estimate the degree of fragmentation in the
landscape, which is highly related to the risk of invasion.
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