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Abstract: Aboveground biomass (AGB) is one of the strategic biophysical variables of 

interest in vegetation studies. The main objective of this study was to evaluate the Support 

Vector Machine (SVM) and Partial Least Squares Regression (PLSR) for estimating the 

AGB of grasslands from field spectrometer data and to find out which data pre-processing 

approach was the most suitable. The most accurate model to predict the total AGB 

involved PLSR and the Maximum Band Depth index derived from the continuum removed 

reflectance in the absorption features between 916–1,120 nm and 1,079–1,297 nm  

(R
2
 = 0.939, RMSE = 7.120 g/m

2
). Regarding the green fraction of the AGB, the Area 

Over the Minimum index derived from the continuum removed spectra provided the most 

accurate model overall (R
2
 = 0.939, RMSE = 3.172 g/m

2
). Identifying the appropriate 

absorption features was proved to be crucial to improve the performance of PLSR to 

estimate the total and green aboveground biomass, by using the indices derived from those 

spectral regions. Ordinary Least Square Regression could be used as a surrogate for the 

PLSR approach with the Area Over the Minimum index as the independent variable, 

although the resulting model would not be as accurate.  

Keywords: biomass; continuum removal; spectrometer; hyperspectral; radiometry;  

Area Over the Minimum; Maximum Band Depth; PLSR; SVM; OLSR 
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1. Introduction 

Biomass is one of the strategic biophysical variables of interest in vegetation studies, regardless of 

being in cultivated or natural areas [1]. Aboveground biomass (AGB) can be defined in terms of fresh 

matter weight or dry matter weight, these two variables being strongly related, as well as water  

content [2]. The possibility of estimating the vegetation biomass and its modelling can aid in crop and 

bioenergy management [3], regarding the estimation of the yield and the management of its  

residuals [4]. It is also crucial due to its direct relationship with carbon and the holistic study of these 

systems as carbon sinks [5].  

Measuring biomass directly is a destructive and expensive procedure [6], so researchers and 

managers are looking for non-destructive and repeatable methods to monitor biomass [7]. Remote 

sensing techniques meet the two previous requirements, and in addition, they allow both spatial and 

temporal analyses [8]. Some of the studies conducted in the past were related to data characterised by a 

high spectral resolution in the electromagnetic region between 400–2,500 nm, as a result of the 

absorption features in the reflectance curves [9–13]. Simple approaches using vegetation indices 

derived from the red and the near infrared (NIR) bands (e.g., simple ratio, normalised vegetation 

index) have been widely used to estimate biomass (e.g., [14,15]). Nevertheless, several studies have 

showed that the computation of narrow banded indices from broad bands can be inadequate to estimate 

biomass, due to variations in the colour of the soil, the canopy structure and/or atmospheric conditions [15]. 

Moreover, the NDVI that is calculated using these data can reach an asymptotic value once a certain 

biomass value is reached [16]. In contrast, some studies have found that indices computed from 

specific narrow-bands (hyperspectral data) improve biomass estimation [17,18]. In this context, the 

application of spectral transformations and statistical techniques that consider continuous regions of 

the spectrum is outlined as an opportunity to improve the models to estimate aboveground biomass [7]. 

Hyperspectral measurements of vegetation canopies obtained from hand-held  

spectroradiometers [7,10,12,13] or airborne sensors [15,19,20] contain useful information for the 

characterisation of vegetation, which could not be retrieved from multi-spectral imagery previously. 

However, these data sets contain large amounts of redundant information [21,22]. Also they are more 

affected by a lower signal-to-noise ratio. These two shortcomings have not deterred researchers from 

using hyperspectral datasets to model biophysical variables, but they have encouraged the development 

of techniques to overcome them.  

The strong multicollinearity caused by a number of samples much smaller than the number of 

spectral bands considered as independent variables results in high correlation among the predictors and 

unreliable models [23]. One well known approach that can be used to avoid this problem is the selection of 

a statistical technique which can take into account multicollinearity [24]. Two of the most dominant 

approaches in this area are listed in Table 1 (Partial least square Regression—PLSR—and Support 

Vector Machine—SVM-), showing as well some valuable studies related with the estimation of 

vegetation biophysical variables. PLSR and SVM are full spectrum methods which have been widely 

used in chemometrics [25] and lately in studies related to the estimation of biomass from hyperspectral 

data [7,20,26]. Ordinary Least Squares Regression (OLSR) has been successfully used in some of 

these studies, albeit it required a previous selection of the input data (i.e., only a limited number of 

independent features) [18,27].  



Sensors 2013, 13 10029 

 

 

Table 1. Examples of statistical techniques for estimating vegetation biophysical variables 

from hyperspectral data. 

Code Technique Examples 

PLSR Partial least square regression [3,7,15,19,20,28–35] 

SVM Support vector machine [20,35–38] 

OLSR Ordinary Least Squares Regression  [1,13,15,18,27,39,40] 

In order to improve the signal-to-noise ratio of these data and enhance the information related to the 

biophysical variables, different pre-processing transformations have been applied to transform spectral 

data, preparing them for modelling. Pre-processing transformations of spectral data have been proved 

to improve the accuracy of prediction models [15,20,32,41–43]. Some of the most common 

transformations include: smoothing, averaging, normalisation, scatter correction, baseline correction, 

and derivatives [32], while the most widely used regarding AGB estimation is the continuum removal 

(CR) transformation [15,18,20,44]. In addition, the use of indices derived from the continuum removed 

spectrum has yielded accurate models to predict AGB and related biophysical variables [18,27]. 

Although some pre-processing transformations have been proposed, the choice of which pre-processing 

transformation to use might be related to the statistical technique and the region of the spectra 

considered as input data.  

The main objective of this study was to evaluate the performance of two advanced statistical 

techniques (PLSR and SVM) for estimating the aboveground biomass from field spectrometer data and 

to find out which data pre-processing approach was the most suitable. The total dry aboveground 

biomass (TAGB) was considered as the target variable, as well as the green fraction of the dry 

aboveground biomass (as an absolute value (GAGB) and as a percentage of the total dry aboveground 

biomass (%GAGB)). In addition, several data pre-processing techniques were tested in order to reduce 

the noise in the data and to boost the accuracy of the statistical methods. Thus, the following 

approaches were compared: (i) PLSR applied to different parts of the spectrum (not transformed and 

transformed by the continuum removal and other transformation methods), (ii) PLSR applied to 

indices derived from the continuum removal transformation, (iii) SVM regression applied to different 

parts of the spectrum, and (iv) OLSR applied to indices derived from the continuum removal 

transformation (as a reference). 

2. Material  

2.1. Study Area 

This study was developed in two adjacent grassy areas located in the municipality of Villanueva de 

La Cañada (Madrid, Spain) and is defined by their central coordinates ETRS89 UTM30 

4163814478513 and ETRS89 UTM30 4164634478505 (in metres). Both test areas were covered by 

commercial grass/clover (Lolium perenne, Poa pratense and Trifolium repens) and were irrigated and 

coetaneous. 30 sample plots were placed in the study area in order to estimate their biomass and to be 

characterised radiometrically. Each 1 m × 1 m plot was established in a 2 m × 2 m homogeneous part 

of the grassy area. Each plot was then divided into four subplots (50 cm × 50 cm), which were the 

smallest sample units considered in this research. In these subplots, aboveground biomass was 
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collected and spectral data were recorded. The field work was conducted on the 22 July 2012 and the 

plot locations were determined using a GNSS Topcon Hiper II. The GPS data was post-processed 

using reference stations in order to refer the coordinates to ETRS 89.  

2.2. Canopy Reflectance Measurements  

For each 50 cm × 50 cm subplot the top of the canopy reflectance was measured. Spectral data was 

gathered in a spectral range of 350–2,500 nm using an ASD FieldSpec
®

4 spectroradiometer. Hand held 

measurements were made with a 1.5 m fiber optic (25° field of view) from a height of about 1.5 m 

above the ground under clear sky conditions and around solar noon. Spectral readings were recorded in 

1 nm intervals with a spectral resolution of 3 nm in the visible and near infrared spectra (VNIR 

detector: 350–1,000 nm) and 8 nm in the near and shortwave infrared (SWIR1 detector: 1,000–1,800 nm 

and SWIR2 detector: 1,800–2,500 nm). For each subplot, 15 reflectance readings were recorded,  

each one representing the average of 25 individual measurements of 100 ms, which increases the 

signal-to-noise ratio of the resulting measurement [7]. Before taking the spectral readings in each 

subplot, the spectroradiometer was calibrated against a reference panel of known reflectivity 

(Labsphere Spectralon
®

) in order to be able to convert the readings into absolute reflectance. The 

reflectance measurements attained for each subplot were used to characterise each 1 m × 1 m plot. 

2.3. Dry Aboveground Biomass Measurements  

All of the aboveground biomass in each 50 × 50 cm subplot located in the NE corner of each plot 

was harvested right after the spectral measurements were taken. In order to avoid a loss of water in the 

samples, they were put individually into hermetic plastics bags and immediately taken to the laboratory 

in portable fridges. The samples were weighed in the laboratory using a digital precision scale, 

therefore obtaining the total biomass weight. Afterwards, each sample was split in dry material and 

green material, in order to distinguish the green and dry fraction of the aboveground biomass. The 

green and dry fractions of each sample were separately dried in the oven for 48 h at 65 °C. After 

drying, samples were weighed again to determine the dry matter weight for both fractions. This 

workflow allowed the total dry aboveground biomass weight (TAGB) to be obtained, as well as the 

green fraction of the dry aboveground biomass weight (as an absolute value (GAGB) and as a 

percentage of the total dry aboveground biomass (%GAGB)). The total dry aboveground biomass 

weight (TAGB) was used as surrogate for the aboveground dry biomass (AGB) in each plot [35]. The 

biomass was determined by dividing the weight of the harvested grass by the surface area of the plots 

(expressed as g/m
2
). Table 2 summarises the descriptive statistics for the 30 subplots of the 

grass/clover, while Figure 1 depicts the distribution of frequencies of the sample for the three 

variables. The Shapiro-Wilk test for normality showed that the three variables were normal (α = 0.01). 
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Table 2. Descriptive statistics of the sample (n = 30) (TAGB: total aboveground biomass, 

GAGB: green portion of the AGB, % GAGB: Percentage of the green faction of the AGB). 

Statistic TAGB(g/m
2
) GAGB (g/m

2
) % GAGB (%) 

Mean 45.05 31.71 68.34 

Median 49.10 34.75 69.77 

Standard deviation 15.40 12.63 13.57 

Maximum 75.60 50.50 90.04 

Minimum 9.52 4.40 29.76 

Figure 1. Distribution of frequencies for TAGB (total aboveground biomass), GAGB 

(green portion of the AGB) and % GAGB (Percentage of the green faction of the AGB). 

 

3. Methods 

3.1. Workflow 

The methodology involved two main steps: spectral data processing and statistical analysis  

(Figure 2). The spectral data processing consisted of pre-processing the spectral data and applying 

different transformations to the spectra. Moreover, some indices were derived from the transformed 

data. Afterwards, spectral data was modelled to estimate TAGB, GAGB and %GAGB using Support 

Vector Machine, Partial Least Squares and Ordinary Least Square regressions. The following sections 

describe the processes depicted by Figure 2. 

3.2. Spectral Data Processing 

3.2.1. Pre-Processing  

The spectral data (absolute surface reflectance) was pre-processed to diminish the sensor noise. This 

step consisted of two tasks: averaging the 15 spectra measured for each subplot and identifying the 

noisiest wavelengths. Firstly, the radiometry of each subplot was characterised by the median and the 

mean spectrum of the 15 original measurements and averaged for the 1 × 1 m plot. Secondly, the 

wavelengths were grouped into three spectral subsets, taking into account the three different sensors 

which define the spectroradiometer (VNIR, SWIR 1, SWIR 2). The wavelengths from 1,360 nm to 

1,385 nm, from 1,800 nm to 1,930 nm and above 2,400 nm were eliminated due to high amounts of 
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noise [7]. Table 3 shows the wavelengths included in the three spectral subsets considered in this 

research: (i) VNIR; (ii) VNIR + SWIR 1; and (iii) VNIR + SWIR 1 + SWIR 2. 

Figure 2. Methodology flowchart.  

 

Table 3. Wavelengths which define the three spectral subsets considered in this research. 

Spectral subset Wavelengths used (nm) 

VNIR [350–1,000] 

VNIR + SWIR 1 [350–1,359], [1,386–1,799] 

VNIR +SWIR1 + SWIR2 [350–1,359], [1,386–1,799], [1,931–2,399] 
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3.2.2. Spectral Filtering and Transformations 

In this comparative study, two groups of spectral transformation methods were applied: 

derivatives/transformations and continuum removal. This section covers the different types of 

preprocessing transformations which have been widely used by researchers to preprocess hyperspectral 

data (Table 4). In this study, a total of 19 pre-processing transformations, which prepared the biomass 

spectral curves (mean and median spectra) for multivariate calibration, were compared. These 

included: Norris derivatives [45], baseline offset, standardisation, reflectance to absorbance 

transformation, multiplicative scatter correction, normalisations and standard normal variate 

transformation [46]. Table 4 shows the complete list of pre-processing transformations tested, with 

their respective optional parameters. Hence, the transformations of the reflectances were used in the 

analysis rather than the reflectances themselves, in order to eliminate sensor noise and improve the 

performance of the model to estimate AGB. The analyses were carried out using the Unscrambler
®

 X 

10.2 software (CAMO Software Inc., Woodbridge, Norway). 

Table 4. Pre-processing transformations compared in this study. 

Code Pre-Processing Transformation Examples 

BLO Baseline offset [47] 

CR Continuum Removal [1,13,15,19,23,27,48,49] 

DE-TREN1 De-trending using a 1st-order polynomial [19] 

DE-TREN2 De-trending using a 2st-order polynomial 
 

DE-TREN3 De-trending using a 3st-order polynomial 
 

MSCA Multiplicative Scatter Correction Common amplification f(X = X/b) 

[19,31,33,34,47,50] MSCF Multiplicative Scatter Correction Full MSC f(X) = (X − a)/b 

MSCO Multiplicative Scatter Correction Common off set f(X) = X − a 

NAR Normalise by the area [32] 

NMX Normalise by the maximum value 
 

NME Normalise by the mean 
 

NRA Normalise by the range 

NUV Normalise by the unit vector 
 

NGD-3 Norris gap derivative 1st derivative-gap size = 3 [32] 

NGD-5 Norris gap derivative 1st derivative-gap size = 5  

NGD-7 Norris gap derivative 1st derivative-gap size = 7 

NGD-9 Norris gap derivative 1st derivative-gap size = 9 

RAB Reflectance to absorbance [32] 

SNV Standard normal variate transformation [19,31–33,47,51,52] 

The Standard Normal Variate (SNV) is applied to spectroscopy data to remove the scattering 

effects, and it minimises the multiplicative interferences of the scattering caused by particles of 

different sizes [53]. In this transformation each spectrum is transformed individually by removing the 

intensity offset and scaling to unity standard deviation [51,52] and it has been widely used in many 

applications due to the normalisation of the spectra (vid. Table 4). Another method which attempts to 

reduce the scatter effects is the Multiplicative Scatter Correction (MSC). The MSC is based on 

adjusting all observations to an ’ideal’ spectrum, so that the mean spectrum of all observations is used 
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as reference and all spectra are affine estimated relative to this reference [50]. It should be noted that 

the MSC is therefore sensitive to the mean spectrum and it has to be recomputed any time new 

observations are added to the dataset. The characteristics of each MSC method applied to the spectra 

are described in [46].  

Another option to model and correct the background interference is the De-trending method, 

especially when a constant, linear, or curved offset is present [51]. This method fits a polynomial of a 

given order (in this study: 1st, 2nd and 3rd order) to the entire sample and subtracts this polynomial 

from the spectrum, eliminating general or common components in the spectra [19]. In contrast to the 

baseline method, the De-trending method fits the polynomial to all points, baseline and signal.  

The baseline correction (defined by an offset) was also tested to eliminate the background noise from 

the data. 

The transformations involving derivatives allow increasing differences among the overlapping and 

wide bands of the spectra, correcting as well the baseline effects [46]. The first derivative eliminates 

the baseline displacements which are parallel to the horizontal axis. The method that was applied in 

this study was the Norris gap first derivative [45]. The Savitzky‐Golay method, which includes a 

simultaneous smoothing of the spectra, was tested as well, but the results were not as promising as the 

ones obtained by the other methods, so it was not included in the final set of transformations. 

On the other hand, normalisation methods try to correct the effect of multiplicative factors on the 

original values of a variable. These methods identify a characteristic in a sample which should remain 

constant regardless of the considered sample and correct the scale of all the variables using that 

characteristic. In this study, the variables were normalised by the maximum value, the mean, the range, 

the area and the unit vector [46]. 

3.2.3. Continuum Removal Transformation and Derived Indices 

In addition to the transformations described in the previous section, the Continuum removal 

transformation (CR) of the spectra was tested (Table 4). This technique is used to minimise the noise 

effects and to enhance the absorption characteristics of the spectrum [13]. The CR transformation is 

obtained by dividing the original reflectance values by the corresponding values in the continuum (i.e., 

the segment which represents the trend) [39]. In order to apply this method, it was necessary to identify 

the limits of the regions where it was going to be performed. These regions were determined 

empirically [13] by taking account of the locations of the local spectral maxima of the grass, as long as 

those areas were sensitive to changes in the variable of interest (in this case, AGB). Hence, five zones 

(Zi) were identified and defined by their wavelengths (Table 5). Each zone corresponded with an 

absorption feature, as showed by Figure 3. Zones in the Z1 and Z2 domain have been successfully  

used in previous works to estimate leaf biochemistry [13,23], as well as for the classification of 

gramineae [48]. Likewise, absorption features located in Z3, Z4 and Z5 have been effective to model 

the variation in leaf water content [1,49,54,55]. For the present work, the limits of each zone had to be 

redefined to adjust them to the sample. The possibility of applying CR in the region between  

1,800–2,100 nm was rejected, due to the low signal-to-noise ratio [44]. 
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Table 5. Continuum removal zones considered in this study. 

Zone Continuum Range (Nm) Electromagnetic Region 

Z1 [440–567] VNIR 

Z2 [554–762] VNIR 

Z3 [916–1,120] VNIR+SWIR1 

Z4 [1,079–1,297] SWIR1 

Z5 [1,265–1,676] SWIR1 

Figure 3. A grass reflectance spectrum and the representation of its continuum and 

absorption features (Zi: Zone I, as defined in Table 5). 

 

In addition to the continuous spectra derived from the CR transformation for each zone (continuum 

removed reflectance (CRR)), the absorption features were characterised by two indices: the maximum 

band depth (MBD) and the area over the minimum (AOM) [19]. The band depth (MBD) is the 

magnitude of the maximum difference between the spectrum and the continuum [39] and it is related 

with the intensity of the absorption in that region [1]. The area over the minimum (AOM) is described 

as the product between the depth and the width (i.e., width measured at half of the depth) [27]. Both 

indices have succeeded in the estimation of biomass [1] and water and leaf biochemicals [18,21,27]. 

Both indices were computed using IDL. 

3.3. Statistical Methods 

This study tested three statistical methods for developing models to estimate biomass from the 

grass/clover spectra: partial least squares regression (PLSR), support vector machine (SVM) and 

ordinary least squares regression (OLSR). Due to its simplicity, the latter was included in the analysis 

as a reference and as a baseline to compare the results achieved by using PLSR and SVM. 
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3.3.1. Partial Least Squares Regression (PLSR) 

PLSR is a generalisation of linear multiple regression which is able to reduce the large number of 

measured collinear spectral variables to a few noncorrelated latent variables or factors [25,28]. Thus, 

this method builds a linear model based on the latent variables of the mean-centred matrix containing 

the predictor variables (the spectral bands in this study). In this regard, PLSR is closely related to 

principal component regression. The main difference is that, principal component regression 

decomposes first the spectra into a set of eigenvectors and scores and then regresses them against the 

response variables as a separate step, while PLSR uses the response variable information during the 

decomposition process [15]. One of the advantages of PLSR in spectroscopy is that it allows working 

with continuous parts of the spectra, handling collinear data and considering all the available 

wavelengths [7]. A comprehensive description of the PLSR algorithm can be found in [25]. 

As independent variables, the following data sets were considered: (i) pre-processed but not 

transformed data (spectral subsets defined in Table 3: VNIR, VNIR + SWIR1,  

VNIR + SWIR1 + SWIR2); (ii) spectral subsets VNIR, VNIR + SWIR1, VNIR + SWIR1 + SWIR2 

after spectral filtering and transformations (Table 4); (iii) continuum removed reflectance (CRR) for 

Z1-Z5 (Table 5); (iv) derived indices from the continuum removed reflectance: maximum band depth 

(MBD) for Z1-Z5 (Table 5); and (v) derived indices from the continuum removed reflectance: area 

over the minimum (AOM) for Z1-Z5 (Table 5). An independent PLSR was fitted for the corresponding 

subsets in each dataset, since it has been showed that an accurate selection of the input data leads to a 

better performance of the method [15]. In addition, and with a comparative purpose, PLSR was applied 

to the full spectra (pre-processed but not transformed, and after excluding the noisy regions). 

The selection of the most suitable model for each variable took into consideration the strategies to 

build a solid model [31]: small number of latent factors, small error in the prediction of the  

cross-validation, small adjusted error in the cross-validation and a coefficient of determination (R²) as 

close to 1 as possible. The optimal number of PLSR factors or latent variables to include in the model 

was selected by using the leave-one-out cross-validation method [1,7,19,25]. In order to maintain 

model parsimony, the criterion to add an additional factor to the model was that it had to reduce the 

root mean square error of cross-validation (RMSE) by >2% [1,15,33]. The RMSE was determined 

from the residuals of each cross-validation phase. Moreover, it was checked that the differences in the 

variance explained by the adjusted model in the calibration and cross-validation stages were not large. 

The performance of PLSR models was compared using the number of factors, and RMSE (absolute 

and percentage of the mean/median value of the variable) and the coefficient of determination (R
2
) for 

the cross-validation. The analyses were carried out using the Unscrambler
®

 X 10.2 software (CAMO 

Software Inc., Woodbridge, Norway). 

3.3.2. Support Vector Machine (SVM) 

Lately, the use of support vector machines (SVMs) on various classification and regression problems 

has become increasingly popular and it has been successfully used in the estimation of grassland 

biomass [35], leaf area index [37] or leaf biochemical variables [20,36] using remotely sensed data. 
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Initially, SVM was developed to solve classification problems but it was later extended to also 

handle regression [56]. In regression, the goal is to estimate an unknown continuous-valued function 

based on a finite number set of noisy samples. Support vector regression (SVR) uses the principle of 

structural risk minimisation to simultaneously optimise performance and generalisation, and is often 

able to find non-linear and unique solutions [20]. There are a few different variants of SVR that utilise 

different optimisation algorithms, and the two that are commonly used are ε-SVR and η-SVR.  

The ε-SVR transforms the input data into a high-dimensional feature space using a non-linear function, 

solving the final model in a way that not only the training error is minimised, but also the complexity 

of the model [20]. A comprehensive description of both methods can be found in [57].  

The ε-SVR method was applied in this study to estimate aboveground biomass, using the Vapnik’s 

ε-insensitive loss function to minimise the training errors, which were not penalised as long as they 

were smaller than ε. As part of the process, a kernel function was applied, in order to map the data into 

a new space followed by finding the support vectors for the best performance for the type of model. 

The kernel type considered in this study was the linear kernel, since it is the one which requires the 

least parameters to be defined and because it is not as susceptible to overfitting as the radial or 

polynomial kernels [20]. The quality of the SVM models depends on a proper setting of the SVM 

meta-parameters: parameter ε and the parameter C [58]. The first one controlled the width of the 

epsilon-insensitive zone, used to fit the training data, and its value can affect the number of support 

vectors used to construct the regression function. Thus, the bigger the epsilon, the fewer support 

vectors selected [56], while bigger ε values result in more ‘flat’ estimates [37]. The parameter C 

determined the balance between the model complexity and the degree to which deviations larger than 

epsilon are tolerated in the optimisation. Therefore, larger values of C aim to minimise the empirical 

risk regardless of the complexity of the model.  

A general methodology consisting of the following steps was applied [59]: (1) a simple scaling was 

applied to the training data (in order to avoid the over-weighting due to the features presenting the 

highest absolute values); (2) then, the lineal kernel was selected and the determination of parameters C 

and ε was solved by cross validation and grid search on the training data set, keeping the value of ε 

equal to 0.1 and γ as 1. Finally, (3) the estimated parameters were applied to the dataset used for  

cross-validation (previously scaled), and the accuracy statistics were computed.  

In order to find the simplest model with an acceptable error and to maintain model parsimony, the 

criterion to add an additional support vector to the model was that it had to reduce the root mean 

square error of cross-validation (RMSE) by at least 2%. The RMSE was determined from the residuals 

of each cross-validation phase. In order to avoid an overfitting, it was checked that the RMSE values 

from the calibration and cross-validation stages were as well smaller than 2%. The performance of the 

SVM models was compared using the number of support vectors, the RMSE (absolute and percentage 

of the mean/median value of the variable) and the coefficient of determination (R
2
) for the  

cross-validation. The analyses were carried out using the Unscrambler
®

 X 10.2 software (CAMO 

Software Inc.). 
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3.3.3. Ordinary Least Squares Regression (OLSR) 

Ordinary Least Squares Regression (OLSR) was carried out using the biomass measurements 

(TAGB, GAGB, %GAGB) as dependent variables, and as independent variables the derived indices 

from the continuum removed reflectance (i) maximum band depth (MBD) for Z1–Z5 (Table 5) and  

(ii) area over the minimum (AOM) for Z1–Z5 (Table 5). These two sets of variables were chosen as 

input data due to their positive results in similar studies [1,13,19,27]. Continuous regions of the 

reflectance spectrum were rejected as input data for this method, since it tends to overfit the model and 

sometimes the selection of bands fails to correspond with known absorption bands [19]. The validation 

of the models was similar to the one described for PLSR, by means of a leave-one-out cross-validation 

method [1,7,19,25] and using as comparative criteria the RMSE (absolute value and percentage of the 

mean/median value of the variable) and the coefficient of determination (R²) of the cross-validation. 

The analyses were carried out using the Unscrambler
®

 X 10.2 software (CAMO Software Inc). 

3.3.4. Cross-validation Statistical Indicators 

Overall, the results of the statistical models tested in this study were assessed in terms of coefficient 

of determination of the cross-validation (R
2
), the RMSE of the cross-validation (absolute value and 

percentage of the mean/median value of the variable) and the agreement between wavelengths/region 

identified as important by statistical analysis and known water/biomass absorption features [19].  

In order to consider one model more accurate than another one, the former had to reduce the root mean 

square error of cross-validation (RMSE) by at least 2% [1]. A complete description of the  

cross-validation procedure and its aptitude to detect outliers and its capability of providing nearly 

unbiased estimations of the prediction error can be reviewed in [21,30,60].  

4. Results and Discussion 

On the whole, 140 models were tested for each of the three dependent variables (total, green and 

percentage of green grass/clover biomass), 12 of them without transformations of the spectral data and 

using PLSR and SVM, 124 involving PLSR and transformations/indices and four considering  

indices from the continuum removed spectra and OLSR. Thus, 420 models were explored in order to 

find suitable combinations among the regression method, the transformation type, the spectral 

subset/zone/index and the averaging method of the spectra for the estimation of biomass in grasslands. 

The results of these approaches are presented in the next section and discussed later on.  

4.1 Results for the Estimation of above Ground Biomass 

As a result of the comprehensive analysis of the relationships between total, green and percentage 

of green grass/clover biomass and the spectral data (transformed and non-transformed), Table 6 shows 

the best results achieved by the approaches which were tested. Due to the large amount of results 

obtained, only the following output is on display: results of using PLSR and SVM on each spectral 

subset (not transformed), results of applying the most accurate method to each spectral subset, results 

of the most accurate approach combining PLSR and CRR, and also PLSR and the indices derived from 

CCR, and finally, the results corresponding to the most accurate method involving OLSR. The results 
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are showed in decreasing order of accuracy (R
2
) for each variable. The results depicted in Table 6 are 

commented on in Sections 4.1.1., 4.1.2., and 4.1.3, for each independent variable. 

Table 6. Performance of PLSR, SVM and OLSR and spectral transformations for predicting 

total (TAGB), green (GAGB) and percentage of green (%GAGB) grass/clover biomass. 

Var. 
Regression Model/ 

Transformation 
Input Data Spectra F/C R

2 
RMSE 

(g/m
2
) 

%RMSE 

TAGB PLSR/MBD Z3-Z4 (MBD) Mean 2 0.800 7.120 15.81 

PLSR/CRR Z4 Mean 5 0.799 7.136 15.84 

PLSR/NMX VNIR Mean 6 0.782 7.443 16.52 

PLSR/MSCO VNIR + SWIR1 Mean 3 0.781 7.457 16.55 

PLSR/MSCO VNIR + SWIR1+SWIR2 Mean 3 0.770 7.640 16.96 

PLSR/none VNIR + SWIR1 Mean 3 0.756 7.866 17.46 

SVM/none VNIR + SWIR1 Mean 0.04 0.751 7.684 17.06 

PLSR/none VNIR + SWIR1+SWIR2 Mean 3 0.751 7.950 17.65 

SVM/none VNIR + SWIR1+SWIR2 Mean 0.03 0.745 7.780 17.27 

OLSR/AOM Z4 (AOM) Mean 1 0.720 8.150 18.09 

PLSR/none VNIR Median 3 0.689 8.888 19.73 

SVM/none VNIR Median 0.11 0.683 8.690 19.29 

GAGB PLSR/AOM Z1-Z3-Z4 (AOM) Mean 3 0.939 3.172 10.00 

SVM/none VNIR + SWIR1 + SWIR2 Mean 0.1 0.933 3.229 10.18 

PLSR/BLO VNIR + SWIR1 + SWIR2 Mean 6 0.929 3.417 10.78 

PLSR/none VNIR + SWIR1 + SWIR2 Mean 6 0.927 3.467 10.93 

PLSR/CRR Z4 Median 1 0.921 3.622 11.42 

OLSR/AOM Z4 (AOM) Mean 1 0.914 3.646 11.50 

PLSR/none VNIR + SWIR1 Mean 5 0.913 3.789 11.95 

SVM/none VNIR + SWIR1 Mean 0.14 0.909 3.759 11.85 

PLSR/DE-TREN3 VNIR Mean 4 0.901 4.035 12.72 

PLSR/MSCO VNIR + SWIR1 Mean 3 0.901 4.036 12.73 

PLSR/none VNIR Median 6 0.875 4.546 14.34 

SVM/none VNIR Median 0.16 0.846 4.895 15.44 

%GAGB PLSR/CRR Z1 Median 7 0.762 6.852 9.82 

PLSR/NGD-3 VNIR Mean 4 0.757 6.919 10.12 

SVM/none VNIR Mean 0.07 0.724 7.134 10.44 

PLSR/RAB VNIR + SWIR1 Mean 5 0.715 7.500 10.97 

PLSR/none VNIR Median 3 0.714 7.502 10.75 

PLSR/NAR VNIR + SWIR1 + SWIR2 Mean 3 0.705 7.628 11.16 

PLSR/AOM Z2-Z3-Z5 (AOM) Median 3 0.684 7.897 11.32 

PLSR/none VNIR + SWIR1 + SWIR2 Median 4 0.682 7.913 11.34 

PLSR/none VNIR + SWIR1 Median 3 0.678 7.947 11.39 

SVM/none VNIR + SWIR1 Mean 0.02 0.650 8.047 11.53 

SVM/none VNIR + SWIR1 + SWIR2 Median 0.02 0.655 7.991 11.69 

OLSR/MBD Z5 Median 1 0.608 8.502 12.19 
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Transformations: vid. Table 4; CRR, MBD, AOM are the continuum removed reflectance and 

indices; Input data: vid. Tables 3 and 5; Spectra is the average measurement of the data, F/C is the 

number of latent factors (PLSR) or parameter C (SVM); R
2
 is the coefficient of determination  

(cross-validation); RMSE is the Root Mean Square Error (cross-validation); %RMSE is the percentage 

of Root Mean Square Error (cross-validation) in relation to the average value of the variable. 

4.1.1. Results for the Estimation of Total above Ground Biomass 

As shown in Table 6, PLSR models produced lower ranges of RMSE than SVM or OLSR when the 

same input data were considered. The most accurate model to predict TAGB involved PLSR and the 

MBD index derived from the continuum removed reflectance in the absorption feature between 916 

and 1120 nm (Z3) and 1079 and 1297 nm (Z4) (RMSE = 7.120 g/m
2
, 15.81% of the mean value). The 

combination of PLSR and continuum removed spectra produced lower ranges of error for the cross 

validation analyses (RMSE = 7.120 to 7.136 g/m
2
) compared to the PLSR and the spectra transformed 

by other techniques (Normalization or Multiplicative Scatter Correction) (RMSE = 7.443 to 7.640 g/m
2
) 

(Table 6). However, transformations yielded more accurate PLSR models than non-transformed data. 

The comparative analysis of the performance of PLSR models and SVM models showed higher R
2
 

and smaller RMSE for the PLSR models, regardless of the non-transformed spectral subset used as 

input data. In that case, the most accurate models were obtained using the VNIR+SW1 subset, for both 

PLSR (R
2
 = 0.756, RMSE = 7.866 g/m

2
) and SVM (R

2
 = 0.751, RMSE = 7.684 g/m

2
) (Table 6).  

In order to compare the PLSR and SVM approaches Figure 4 shows the suitability of the most accurate 

PLSR and SVM models, depicting the cross-validation results. Both models were suitable since the 

measured and predicted values are distributed along the one-to-one line and close to it. 

Figure 4. Cross-calibration results for TAGB using (A) PLSR based on the  

continuum-removed MBD index and (B) SVM based on non-transformed VNIR + SWIR1 

data. One-to-one line is showed. 
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OLSR provided the best results when using the AOM index derived from the continuum removed 

reflectance in the absorption feature between 1,079 and 1,297 nm (Z4) (RMSE = 8.150 g/m
2
, 18.09% 

of the mean value) (Table 6). This approach turned out to be more accurate and simpler than using 

PLSR or SVM and the non-transformed reflectance of the VNIR subset. Table 7 shows that the results 

of the OLSR and the CR derived indices were satisfactory for both the MBD and AOM, as long as the 

absorption feature Z4 were considered, achieving an R
2
 of 0.709 and 0.720, respectively. The 

suitability of this method decreased rapidly when other absorption features were used. In all cases, 

AOM yielded more accurate models than MBD for predicting total aboveground grass/clover biomass. 

Table 7. Performance of Ordinary Least Squares Regression (OLSR), for predicting total 

(TAGB), green (GAGB) and percentage of green (%GAGB) grass/clover biomass using 

indices derived from the continuum removed spectra. In bold: most accurate models. 

 
Maximum Band Depth (MBD) Area Over the Minimum (AOM) 

Input Spectra R
2
 RMSE (g/m

2
) Input Spectra R

2
 RMSE (g/m

2
) 

TAGB Z1 Median 0.582 9.950 Z1 Mean 0.594 9.810 

 
Z2 Mean 0.537 10.476 Z2 Median 0.577 10.008 

 
Z3 Mean 0.650 9.110 Z3 Mean 0.641 9.226 

 
Z4 Mean 0.709 8.301 Z4 Mean 0.720 8.150 

 
Z5 Mean 0.599 9.748 Z5 Mean 0.642 9.216 

GAGB Z1 Median 0.728 6.483 Z1 Mean 0.722 6.546 

 
Z2 Median 0.669 7.146 Z2 Median 0.719 6.587 

 
Z3 Mean 0.870 4.470 Z3 Mean 0.866 4.550 

 
Z4 Median 0.910 3.720 Z4 Median 0.915 3.615 

 
Z5 Mean 0.743 6.293 Z5 Median 0.797 5.593 

%GAGB Z1 Median 0.567 8.931 Z1 Median 0.554 9.064 

 
Z2 Median 0.603 8.551 Z2 Median 0.591 8.674 

 
Z3 Median 0.557 9.034 Z3 Mean 0.552 9.080 

 
Z4 Median 0.524 9.359 Z4 Mean 0.523 9.370 

 
Z5 Median 0.608 8.502 Z5 Median 0.594 8.648 

Input data: vid. Table 5; Spectra is the average measurement of the data; R
2
 is the coefficient of 

determination (cross-validation); RMSE is the Root Mean Square Error (cross-validation); %RMSE is 

the percentage of Root Mean Square Error (cross-validation) in relation to the average value of  

the variable. 

According to Tables 6 and 7, the models with the highest R
2
 and lowest RMSE implied the use of 

data from the region Z4, suggesting the potential of those data to estimate TAGB. Hence, all possible 

combinations of indices including that region as input data were explored using PLSR. OLSR was not 

considered in order to avoid colinearity issues. As a result Table 8 shows that the adequate selection of 

the input data that led to an increase in the accuracy of the model and to a greater simplicity (two latent 

factors instead of 3 or 4, as in the case of more indices being included), and confirms the PLSR  

model which considers the MBD index derived from the continuum removed reflectance in the 

absorption features between 916 and 1,120 nm (Z3) and 1,079 and 1,297 nm (Z4) (R
2
 = 0.800,  

RMSE = 7.120 g/m
2
) as the most accurate to predict TAGB. 
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Table 8. Performance of PLSR for predicting total (TAGB) grass/clover biomass using 

indices which consider the absorption feature Z4 derived from the continuum removed 

spectra. In bold: most accurate models. 

Input data 
MBD AOM 

F Spectra R
2
 RMSE (g/m

2
) F Spectra R

2
 RMSE (g/m

2
) 

Z1-Z4 2 Median 0.709 8.595 2 Median 0.708 8.612 

Z2-Z4 2 Median 0.724 8.369 2 Median 0.721 8.406 

Z3-Z4 2 Median 0.800 7.120 2 Median 0.719 8.436 

Z4-Z5 2 Median 0.725 8.347 2 Median 0.723 8.386 

Z1-Z2-Z4 2 Median 0.683 8.971 2 Median 0.679 9.023 

Z1-Z3-Z4 3 Median 0.786 7.375 3 Median 0.727 8.317 

Z1-Z4-Z5 2 Median 0.685 8.934 2 Median 0.692 8.838 

Z2-Z3-Z4 3 Median 0.792 7.270 2 Mean 0.736 8.178 

Z2-Z4-Z5 2 Mean 0.710 8.579 2 Mean 0.705 8.646 

Z3-Z4-Z5 3 Median 0.794 7.237 3 Median 0.730 8.274 

Z1-Z2-Z3-Z4 4 Median 0.772 7.599 3 Median 0.739 8.144 

Z1-Z2-Z4-Z5 2 Mean 0.679 9.025 2 Median 0.672 9.121 

Z1-Z3-Z4-Z5 4 Median 0.772 7.611 3 Median 0.716 8.489 

Z2-Z3-Z4-Z5 4 Median 0.780 7.473 2 Median 0.725 8.347 

Z1-Z2-Z3-Z4-Z5 5 Median 0.758 7.832 2 Mean 0.724 8.360 

Input data: vid. Table 5; F is the number of latent factors; Spectra is the average measurement of the 

data; R² is the coefficient of determination (cross-validation); RMSE is the Root Mean Square Error 

(cross-validation); %RMSE is the percentage of Root Mean Square Error (cross-validation) in relation 

to the average value of the variable. 

4.1.2. Results for the Estimation of Green above Ground Biomass 

The PLSR and SVM models used to estimate green above ground biomass achieved the smallest 

RMSE when the largest subset of the spectra (VNIR + SW1 + SW2) was used, reaching values of 

RMSE smaller than 11% of the average value of the variable (Table 6). As an example,  

non-transformed data modelled by SVM were able to explain 93.3% of the variance of the data  

(RMSE = 3.229 g/m
2
, 10.18% of the mean value), while the model developed with PLSR for the same 

spectral data corrected by the baseline offset transformation showed a similar result (R
2
 = 0.929, 

RMSE = 3.417 g/m
2
, 10.78% of the mean value). Using the continuum removal transformation did not 

improve the performance of PLSR when the reflectance values were used as input (Table 6). 

Nevertheless, the AOM index derived from the continuum removed spectra (Z1, Z3, Z4) provided the 

most accurate model overall (R
2
 = 0.939, RMSE = 3.172 g/m

2
, 10.00% of the mean value). In addition, 

the model fitted by OLSR for the AOM index (absorption feature Z4) performed better (R
2
 = 0.914, 

RMSE = 3.646 g/m
2
, 11.50% of the mean value) than some other PLSR and SVM more complex 

models (Table 6). Table 7 shows that the results of the OLSR and the CR derived indices were 

satisfactory for both the MBD and AOM, as long as the absorption feature Z4 were considered, 

achieving an R
2
 of 0.910 and 0.915, correspondingly. The absorption feature Z3 provided as well a 

high R
2
 (R

2
 = 0.870 and R

2
 = 0.866). In all cases, AOM yielded more accurate models than MBD for 
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predicting green aboveground grass/clover biomass. The other transformations applied to the PLSR 

input data did not improve the performance of the algorithm, except for when the VNIR subset and the 

de-trending using a 3st-order polynomial were considered (R
2
 = 0.901 and RMSE = 4.035 g/m

2
 

compared to R
2
 = 0.875 and RMSE = 4.546 g/m

2
, respectively) (Table 7). 

The comparative analysis of the performance of PLSR models and SVM models showed higher R
2
 

and smaller RMSE for the PLSR models only when the non-transformed spectral subsets used were 

different from VNIR + SW1 + SW2, in which case SVM was the most accurate (Table 6). Figure 5 

shows the suitability of the most accurate PLSR and SVM models, according to the cross-validation 

results. Both models were suitable since the measured and predicted values are distributed along the 

one-to-one line and close to it. 

Figure 5. Cross-calibration results for predicting GAGB using (A) PLSR based on the 

continuum-removed AOM index and (B) SVM based on VNIR + SWIR1 + SWIR2.  

One-to-one line is showed. 

  

The PLSR/CRR and OLSR models with the highest R
2
 and lowest RMSE involved the use of  

data from the region Z4 (Tables 6 and 7), suggesting the potential of that absorption feature to e 

stimate GAGB. Thus, all possible combinations of indices including that region as input data were 

explored using PLSR (combinations of 2, 3, 4 and 5 regions). As for TGAB, OLSR was not  

considered in order to avoid collinearity issues. The results of this analysis are showed in Table 9, 

which confirms the PLSR model which considers the AOM index derived from the  

continuum removed reflectance in the absorption features between 440 and 567 nm (Z1), 916 and 

1,120 nm (Z3) and 1,079 and 1,297 nm (Z4) (R
2
 = 0.939, RMSE = 3.172 g/m

2
) as the most accurate to 

predict GAGB.  
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Table 9. Performance of PLSR for predicting green (GAGB) grass/clover biomass using 

indices which consider the absorption feature Z4 derived from the continuum removed 

spectra. In bold: most accurate models. 

Input Data 
MBD AOM 

F Spectra R
2
 RMSE (g/m

2
) F Spectra R

2
 RMSE (g/m

2
) 

Z1-Z4 2 Mean 0.914 3.762 2 Mean 0.924 3.539 

Z2-Z4 2 Median 0.913 3.783 2 Mean 0.918 3.675 

Z3-Z4 2 Mean 0.919 3.661 2 Mean 0.929 3.433 

Z4-Z5 2 Median 0.913 3.786 2 Median 0.921 3.607 

Z1-Z2-Z4 3 Median 0.915 3.745 3 Median 0.925 3.512 

Z1-Z3-Z4 3 Median 0.923 3.566 3 Mean 0.939 3.172 

Z1-Z4-Z5 2 Mean 0.918 3.689 3 Mean 0.922 3.599 

Z2-Z3-Z4 3 Mean 0.915 3.738 3 Mean 0.929 3.432 

Z2-Z4-Z5 2 Mean 0.900 4.060 3 Median 0.921 3.607 

Z3-Z4-Z5 3 Mean 0.915 3.755 3 Mean 0.931 3.377 

Z1-Z2-Z3-Z4 3 Median 0.922 3.588 4 Mean 0.939 3.173 

Z1-Z2-Z4-Z5 3 Mean 0.913 3.782 4 Median 0.921 3.618 

Z1-Z3-Z4-Z5 3 Median 0.917 3.703 4 Mean 0.936 3.249 

Z2-Z3-Z4-Z5 2 Mean 0.898 4.098 4 Mean 0.929 3.427 

Z1-Z2-Z3-Z4-Z5 3 Median 0.917 3.702 5 Mean 0.931 3.367 

Input data: vid. Table 5; F is the number of latent factors; Spectra is the average measurement of the 

data; R² is the coefficient of determination (cross-validation); RMSE is the Root Mean Square Error 

(cross-validation); %RMSE is the percentage of Root Mean Square Error (cross-validation) in relation 

to the average value of the variable. 

4.1.3. Results for the Estimation of Percentage of Green above Ground Biomass 

The models that produced lower RMSE and higher R
2
 when estimating the percentage of green 

above ground biomass, were characterised by using the VNIR reflectance as input data (VNIR or the 

absorption feature Z1) and PLSR and SVM regressions (Table 6). The most accurate model that 

predicted %GAGB involved PLSR and the continuum removed reflectance values in the absorption 

feature between 440 and 567 nm (Z1) (R
2
 = 0.762, RMSE = 6.852%). This model produced an error 

smaller than 10% of the median value of the variable, which made it a highly reliable model regarding 

this statistic. 

The combination of PLSR and the VNIR spectra transformed by NGD-3 or RAB produced lower 

ranges of error for the cross validation analyses (RMSE = 6.919 and 7.500%, respectively) compared 

to the PLSR applied to non-transformed VNIR data (RMSE = 7.502%) (Table 6). On the other hand, 

SVM yielded more accurate models than PLSR for non-transformed VNIR data (RMSE = 7.134 and 

7.502%, correspondingly). Nonetheless, the comparative analysis of the performance of PLSR models 

and SVM models showed higher R
2
 and smaller RMSE for the PLSR models when the other regions 

were considered (VNIR + SW1 and VNIR + SW1 + SW2) (Table 6). Figure 6 shows the degree of 

suitability of the most accurate PLSR and SVM models, according to the cross-validation results. 
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These models are not as suitable as the ones obtained for the other two AGB variables, since the 

measured and predicted values are not as homogeneously distributed along the one-to-one line. 

Figure 6. Cross-calibration results for predicting %GAGB using (A) PLSR based on the 

continuum-removed reflectance between 440 and 567 nm (Z1) and (B) SVM based on 

VNIR non-transformed data. One-to-one line is showed. 

  

The OLSR yielded less accurate models than PLSR and SVM, as it was showed by the fact that the 

RMSE corresponding to the best OLSR model (AOM in the absorption feature Z5) was 24.08% larger 

than the RMSE obtained by the best PLSR (Tables 6 and 7). Since the most accurate models did not 

involve CR derived indices, the results of exploring all possible combinations of indices including 

different absorption features using PLSR are not showed.  

4.2. Discussion 

This study has showed the suitability of PLSR and spectral data/indices derived from the CR 

transformation to estimate the total dry aboveground biomass (TAGB), the green fraction of the dry 

aboveground biomass (GAGB), and the green fraction of the dry aboveground biomass expressed as a 

percentage (%GAGB). The results found in our study agree with [28] and [7], which found that PLSR 

performed better than any other regression methods or narrow banded indices to estimate TAGB  

(R
2
 = 0.89) and chlorophyll content (R

2
 = 0.85). Moreover [28] found out that PLSR improved the 

TAGB models by a decrease of 23% in the RMSE in comparison with the models which used NDVI as 

a predictor. Similar results were achieved by [15], who predicted GAGB more accurately when using 

CR reflectance and PLSR than with the NDVI index as an independent variable, achieving an  

R
2
 = 0.83 by applying the former approach. The adequate performance of PLSR to estimate the 

variables is based on the fact that several biophysical and biochemical variables determine the spectral 

signature of vegetation canopies [61,62], and therefore indices directly derived from simple band 

combinations cannot cancel out all the uncertainty introduced by those variables [63], while PLSR is 

able to do it [7]. It should be noted, however, that the model to estimate %GAGB required more latent 

factors (7) than TAGB or GAGB (2 and 3 factors, correspondingly), which showed the difficulties 

faced by PLSR to reduce the level of uncertainty (Table 6). 
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Transformed data always yielded more accurate models than non-transformed spectral data when 

the PLSR was applied. However, not always the same transformation improved the results in 

comparison with not using it. For instance MNX and MSCO were more suitable to model TAGB 

(RMSE = 7.443 g/m
2
 and RMSE = 7.457 g/m

2
, in comparison with a RMSE = 7.866 g/m

2
 when no 

transformation was applied), while BLO led to better estimations of GAGB (RMSE = 3.417 g/m
2
 vs. 

RMSE = 3.467 g/m
2
) and NGD-3 and RAB did the same for %GAGB (Table 6). [32] achieved 

comparable results for carbon modelling in soils. The only exception to this result was the CR, which 

outperformed any other transformation, irrespective of the estimated variable, as showed in [15]. 

The CR transformation showed that its application on certain regions of the spectra as Z3  

(916–1,120 nm) and Z4 (1,079–1,297 nm), boosted the simplification of the TAGB model in 

comparison to the use of the full non-transformed, as it was epitomised by the decrease in the number 

of latent factors from 3 to 2 in the PLSR model (Table 6). This result agreed with the ones obtained  

by [20] for foliar Nitrogen estimation and [15] for grass biomass modelling, and corroborated the 

hypothesis that an accurate selection of the input data leads to a better performance of the method [15]. 

The spectral region with largest influence in the estimation of TGAB and GAGB was Z4, which 

corresponds with the absorption feature between 1079 and 1297 nm, whose bands have been identified 

as relevant in similar studies by [1,15,23,27,49]. Moreover, %GAGB was best modelled when Z1 

(440–567 nm) was the only input data considered, pointing out a relationship between this absorption 

feature and the percentage of green biomass. It should be noted that the estimation of GAGB also 

improved when using Z1 data in addition to the Z3 and Z4 regions. The suitability of the Z1 region to 

model biomass was also acknowledged by [28] and [35], who developed models which achieved  

R
2
 = 0.89 and R

2
 = 0.61 (respectively) using the Z1 region as input data.  

Regarding the use of the two indices derived from the CR transformation (MBD and AOM), the 

combination of their values in the spectral regions commented previously, yielded the most accurate 

models for TAGB and GAGB. [1] used these indices to estimate the water content in a field of 

grass/clover, achieving coefficients of determination (R
2
 = 0,73 and R

2
 = 0,54 for DM y AOM, 

respectively) comparable to the ones achieved in the present study. The input data used by [1] ranged 

from 1,115 to 1,270 nm (i.e., similar to the Z4 region), which confirmed the suitability of this part of 

the spectrum to estimate biomass (TAGB and GAGB). 

When no transformations were applied to the reflectance data, SVM outperformed PLSR regarding 

RMSE when the three variables were estimated. For instance, GAGB was estimated with an RMSE of 

3.226 g/m
2
 (10.18%) using SVM, while PLSR led to an RMSE of 3.467 g/m

2
 (10.93%). The better 

performance of SVM in comparison to PLSR was also noted by [20] and [35] when modelling leaf 

biochemicals and biomass from spectral data, respectively. They attributed it to the ability of SVM to 

map non-linear relationships. Nevertheless, other studies show cases where PLSR provided better 

results than SVM [64]. Those differences might depend on the degree of non-linearity in the 

relationships, the degree of multicolinearity and noise in the independent variables, and how accurately 

the SVM parameters can be tuned [20]. Another aspect to consider about SVM is that the accuracy of 

the model was influenced not only by its parameters, but also by the spectral region considered. As a 

result, the best region to predict TAGB was VNIR+SWIR1, while for GAGB it was VNIR + SWIR1 + 

SWIR2, and for %GAGB only the VNIR reflectance was selected as an input. The same regions were 
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chosen by PLSR as predictors for each variable, showing that the optimal predictors depended on the 

variable of interest and not so much on the algorithm. 

5. Conclusions 

In this paper, it has been demonstrated that the total dry aboveground biomass, as well as the green 

fraction of the dry aboveground biomass (as an absolute value and as a percentage of the total dry 

aboveground biomass) can be accurately predicted from spectrometer data by using PLSR and indices 

derived from the continuum removal transformation of certain regions of the spectra. 

The models to estimate the green fraction of the dry aboveground biomass (as an absolute value) 

yielded smaller errors than the ones predicting the total dry aboveground biomass. Splitting the 

biomass sample into dry and green fractions allowed the development of more accurate models  

(for green fraction of the dry aboveground biomass) and it is therefore recommended in case the 

models need to be recalibrated. 

The SVM models provided more accurate estimations of the three variables when no 

transformations were applied to the reflectance data, which encourages further work to test whether the 

accuracy of SVM can increase when the input data is previously transformed. 

Applying transformations to the data led to more accurate models than non-transformed spectral 

data when using PLSR. However, unless the continuum removal transformation is chosen, the optimal 

transformation to apply to the data needs to be identified by taking into account the dependent variable 

which is being estimated.  

Identifying the appropriate absorption features was proven to be crucial in order to improve the 

performance of PLSR to estimate the total and green aboveground biomass, by using the indices 

(MBD and AOM) as input data, which are derived from the continuum removed reflectance from those 

regions. OLSR could be used as a surrogate for the PLSR approach with AOM (1,079–1,297 nm) as 

the independent variable, although the resulting model would not be as accurate.  
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