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Abstract: Air pollution affects human health and is one of the main problems in the world, including
in coastal cities with industrial seaports. In this sense, the city of Gijón (northern Spain) stands
out as one of the 20 Spanish cities with the worst air quality. The study aims to identify outliers in
air quality observations near the El Musel seaport, resulting from the emissions of six pollutants
over an eight-year period (2014–2021). It compares methods based on the functional data analysis
(FDA) approach and vector methods to determine the optimal approach for detecting outliers and
supporting air quality control. Our approach involves analyzing air pollutant observations as a set of
curves rather than vectors. Therefore, in the FDA approach, curves are constructed to provide the best
fit to isolated data points, resulting in a collection of continuous functions. These functions capture
the behavior of the data in a continuous domain. Two FDA approach methodologies were used here:
the functional bagplot and the high-density region (HDR) boxplot. Finally, outlier detection using the
FDA approach was found to be more powerful than the vector methods and the functional bagplot
method detected more outliers than the HDR boxplot.

Keywords: outlier detection; functional bagplot; functional high-density region (HDR) boxplot;
air pollution

MSC: 62R10; 62P12; 62G32

1. Introduction

Air pollution is a global problem with significant health implications [1]. The growth in
maritime transport due to globalization has made seaports crucial for economic and social
development, accounting for over 80% of world trade [2,3]. Several ports in northwest
Spain, including La Coruña, Ferrol, and Gijón (El Musel), have expanded to accommodate
increased traffic [4,5]. Pollution issues have also been observed in other Spanish ports such
as Santander and La Coruña, which have implemented various solutions to mitigate the
problem [6].

Port activities, including ship maneuvers, fueling, and docking, contribute to sub-
stantial pollution, especially during non-optimal engine operation phases [7,8]. Ships,
particularly those with diesel engines, emit significant amounts of particulate matter, both
primary and secondary, which can have a substantial impact on nearby populations [9,10].
Industrial ports additionally contribute to air pollutant emissions through discharges,
handling of bulk materials, road dust, and heavy vehicle traffic, all influenced by meteo-
rological conditions, material types, and proximity to populations [11,12]. In some cases,
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traffic within the port area can have a more significant impact on air quality than bulk
unloading [13].

All these activities have been identified as sources of air pollution that can negatively
affect human health, leading to the exceeding of daily limit values for inhalable particles [14,15].
Numerous studies have examined the impact of air quality in cities with seaports and the
transport of pollution inland [16,17]. Coastal areas, especially those downwind of port
areas, experience specific meteorological patterns that affect the dispersion, transformation,
accumulation, and deposition of air pollutants [18].

Several studies have evaluated the impact of loading and unloading operations on
particulate matter emissions in ports, such as those conducted in the ports of Tarragona and
Thessaloniki [12,19]. Other studies have examined PM10 (particles smaller than 10 microns)
and PM2.5 (particles smaller than 2.5 microns) emissions resulting from port activities
in Barcelona and Civitavecchia, as well as noise and pollution caused by ship and port
activities in Ancora [20–22]. Pollution from ships in ports such as those in Shanghai
and Istanbul has been analyzed, along with studies on pollutant gas compositions, PM10
levels due to bulk handling in Alicante, and the relationship between maritime traffic and
pollutant concentration in several ports [17,23].

It is well-known that there are different types of outliers, such as vector and functional
outliers. To date, there have been a number of studies on the identification of vector outliers
in fields as diverse as medicine [24] and renewable energy [25]. Numerous methods have
been proposed to detect and investigate outliers in pollutant measurements recorded at
air quality monitoring stations [26–28]. However, no single method has been universally
accepted as the definitive approach.

Outlier detection based on vectorial methods, such as Z-score and Rosner test, involves
analysis of the distribution of individual data points with respect to the mean and standard
deviation of the data set. On the other hand, methods based on the FDA approach are
designed to analyze functional data sets, where each observation is a curve or function.
These outlier detection methods are Bagplot and HDR Boxplot.

In the area surrounding the port of Gijón, there have been recent and repeated episodes
of pollution that have caused social alarm and concern about possible health effects. Mu-
nicipal protocols to combat pollution have also been activated on several occasions. The
objective of this study was to propose a model for the identification of outliers derived
from pollutant emissions into the atmosphere in the vicinity of the industrial port of El
Musel in Gijón (latitude 43◦34′ N, longitude 5◦41′ W) using different methodologies. These
included vectorial methods and methods based on the FDA approach, allowing a compar-
ative analysis between the two approaches. In this way, early warning indicators can be
provided to help local authorities make timely decisions.

The structure of this paper is as follows: Section 2 introduces the experimental setup
and variables involved in this study. Section 2.4 explains the mathematical methods used
in this paper, including Box–Cox transformation, outlier detection using vector methods,
smoothing technique, functional bagplot, and HDR boxplot. Section 3 describes the re-
sults obtained with the proposed models and provides a discussion by comparing both
methodologies. Finally, Section 4 concludes this study by highlighting the main findings.

2. Materials and Methods
2.1. Gijón and the Port of El Musel

Gijón, with a population of 270,871 registered in 2021, is located on the coast of the
Cantabrian Sea (Figure 1a), in the autonomous community of Principality of Asturias, in
northern Spain. Gijón’s climate is characterized by short, mild summers with an average
temperature of 18.7 degrees Celsius (◦C) in August. Winters are long, wet, and relatively
cold, with an average minimum temperature of 8.1 ◦C in January and February, which
are the coldest months. It rains throughout the year in Gijón, with July being the driest
month with an average of 72 millimeters (mm) and November being the wettest with an
average of 159 mm. The total average annual rainfall is 1303 mm and the average annual
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temperature is 13.0 ◦C. Prevailing wind conditions are SW in winter and NE in summer.
The strongest wind conditions are NW.
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The construction of the Port of El Musel in Gijón was due to the impulse of the iron and
steel industry and the exploitation of hard coal in the second quarter of the 19th century
in Asturias. Commercial exploitation began in 1907 [29]. It has undergone numerous
expansions throughout its history, the most recent of which took place between 2005 and
2011. Currently, El Musel is an artificial outer harbor separated from the urban area of
the city of Gijón, whose main economic activity is the traffic of goods, connected to more
than 200 ports worldwide. The port is composed of seven main piers. Figure 1b shows
its location in relation to the city. The total length of quays and berths in the commercial
basins are 6934 meters (m) and 1006 m in fishing basins. The main materials unloaded
include coal, petroleum coke, clinker, iron ore, and other non-metallic materials. It is the
largest bulk port in Spain, with 14,500 thousand tons (kt) in 2019 and 13,616 kt of solid bulk
in 2020 [30,31]. This can cause a large amount of air pollution, which is further exacerbated
by road traffic along the port facilities and the roads leading to and from the port.

2.2. Pollution

Air pollutants can be divided into two types. The first type is primary pollutants,
which are emitted directly from sources into the atmosphere. The second type is sec-
ondary pollutants, which are formed from primary pollutants via chemical reactions and
microphysical processes in the atmosphere [32].

The origin of pollutants can be attributed to human activities. In this case, they are
called anthropogenic. Otherwise, they are referred to as naturally occurring pollutants.

Sulfur dioxide (SO2) is produced, among other sources, by exhaust emissions from
diesel engines, including those from ships, vehicles, and industrial plants [33]. Aerosols
formed via reaction with water vapor are hazardous to health even at low concentrations
and can cause irritation in the respiratory system [32]. They also cause damage to structures
by contributing to corrosion problems through the formation of sulfuric acid and producing
acid rain [34].

Carbon monoxide (CO) is a gas produced primarily by anthropogenic sources, such as
incomplete combustion from road traffic [35].

Ozone (O3) is a highly irritating pollutant to humans, is harmful to plants, and is
commonly found in urban smog. It is of secondary origin, formed through the reaction of
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NOx (nitrogen oxides) and VOCs (volatile organic compounds) with sunlight. It causes
numerous respiratory and health problems, as reported in numerous studies [36,37].

PM10 particles are small enough to pass through the respiratory tract and lodge in the
lungs. Short-term exposure can aggravate existing health issues, while long-term exposure
may lead to lung disease and other ailments [38].

The most harmful nitrogen oxides as pollutants are NO2 and NO (nitrogen dioxide
and nitric oxide) [32]. Extensive research has shown the harmful effects of these pollutants
on human health, affecting both adults [39] and children [40]. They can react with water
vapor to form nitric acid, which, like sulfur oxides, causes metal corrosion issues [41].

2.3. Experimental Data Set

In this article, the values of the pollutants PM10, NO, NO2, SO2, CO, and O3 collected
over six years, from January 2016 to December 2021, at the Principality of Asturias moni-
toring station ES1271A, located in Gijón, have been analyzed. This air quality monitoring
station, called Argentina, is the closest to the port, as shown in Figure 1b.

2.4. Mathematical Methodologies Used in This Study
2.4.1. Box–Cox Transformation

In order to carry out the study of vector outliers, a normality condition was required,
which was not present in the initial data recorded by the air quality monitoring station of
this study. One of the objectives of variable transformation is to reduce skewness as well as
other distributional properties that cause difficulties in statistical analysis. Therefore, it was
necessary to find a simple transformation that could approximate the data of a variable to a
normal distribution. Linear transformations do not change the shape measures of skewness
and kurtosis [42]. However, nonlinear transformations can modify these measures and
can be used to obtain variables with distributions that approximate normal distribution.
Among these transformations, the most commonly used is the Box–Cox transformation,
which belongs to the following family of transformations [43]:

x(λ)j =

{
xλ

j −1
λ , i f λ 6= 0

log
(
xj
)
, i f λ = 0

, (1)

where xj represents the variable to be transformed and λ is the transformation coefficient
that maximizes the likelihood function of the variable’s profile. This makes it possible to
perform a transformation that allows the data of a study to be treated as approximately
normal in most cases [44].

Subsequently, after applying the Box–Cox transformation, normality was assessed
using the Anderson–Darling test, a widely known test described in [45].

2.4.2. Outlier Detection Techniques Using Vector Methods
Z-Score

One methodology employed to identify atypical values (or outliers) is well-known
as the Z-score, which assumes data normality [46]. This approach identifies outliers as
standardized values that exceed a given threshold. The Z-score is calculated as follows:

zi =
xi − xr

σ
, (2)

where xi represents the value of the observation at each point, xr is a reference value
(typically the mean of the observations), and σ is the standard deviation of all observations.
The detailed development of this methodology can be found in [46].
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The scoring criterion specified by the International Organization for Standardiza-
tion/International Electrotechnical Commission (ISO/IEC 17043:2010) was adopted as the
criterion to establish possible outliers [47]:

|zi| < 2→ Satisfactory;
2 ≤ |zi| ≤ 3→ Uncertain;
|zi| > 3→ Unsatisfactory.

(3)

Therefore, a Z-score greater than two was considered a possible outlier, while a
score greater than three indicated a clear outlier. It is important to note that this criterion
assumes a normal distribution of the contamination values, necessitating performing a
prior transformation using the Box–Cox methodology.

A set of observations may have upper and lower outliers, which are, respectively,
significantly higher or lower than the remaining values. In the case of air quality studies,
higher concentrations of pollutants are of particular concern to human health, and therefore
require monitoring. By applying the Z-score methodology, positive and negative values
can be obtained. Following the criteria given in Equation (3) to identify possible outliers,
we identified higher outliers (zi > 3) and lower outliers (zi < 3). However, for the purpose
of this study, only positive values (zi > 3) were considered. Since our focus was on air
quality, our interest was only in the upper outliers.

Rosner’s Test

Rosner’s test is a statistical tool used to detect outliers within a data set. Its basic
principle is to compare the difference between a given value and the mean of the remain-
ing values, which is then divided by the standard deviation of those values. A larger
standardized difference indicates a higher probability that the value is an outlier.

The test is performed iteratively, meaning that the procedure is repeated for each
potential outlier value, with the value with the largest standardized difference being
eliminated at each iteration.

Furthermore, the specific method employed in Rosner’s test is known as the general-
ized ESD (Extreme Studentized Deviate) Test. This approach addresses certain limitations
found in the Grubbs Test, also referred to as ESD or Pearson-Hartley. The ESD Test was
developed to tackle two primary limitations: first, it was designed to test a single outlier
and cannot find multiple outliers in a data set; second, it can suffer from a masking effect
due to the presence of other outliers nearby [48].

Rosner’s test is designated to detect one or more outliers in a data set having an
approximately normal distribution. It requires specifying an upper limit, denoted as r, for
the number of outliers to be tested [49]. The generalized ESD performs r separate tests,
looking for from one to r outliers. This approach avoids the masking effect and allows for
the detection of multiple outliers [49].

Rosner’s test hypotheses are as follows [50]:

H0: There are no outliers in the given data set, i.e., the data set is normally distributed.

H1: There are up to a maximum of r outliers in the given data set.

The development of Rosner’s test, indicated in [49,51], is as follows:
Let x1, x2, . . . , xn represent the n observations of a given data set X. It is considered

that n− r of the observations of that data set come from a normal distribution, while the r
observations are potentially extreme and may or may not belong to a different distribution.

Let us now consider a new data set X∗ consisting of the elements x∗1 , x∗2 , . . . , x∗n−i,
where n − i are the number of observations after having removed the i most extreme
measurements from the previous set X; therefore, let i = 0, 1, 2, . . . , r− 1.
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We denote the standard deviation as s(i) and the mean as
−
x
(i)

of the set X∗, as well as
−
x
(0)

and s(0) to the mean and standard deviation of the set X containing all observations.
We can define the most extreme observation in the data set, a specific value of i, as that

which is furthest from the mean. That is:

x(i) = maxj|x∗j −
−
x
(i)
|, j = 1, 2, . . . , n− 1. (4)

Although, from the point of view of contaminant concentration analysis, the largest
extreme observations are of interest, formally, from a mathematical point of view, the
absolute value is taken to consider as an extreme observation the smallest or the largest of
the elements of the data set.

Rosner’s outlier test [49,50] is supported by r statistics, denoted as R1, R2, . . . , Rr;
r ∈

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 25 
 

 

Let us now consider a new data set 𝑋∗  consisting of the elements 𝑥∗, 𝑥∗, … , 𝑥∗  , 
where 𝑛 − 𝑖 are the number of observations after having removed the 𝑖 most extreme 
measurements from the previous set 𝑋; therefore, let 𝑖 = 0, 1, 2, … , 𝑟 − 1. 

We denote the standard deviation as 𝑠( ) and the mean as �̅�( ) of the set 𝑋∗, as well 
as �̅�( ) and 𝑠( ) to the mean and standard deviation of the set 𝑋 containing all observa-
tions. 

We can define the most extreme observation in the data set, a specific value of i, as 
that which is furthest from the mean. That is: 𝑥( ) = 𝑚𝑎𝑥 𝑥∗ − �̅�( ) , 𝑗 = 1, 2, … , 𝑛 − 1. (4)

Although, from the point of view of contaminant concentration analysis, the largest 
extreme observations are of interest, formally, from a mathematical point of view, the ab-
solute value is taken to consider as an extreme observation the smallest or the largest of 
the elements of the data set. 

Rosner’s outlier test [49,50] is supported by 𝑟 statistics, denoted as 𝑅 , 𝑅 , … , 𝑅 ;  𝑟 ∈ℕ ∕ 𝑟 < 𝑛, corresponding to the studentized extreme deviations obtained from subsets of 
decreasing size, i.e., 𝑛, 𝑛 − 1, … , 𝑛 − 𝑟 + 1 elements. 

Therefore, we can define the statistic 𝑅  and the critical value 𝜆  as follows: 𝑅 = 𝑥( ) − �̅�( )𝑠( ) , (5)

𝜆 = 𝑡 , (𝑛 − 𝑖 − 1)𝑛 − 𝑖 − 2 + 𝑡 , (𝑛 − 𝑖), (6)

where 𝑝 = 1 − ( ), 𝑡 ,  is the 𝑝  quantile with 𝜈 degrees of freedom (dof) of the t-
Student distribution, and 𝛼 is the Type I error level. 

The procedure to establish the number of outliers is as follows: first, compare the 
statistic 𝑅  with the critical value 𝜆 . If 𝑅 > 𝜆 , then we can conclude that the most ex-
treme 𝑟  value is an outlier. If 𝑅 ≤ 𝜆  , proceed to compare 𝑅   with 𝜆  . If 𝑅 >𝜆 , then the 𝑟 − 1 most extreme values are considered outliers. Finally, we continue in 
the same way until we have detected up to a certain number 𝑟 of outliers or until the test 
does not give any value [50]. 

Rosner’s test is indicated for sets with 𝑛 > 25 observations [50]. 

2.4.3. Outlier Detection Methods Based on the FDA Approach 
Functional data analysis (FDA) is a statistical framework designed for analyzing data 

in the form of smooth curves or functions. The basic philosophy of FDA is that, despite 
their discrete nature, observed data functions should be considered as single entities, ra-
ther than as a mere sequence of individual observations. A functional data set, denoted by 𝑥, consists of 𝑛 pairs (𝑡 , 𝑌 ), where 𝑌  represents a recording or observation of the func-
tion 𝑥(𝑡 ) at argument value 𝑡 . Since observation noise is typically present in data, the 
representation of raw data in a functional form often involves a smoothing process. The 
FDA approach is developed in detail in Ramsay and Silverman [52]. 

Outlier detection within the FDA approach focuses on identifying unusual observa-
tions or curves that deviate significantly from the expected behavior. These outliers pro-
vide valuable insight into abnormal or extreme patterns and are of great interest in various 
fields. The goals of outlier detection using methods based on the FDA approach include 
identifying outliers of magnitude and shape, characterizing their impact on the data, and 
understanding the underlying mechanisms that contribute to their occurrence. 

The following subsections describe smoothing in more detail, as well as the two out-
lier detection methods based on the FDA approach used in this study: functional bagplot 
and functional high-density region boxplot. 

/r < n , corresponding to the studentized extreme deviations obtained from subsets
of decreasing size, i.e., n, n− 1, . . . , n− r + 1 elements.

Therefore, we can define the statistic Ri+1 and the critical value λi+1 as follows:

Ri+1 =

∣∣∣∣x(i) − −x(i)
∣∣∣∣

s(i)
, (5)

λi+1 =
tp,n−i−2(n− i− 1)√(

n− i− 2 + tp,n−i−2
)
(n− i)

, (6)

where p = 1− α
2(n−i) , tp,ν is the pth quantile with ν degrees of freedom (dof) of the t-Student

distribution, and α is the Type I error level.
The procedure to establish the number of outliers is as follows: first, compare the

statistic Rr with the critical value λr. If Rr > λr, then we can conclude that the most extreme
r value is an outlier. If Rr ≤ λr, proceed to compare Rr−1 with λr−1. If Rr−1 > λr−1, then
the r− 1 most extreme values are considered outliers. Finally, we continue in the same way
until we have detected up to a certain number r of outliers or until the test does not give
any value [50].

Rosner’s test is indicated for sets with n > 25 observations [50].

2.4.3. Outlier Detection Methods Based on the FDA Approach

Functional data analysis (FDA) is a statistical framework designed for analyzing data
in the form of smooth curves or functions. The basic philosophy of FDA is that, despite their
discrete nature, observed data functions should be considered as single entities, rather than
as a mere sequence of individual observations. A functional data set, denoted by x, consists
of n pairs

(
tj, Yj

)
, where Yj represents a recording or observation of the function x

(
tj
)

at
argument value tj. Since observation noise is typically present in data, the representation
of raw data in a functional form often involves a smoothing process. The FDA approach is
developed in detail in Ramsay and Silverman [52].

Outlier detection within the FDA approach focuses on identifying unusual observa-
tions or curves that deviate significantly from the expected behavior. These outliers provide
valuable insight into abnormal or extreme patterns and are of great interest in various
fields. The goals of outlier detection using methods based on the FDA approach include
identifying outliers of magnitude and shape, characterizing their impact on the data, and
understanding the underlying mechanisms that contribute to their occurrence.

The following subsections describe smoothing in more detail, as well as the two outlier
detection methods based on the FDA approach used in this study: functional bagplot and
functional high-density region boxplot.
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Smoothing: A Method to Represent Curves Based on Points

In certain problem domains, measurements are derived from operations that have
functional characteristics. In the present study, the data under investigation were derived
from the average daily concentrations of atmospheric pollutants, aggregated on a monthly
basis, as recorded by an air quality monitoring station. The focus was on the analysis of
a set of air pollutants observed over a consecutive period of months. Initial exploratory
analysis revealed a discernible pattern of variation with a sinusoidal profile. This observed
variation could potentially be influenced by meteorological factors such as temperature,
rainfall, humidity, wind direction, and wind speed, as well as various processes associated
with nearby industrial and port activities. The FDA approach represents an appropriate
method for investigating these types of issues.

In the FDA approach, curves are created to fit the isolated data points, transforming a
vector sample into a functional sample. This results in a set of continuous functions instead
of multiple point values.

Applying appropriate smoothing assumptions in data analysis allows for a greater
amount of information to be obtained and contributes to flexible and robust results. The
smoothing approach must accurately represent the desired characteristics.

Smoothing and curve fitting are different concepts. Curve fitting aims to find a curve
that closely resembles the original data.

According to Ramsay and Silverman [52], monitoring a continuous process at isolated
points leads to monitoring functional data. Let F be a functional space and x

(
tj
)

be a
set of np observations, where tj represents each instant of time. These observations can
be considered as the values taken by the function x(t) ∈ χ ⊂ F at specific points. For
evaluation purposes, we assume F = span

{
φ1, . . . , φnb

}
, where {φk} is a set of basis

functions, k = 1, 2, . . . , nb, and nb is the number of functions needed to form the basis of
the functional space. Typically, spline or Fourier functions are used as basis functions.
Although other types are possible [53], we considered a Fourier function:

x(t) =
nb

∑
k=1

ckφk(t), (7)

where {ck}
nb
k=1 are the function coefficients of x(t) with respect to a collection of selected

basis functions. The smoothing problem is based on finding the solution to the following
regularization issue [53]:

min
x∈F

np

∑
j=1

{
zj − x

(
tj
)}2

+ λΓ(x). (8)

In this expression, zj = x
(
tj
)
+ ε j calculates the value of the function x at each point tj,

where ε j is a random perturbation with zero mean. Γ is an operator that penalizes problem
difficulty and λ is a regularization coefficient controlling the intensity.

A Fourier series can approximate periodic functions, both univariate and multivariate.
Thus, the expansion in Expression (8) can be written as:

min
c

{
(z−Φc)T(z−Φc) + λcTRc

}
, (9)

where z =
(

z1. . . . , znp

)T
is the vector from measurements, c =

(
c1. . . . , cnp

)T
is the vector

of the coefficients from the functional expansion, Φ is an np × np matrix with elements
Φjk = φk

(
tj
)
, and R is an nb × nb matrix defined as:

Rkl =
〈

D2φk, D2φl

〉
L2(T)

=
∫

T
D2φk(t)D2φl(t)dt. (10)
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In the above expressions, Dnφk(t) represents the nth-order differential operator ap-
plied to φk. The solution can be obtained as:

c =
(
ΦtΦ + λR

)−1
Φtz. (11)

In the FDA approach, the data from the measurements not only consist of discrete
points, but also belong to a smooth function. Typically, this function exhibits some level of
smoothness and continuity, where consecutive monitored points zj and zj+1 are close to each
other. The analysis is often performed on a group of functional data sets sharing a common
performance pattern. In this study, the periodicity was considered by incorporating monthly
monitoring.

Functional Bagplot

The concept of functional bagplot extends from the bivariate bagplot developed in [54]
that made use of the first two robust scores of the principal component method.

The bivariate bagplot is a variation of the univariate boxplot proposed by Tukey [55].
It represents the semi-space position depth of an element θ ∈
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variate collection of points Z = {z1, z2, . . . , zn}. The localization depth of the semi-space
ldepth(θ, Z), θ ∈
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2, Z = {z1, z2, . . . , zn} is defined as the minimum number of zi included
in any closed semi-plane with a boundary line passing through θ. The depth zone Dk is the
collection of all points θ ∈
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2, such as ldepth(θ, Z) > k; k > 0. It is necessary to consider
that the depth zones are all convex polygons satisfying Dk+1 ⊂ Dk. The median depth of Z
is defined as the θ with the largest ldepth(θ, Z).

Both the boxplot and the bivariate bagplot have the following components: a central
element indicating the median depth, an inner case area, and an outer boundary area.
Outliers are individual elements outside these areas. In a bagplot, the element with the
highest depth (median depth) is located at the center, and it is surrounded by a case
formed by 50% of the elements with the highest depth. This concept is analogous to the
interquartile range in a traditional boxplot. By extending the case by a factor, the boundary
is determined and any element outside this edge is considered an outlier. The bagplot not
only detects outliers, but also provides information about correlation, position, as well as
dispersion, skewness, tails, and a confidence zone for the depth median.

Functional bagplots extend the bagplot concept to a collection of curves {yi},
i = 1, 2, . . . , n by utilizing the first two scores obtained through the robust principal
components method of yi [56]:

yi = µ(x) +
2

∑
k=1

zi,k ϕk(x), (12)

where µ(x) represents the mean curve, {φk(x)} are the principal components, and
zi = (zi,1, zi,2) are the first and second principal component scores. Analyzing the first
two principal components enhances the detection of outliers compared with the original
functional space [57]. These components typically capture the most important modes of
variation [58]. The functional bagplot is particularly useful when the number of variables
exceeds the amount of data monitored.

The functional bagplot presents the bivariate bagplot relative to the first and second
scores. It includes the median curve, regions with 95% confidence for the median, the 50%
case area, and 95% boundary area classified based on depth. Curves outside the 95% convex
area are considered functional outliers. Outliers are positioned relative to the boundary in
the bagplot.

A detailed development of the bagplot can be found in the study conducted by Ruts
and Rousseeuw [59]. The key steps of this procedure are as follows:

1. Calculate the number of elements included in the depth area Dk, denoted as #Dk. Find
the index k for which #Dk ≤

( n
2
)
≤ #Dk+1.
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2. Perform a linear interpolation, denoted as f (x), based on the center of mass of the
internal area labeled T∗ to obtain the case, which is a convex polygon in all cases.

3. Determine the edge by increasing it with respect to T∗ by an index of 3. The choice of
this quantity is supported by previous findings [54].

4. Mark elements beyond the edge as outliers.

Functional High-Density Region Boxplot

In some studies [56], high-density regions (HDR) are considered a powerful tool to
summarize prediction distributions. HDR exhibits versatility by combining modularity
and asymmetry in the predictive density. It has the property of being the smallest feasible
zone of probability coverage in a sample space at all times. In this article, we focus on a
two-dimensional scenario which implies dealing with the minimum surface area.

The boxplot methodology [55] is very useful for studying univariate samples. Hyn-
dman proposed a boxplot methodology based on HDR, which outlines probability dis-
tributions and can be extended to n-dimensional multivariate densities [60]. The HDR
functional boxplot [56] is a modification of the functional boxplot that arranges the scores
zi = (zi,1, zi,2) using a bivariate kernel density approximation.

Let f be a density function and {zi; i = 1, . . . n} be a random sample of two variables
from f . The kernel density approximation for Parzen–Rosenblatt in a bivariate case is as
follows [61]:

f̂ (ω; a, b) =
1

nab

n

∑
k=1

k
(

ω1 − zi,1

a

)
k
(

ω2 − zi,2

b

)
, (13)

where ω = (ω1, ω2)
′; k(·) is a one-dimensional kernel function with symmetry, such that it

is verified that
∫

k(u)du = 1, and (a, b), where a > 0, b > 0, control the bivariate bandwidth.
The HDR boxplot can be defined as:

Rα =
{

z : f̂ (z; a, b) ≥ fα

}
, (14)

where fα ensures that Pr(Z ∈ Rα) ≥ 1 − α. The density estimated within this zone is
greater than that outside the zone, with a coverage probability of (1− α). Notably, the
HDR boxplot captures the smallest area in the sample space among all possible areas with
a probability coverage of (1− α), and it includes the mode.

The functional HDR boxplot displays the functional outliers, as well as the mode,
determined as supz f̂ (z; a, b), and the inner and outer areas. The inner area corresponds
to the region within the curves of the inner elements of the 50% bivariate HDR boxplot,
akin to the inner quartile range of a boxplot. It provides information about the central 50%
dispersion of the curves. The outer zone lies outside the curves of the inner elements of the
95% bivariate HDR boxplot and the outliers are the elements not contained within the 95%
HDR boxplot.

To address complications arising from numerical integration of f (x), Hyndman pro-
posed a Monte Carlo technique [60]. This involves considering a multivariate random
variable X with density f (x) and transforming it into Y = f (X). A new function fα is
obtained by transforming X using the density function, such that Pr( f (X) ≥ fα) = 1− α
holds. Thus, fα represents the quantile α of Y, and it can be estimated through a sampling
process. More details can be found in Reference [62].

3. Results and Discussion

Air quality in the vicinity of the port of El Musel and the western area of Gijón can
have a significant impact on people’s health and pose a risk factor for various diseases.
In this study, we focus on analyzing pollutants based on data collected at the Argentina
station, specially targeting pollutants with legislated values for health protection. These
pollutants include:
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• SO2—Coal and oil often contain sulfur compounds and their combustion produces
sulfur dioxide. Further oxidation of SO2, usually in the presence of a catalyst such
as NO2, forms H2SO4 (sulfuric acid), resulting in acid rain. This is one of the reasons
for concern about the environmental impact of the use of these fuels for power gen-
eration [32,63]. The limit values set for the protection of human health by European
Community Directive 2008/50 [64] are 350 µg/m3 over an average period of 1 h and
125 µg/m3 over a 24 h mean period.

• NO2—This gas is considered one of the most important atmospheric pollutants. It
is present in the formation of acid rain as HNO3 (nitric acid) due to reactions with
water vapor droplets in the atmosphere [32]. The limit values set in the European
legislation [64] are 240 µg/m3 over an average period of 1 h and 40 µg/m3 for the
calendar year.

• CO—Carbon monoxide is a product of the incomplete combustion of fuels such as
coal and natural gas. Automobile exhaust is also a source of carbon monoxide [32].
The maximum allowable concentration in air quality legislation [64] is 10 mg per day,
based on a daily 8 h mean.

• PM10—Particulate matter in the air represents a complex mixture of organic and
inorganic substances. Particulate matter is found in urban areas from thermal power
plants, industrial processes, vehicle traffic, domestic coal combustion, and industrial
processes and activities [20]. The limit values for PM10 collected in [64] are 40 µg/m3

per calendar year and 50 µg/m3 per day. This daily limit value may not be exceeded
more than 35 times per calendar year.

• O3—Tropospheric ozone of artificial origin is a secondary pollutant, as it is generated
from other pollutants in the air due to a series of photochemical reactions of volatile
organic compounds and nitrogen oxides [32]. The target value set by [64] legislation
for the protection of human health is 120 µg/m3 as the daily maximum of the eight-
hourly moving averages. This value shall not be exceeded for more than 25 days each
calendar year considering a 3 year average.

Our main objective was focused on the analysis of daily PM10 measurements, but daily
measurements of SO2, NO, NO2, CO, and O3 pollutant gases from the same station were
also studied. Since our objective was to extract and analyze statistical information from
the collected data, it could happen that the identification of an outlier did not correspond
to the consideration of exceeding the limits established by the legislation, since the latter
values are fixed and the extreme values come from mathematical analysis and are therefore
inherent in the data themselves.

For the pollutants studied, our sample
{

x(k)ij

}n

j=1
corresponded to n = 96 months,

spanning from January 2014 to December 2021. In this sample, xij represents the con-
centration of each pollutant k measured on day i of month j, with i = 1, 2, . . . , 30 and
j = 1, 2, . . . , n, where k = {SO2, NO, NO2, CO, PM10, O3}.

The results obtained for each of the methods used in the analysis of air pollution at
the Argentina station, which was selected to characterize the emissions of the Gijón port
area due to its proximity to the El Musel port area in Gijón, are presented below.

Table 1 presents a summary of the outliers identified by the vector analysis and the
two methods based on the FDA approach used in this study. It is important to note that
the lower outliers were excluded from the analysis results, as they were not considered
representative in the context of air pollution and air quality assessment.

Table 2 presents the months and their respective monthly mean values, indicating the
months in each year that recorded the highest monthly mean value.
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Table 1. Summary of the outliers detected using vector and functional procedures.

Method/Pollutant SO2 NO NO2 CO PM10 O3

Vector
February 2015 March 2014 September 2018

October 2014
February 2020

HDR Boxplot

January 2015 November 2014 October 2014 October 2014 Mach 2014 May 2018
November 2016 January 2015 February 2015 May 2017 October 2014 September 2018
December 2016 December 2015 November 2018 November 2017 March 2015 May 2019
November 2017 December 2016 January 2019 December 2018 February 2020
December 2018 November 2018 March 2020 February 2019 December 2021

Bagplot

March 2014 October 2014 October 2014 October 2014 Mach 2014 May 2018
January 2015 November 2014 February 2015 February 2015 October 2014 July 2018
April 2015 February 2015 November 2018 December 2015 February 2015 September 2018
February 2016 October 2015 January 2019 December 2016 March 2015 May 2019
November 2016 November 2015 Mach 2020 April 2017 February 2020 June 2020
December 2016 December 2015 May 2017 Mach 2021
February 2017 January 2016 November 2017 December 2021
April 2017 December 2017 December 2018
November 2017 February 2018 February 2019
November 2018 November 2018 October 2021

December 2018
February 2019
January 2020
December 2020

Table 2. Month with maximum values as average concentration *.

Pollutant/Year 2014 2015 2016 2017 2018 2019 2020 2021

SO2 (µg/m3)
February

(10)
January

(17)
December

(12)
February

(12)
December

(13)
February

(12)
January

(8)
December

(8)

NO (µg/m3)
November

(18)
December

(30)
December

(30)
January

(20)
December

(25)
December

(16)
January

(19)
December

(17)

NO2 (µg/m3)
November

(34)
January

(38)
December

(40)
January

(37)
November

(37)
February

(38)
January

(31)
December/January

(27)

CO (mg/m3)
October

(0.64)
December

(0.68)
December

(0.75)
May
(0.86)

December
(0.83)

February
(0.93)

October
(0.65)

January
(0.50)

PM10 (µg/m3)
October

(47)
December

(44)
December

(36)
October

(35)
December

(40)
February

(42)
February

(46)
December

(49)

O3 (µg/m3)
July/May

(46)
July
(46)

April
(47)

April
(54)

September
(65)

April
(58)

April
(53)

June/April
(53)

* The average concentration is given in brackets. Source: adapted from [65].

3.1. Vector Analysis Results

During the data exploration phase, it was observed that the data set did not follow a
normal distribution. An Anderson–Darling test was performed, yielding a p-value of less
than 0.005 for all pollutants. Therefore, the normality of the data was not accepted at the
5% significance level.

A Box–Cox transformation was applied to the data to obtain a normal distribution.
This transformation was appropriate because the pollutant values were always positive
and there were no observations of pollutants equal to zero during the study period.

Table 3 shows the optimal λ value used for the transformation along the upper and
lower limits of the 95% confidence interval for each pollutant.
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Table 3. Optimal values of λ for Box–Cox Transformation for SO2, NO, NO2, CO, PM10, and
O3 pollutants.

Pollutant Lower Confidence Limit Upper Confidence Limit Optimal λ

SO2 −0.42 −0.29 −0.35
NO −0.11 −0.02 −0.07
NO2 0.26 0.40 0.33
CO −0.44 −0.31 −0.38

PM10 0.06 0.23 0.15
O3 0.78 0.94 0.86

The generalized ESD (extreme deviation studied) test was conducted as described
above. A value of r = 1 for all pollutants, and for the pollutant PM10, the test was repeated
with r = 2 after having detected one outlier with r = 1. The results obtained are presented in
Table 4. The Rosner test identified only one outlier for PM10 in this study.

Table 4. Results of generalized ESD test.

Pollutant i Mean (i) Standard
Deviation (i) Value Observation

(Day) R (i + 1) λ (i + 1) Outlier

SO2 0 0.57981 0.11723 1.00000 2673 3.58428 4.28987 FALSE
NO 0 0.89639 0.04345 0.76782 665 2.95901 4.28987 FALSE
NO2 0 2.80590 0.45107 4.28506 1365 3.27923 4.28987 FALSE
CO 0 1.58098 0.35121 0.69273 1796 2.52911 4.28987 FALSE

PM10 0 1.62088 0.09149 2.02692 2611 4.43804 4.28987 TRUE
1 1.62074 0.09119 1.26132 446 3.94134 4.28979 FALSE

O3 0 21.92891 7.14035 46.24131 1709 3.40493 4.28987 FALSE

3.2. Results of the FDA Approach

By applying the described smoothing technique to the initial sample
{

x(k)ij

}n

j=1
, a

new sample
{

xj(t)
}

was generated for each analyzed pollutant k. In this new sample xj
represents a new basis function derived from Fourier basis functions. In this analysis, a set
of 100-element Fourier basis functions was specifically utilized. The correlation coefficient
between the discrete values of the initial sample and the values of the functions generated
from the new sample was 0.99, indicating a strong 99% correlation between the functional
sample and the discrete values.

The FDA approach was performed after the samples were constructed using the
functional smoothing method. Specifically, the two functional methods mentioned in
the previous section were applied to a data set obtained from the Argentina air quality
monitoring station.

Figures 2 and 3 show the functional bagplot and the HDR boxplot, respectively, for
the data collected at the Argentina station.

Both the functional bagplot and the HDR boxplot methods provide statistical means
to identify outliers. Outliers are identified as curves that lie outside the light gray shaded
areas that represent the bands corresponding to 95% confidence.

Table 1 shows the outliers obtained using the functional bagplot and HDR boxplot
methods. Each outlier indicates the month in which a particular pollutant had a concentra-
tion outside the 95% confidence bands during the 8-year study period. The lower outliers
were excluded from Table 1 as they were not considered representative for the purpose of
the pollutant concentration analysis.
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Figure 2. Functional bagplot analysis of the pollutant emissions of SO2, NO, NO2, CO, PM10, and O3

at Argentina air quality monitoring station in Gijón. Oj indicates an outlier in month j, where j = 1
represents January 2014 and j = 96 represents December 2021.

The highest values were recorded in the autumn and winter months for SO2, NO,
NO2, CO, and PM10 air pollutants. This is in agreement with observations made in several
studies [66–68]. However, some exceptions can be seen, as in 2017 when the month with
the highest monthly average concentration for the pollutant CO was May, with a value of
0.86 mg/m3, which corresponded to the highest value in the series after February 2019,
with a value of 0.93 mg/m3.
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Figure 3. HDR boxplot analysis of the pollutant emissions of SO2, NO, NO2, CO, PM10, and O3 at
Argentina air quality monitoring station in Gijón. Oj indicates an outlier in month j, where j = 1
represents January 2014 and j = 96 represents December 2021.

By observing the graph of the daily concentration averages for the pollutant CO
corresponding to the month of May for each of the 8 years studied (2014 to 2021) in Figure 4,
it can be observed that the month of May presented an atypical behavior with values much
higher than the rest of the annual series for the same month.

On the other hand, the pollutant O3 presented the highest monthly mean values in
spring and summer, as observed in some studies as [69], which correspond to the periods
of highest solar activity. However, an exception can be considered in 2018, in which the
month with the highest average concentration was September.
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Figure 4. Average daily concentration of the pollutant CO during the month of May in the 8-year
study period (2014–2021).

Regarding climatology, September 2018, as shown in Figure 5, was the third month
with the most hours of sunshine with 183 h, compared with 251 in August and 214 in May.
However, September 2018 was the month with the lowest precipitation month in 2018, with
only 50.3 mm, following an atypical December with only 45.1 mm. The high sunshine hour
activity combined with low precipitation in September 2018 could explain why the annual
maximum of monthly averages was delayed until September in that year.
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Figure 5. Temperature, precipitation, and sunshine hours chart in Gijón Port during the 8-year study
period (2014–2021).

With vector analysis using the Z-score method, no outliers were detected for SO2, NO,
and CO pollutants. Only one outlier was detected for NO2 corresponding to February
2015; three for PM10 in March 2014, October 2014, and February 2020; and one outlier
for O3 in September 2018. Note that lower outliers were not considered as they were not
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representative in this air pollution study. The number of lower outliers detected using this
method was PM10 (five) and NO2 (two). The Rosner test only detected one outlier for PM10
in March 2021.

The number of outliers detected using the HDR boxplot and bagplot methods of
the FDA approach was considerable, especially in the case of the bagplot. Outliers were
detected for all contaminants using the FDA approach methods. Table 1 shows the outliers
obtained by the vector and methods based on the FDA approach.

Based on the results obtained, it was observed that the outliers detected using vec-
tor analysis were also identified with the methods based on the FDA approach. This
observation suggests that non-normality of the recorded measurements’ data set may be
the reason for their presence. Classical methods are highly robust when dealing with
data from normal distributions; however, their efficiency decreases when confronted with
non-normal distributions.

Vector methods consider point observations to study the data. However, because
air pollution from gases does not depend on single measurements, but on a series of
measurements that may exceed the limits set by legislation within a specific time interval or,
in this case, the statistically established limits derived from the data set, the FDA approach
treats these observations as functional data rather than individual points. As a result, our
approach involved treating air pollutant gas measurements as a collection of curves rather
than as vectors, which can better capture variability. This perspective allowed us to view
the original data set as a time-dependent function along a continuous domain rather than a
set of discrete values at different points in time.

Methods based on the FDA approach are also more sensitive to detecting outliers than
vector methods, especially when the data have complex or non-linear patterns. The FDA
approach allows individual curves to be fitted to the data, which can be useful for detecting
specific outliers in each curve.

However, they have some limitations, such as the fact that methods based on the FDA
approach may require a higher level of knowledge and expertise compared with classical
vector methods, coupled with higher computational complexity, which may increase the
time and resources needed to perform the analysis. In the situation of data sets that follow
a normal distribution, classical methods are generally quite robust and simpler. However,
such classical methods lose efficiency on data sets that do not follow a normal distribution.

The proposed methods can be sensitive to the choice of the functional representation
of the data and to the dimension reduction techniques. The choice of appropriate basis func-
tions or dimension reduction methods can affect the quality of the functional representation
and the subsequent detection of outliers.

Bias may also be introduced by the presence of incomplete or missing data. The
methods assume complete and reliable observations, but in the real world, data may be
missing for a variety of reasons, such as sensor failure or maintenance issues. Missing data
can introduce bias and affect the accuracy of outlier detection.

As mentioned above, one advantage of methods based on the FDA approach over the
identification of outliers by classical, i.e., vector methods, is the absence of need to assume
normality. Therefore, there is no requirement to test for normality using methods such as
Anderson–Darling or to perform a Box–Cox transformation.

In this study, the HDR boxplot method performed worse in detecting outliers of
both methods based on the FDA approach. All outliers identified by the HDR boxplot
method were detected by the bagplot method, except for two values for the pollutant NO,
corresponding to months 13 (January 2015) and 36 (December 2016).

Figure 6 displays the graphs depicting the functions obtained after smoothing the pol-
lutant emission data for SO2, NO, NO2, CO, PM10, and O3. Each pollutant had 96 functions
representing each month of the 8-year study period conducted at the air quality monitoring
station in Gijón.
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Figure 6. Pollutant emission functions of SO2, NO, NO2, CO, PM10, and O3 at Argentina air quality
monitoring station in Gijón during the 8-year study period.

With regard to maritime traffic, as indicated in the internal report of the Gijon Port
Authority [70], the Port of El Musel had a significant decrease in the movement of goods
through its facilities in 2020. It was a year marked by the health crisis and, in the case of
the pier of Gijón, by the strong impact of decarbonization, as well as by the productive
adjustment of steel production in the Asturian region. A slight recovery can be seen in
2021. Table 5 shows the evolution of maritime traffic in terms of number of vessels, gross
tonnage, and dry bulk from 2010 to 2021.
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Table 5. Port maritime traffic in Gijón Port (2010–2021).

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Number of ships 1050 1065 1125 1251 1315 1183 1156 1298 1229 1187 1127 1189

Gross Tonnage 16,569
(thousands of tons) 14,254 17,735 19,091 20,504 21,192 19,097 18,311 19,607 18,226 18,005 16,468 9246

Dry Bulk 2021
(thousands of tons) 10,602 10,256 12,024 1669 12,382 15,355 12,036 14,768 12,717 9790 7010 1189

Number of ships 1050 1065 1125 1251 1315 1183 1156 1298 1229 1187 1127 16,569
Gross Tonnage 9246

Source: adapted from [31,71].

Moldanová et al. [72] presented a PM emission factor from diesel-powered ships of
5.3 g, with a bimodal particle size distribution, one of the maxima being in the diameter of
7 microns and the other at 0.5 microns. Another study found that the total PM emission
was 36 tons/year at Ambarli Port [73] and other researchers estimated 57.4 tons of PM per
year for 7520 ships in the Candali Gulf [74], both located in Turkey.

According to Mueller et al. [75], factors such as road traffic, industrial and residential
emissions, as well as ships’ emissions can affect air quality in port cities. The Argentina
station in Gijón, due to its location, can receive not only emissions from the port of El Musel,
but also emissions from the industrial areas to the west of Gijón and emissions from traffic
in the area, as well as residential emissions. Another important factor is the daily truck
traffic generated by the Port of El Musel. According to the consulting firm Vectio Traffic &
Transport Planning (https://www.vectio.es) in a report prepared for the City Council of
Gijón, the average number of trucks passing through one of the main access roads to the
port was 1052 per day.

For the entire period 2004 to 2021, the Argentina station recorded exceedances of the
limit values only in the case of the pollutant PM10. Table 6 shows the number of exceedance
days in that period and the annual average concentration of PM10. The concentration of the
others air pollutants were below the legal limits. Between the years 2009 and 2013, more
than 35 exceedances per year of the limit value for the daily average concentration of PM10,
which is set at 50 µg/m3, were reached. In addition, there is the possibility of receiving
pollutant emissions from several sources, as indicated above. These reasons have led to the
implementation of an action plan to improve air quality.

Table 6. Annual average of PM10 at the air quality station Argentina and number of exceedance days
during the period 2004–2021.

Year 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21

Exceedance days 76 93 84 70 25 45 41 63 44 41 36 * 21 6 14 16 11 26 38 *

Annual average
(µg/m3) 48 43 42 39 31 36 33 37 34 35 33 28 25 29 31 28 31 38

(*) Due to discounts for Saharan intrusions, there were no instances of legislative non-compliance regarding
exceedance days in 2014 and 2021. Exceeded values are highlighted in red. It is important to note that the current
legislative values were revised in 2004 and have remained unchanged since then.

For these reasons, the Government of the Principality of Asturias and the Gijón City
Council commissioned a study from the Carlos III Institute of Health, which serves as the
National Reference Laboratory for Air Quality. This study [76] recommended a new station
located further west to better characterize industrial emissions.

Since the implementation of the actions in the 2014 Air Quality Improvement Plan by
the Government of the Principality of Asturias and the City Council of Gijón, there has been
a continuous decrease in the number of daily exceedances of PM10 at the Argentina station
(see Table 6), a trend that was broken in 2017 and 2018 with 14 and 16 daily exceedances,
and subsequently in 2020 and 2021 with 26 and 38 exceedances, respectively. These data

https://www.vectio.es
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should be taken with caution, since at the end of this study period, the economic activities
of shipping and industry were paralyzed or slowed down due to COVID-19, but there was
an increase in the annual average PM10 values, as well as in the number of exceedance days.

In 2021, the last year with complete data for this study, the Argentina station was in
compliance with the number of allowable days exceeding the daily limit for PM10, after
applying discounts for Saharan intrusions. Saharan intrusions are a source of dust from the
Sahara Desert [77]. Table 7 shows the annual mean and standard deviation for each of the
pollutants for the 8-year study period (2014–2021) at the Argentina air quality station.

Table 7. Average annual value and standard deviation * of each pollutant at the Argentina air quality
station during the period 2004–2021.

Year SO2 (µg/m3) NO (µg/m3) NO2 (µg/m3) CO (mg/m3) PM10 (µg/m3) O3 (µg/m3)

2014 7.06 (1.99) 9.92 (5.31) 25.68 (6.95) 0.35 (0.12) 33.01 (7.49) 38.60 (8.72)
2015 7.23 (3.71) 12.21 (8.63) 27.29 (8.00) 0.35 (0.16) 28.38 (6.81) 35.75 (10.15)
2016 7.13 (2.10) 9.50 (7.79) 21.68 (8.48) 0.39 (0.16) 25.30 (4.64) 36.28 (9.55)
2017 8.11 (2.75) 9.27 (5.43) 26.25 (7.39) 0.50 (0.15) 28.85 (3.77) 38.92 (8.70)
2018 6.51 (3.30) 9.45 (7.20) 25.13 (7.53) 0.43 (0.17) 30.45 (4.81) 48.66 (12.31)
2019 5.49 (2.26) 10.54 (3.64) 22.75 (8.17) 0.48 (0.15) 27.73 (5.48) 44.25 (8.93)
2020 4.01 (1.76) 7.39 (5.20) 18.21 (7.15) 0.38 (0.15) 31.13 (9.26) 39.72 (10.18)
2021 4.37 (1.62) 8.47 (4.16) 18.53 (6.76) 0.27 (0.12) 38.06 (6.41) 40.56 (9.60)

(*) The value without brackets indicates the annual mean value and the value in brackets indicates the standard deviation.

As for the other air pollutants, all of them showed a decrease in 2020 compared
with the values obtained in 2019. In 2021, the last year of the study, the annual average
concentration of SO2 increased slightly from 4 to 5 µg/m3. The same happened for NO,
which increased from 7 to 9 µg/m3; with NO2, from 18 to 19 µg/m3; and O3 remained
constant at 40 µg/m3 from 2020 to 2021. In contrast, CO continued the downward trend
from 0.38 mg/m3 in 2020 to 0.27 mg/m3 in 2021. In 2021, there were no exceedances of the
hourly limit value for any of the studied air pollutants.

The FDA approach for outlier detection has been used in other works, although with
different approaches, either in the methods based on the FDA approach or in the field of
application, such as those Díaz Muñiz et al. [78] applied to water quality control, in the
emissions of polluting gases affecting urban areas [53]. Sguera et al. studied NOx levels
in an industrial area to determine the variation in pollution between working days and
weekends or holidays [28]. Chiou et al. [79] used an FDA approach to detect outliers in
traffic flow data. In another study, the HDR boxplot and bagplot methods were used for
the detection of outliers in data with hydrological applications [80]. In a recent study, new
methods based on an FDA approach were proposed for identifying outliers in functional
data sets. They were applied to climatological data series in Spain [81].

The calculations were performed on an AMD Ryzen 7 5800H processor, 3.20 GHz and
32 GB of RAM. The computational cost, using PM10 as an example, was 4.01 s for the HDR
and 0.08 s for the bagplot, compared with 0.02 s for the Z-score and less than 0.01 for the
Rosner test.

4. Conclusions

In this study, we analyzed a set of data from measurements recorded by the air quality
station of the Government of the Principality of Asturias, located closest to the Port of El
Musel (Gijón), in order to detect outliers. This analysis was carried out because of the social
alarm caused by the pollution episodes, especially PM10, detected in this area, as an aid to
decision making by local authorities, and for a possible means of early warning.

We used a vector method included in the European standards, such as the Z-score,
a test to detect outliers, such as the generalized ESD test and the Rosner test, and more
recent techniques to treat the discrete values of the observations as a series of continuous
functions as a function of time.
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Outlier detection using methods based on the FDA approach, such as HDR boxplot
and bagplot, was more powerful than vector methods, such as Z-score and the generalized
ESD test.

On the one hand, the analysis of the observations collected between 2014 and 2021
has shown the presence of the following upper outliers of air concentration for the vector
method: NO2 (one outlier), PM10 (three), and O3 (one). No outliers were detected for the
pollutants SO2, NO, and CO. The generalized ESD test detected a single outlier for PM10
and none for the other pollutants.

The functional bagplot method detected a greater number of outliers than the HDR
boxplot, with the following number of outliers being higher for the HDR boxplot method:
SO2 (five), NO (five), NO2 (five), CO (five), PM10 (five), and O3 (three). The bagplot method
identified SO2 (10), NO (13), NO2 (5), CO (10), PM10 (7), and O3 (5).

According to the results obtained in the pollutant analysis, the methods based on the
FDA approach allowed us to retrieve more information than the vector methods. The latter
compare averages, but do not take into account temporal variations.

Methods based on the FDA approach, in addition to having detected a greater number
of outliers, have the advantage of not requiring that the data come from a normal distri-
bution and, therefore, no hypothesis was made about the distribution followed by the
recorded observations. This avoided the need to perform transformations on the data. In
addition, this methodology considers the temporal correlation structure.

As for the origin of the pollution at the Argentina station, it could have several sources.
In addition to the port of El Musel, it may have an industrial and traffic origin. For this
reason, a study commissioned by the City Council of Gijón and the Government of the
Principality of Asturias determined the need for a new station in a more western location.
Therefore, new studies incorporating observations from this new station are needed to
determine the origin.

Future research work, in addition to considering this new station, should focus on the
application of this FDA approach methodology to statistical study and introduce sweep
rules to evaluate trends in the functional samples.

In general, some of the factors that cause pollution to increase in an area are economic
and population growth. In times of economic recession, pollution tends to decrease. It
is possible to apply this air pollution outlier detection methodology to other air quality
stations and in other geographic areas with success. It is also possible to apply this technique
to a wide range of other types of problems, not necessarily related to air pollution, but in
other areas such as water quality in water bodies, etc., to detect outliers. However, the
specific characteristics of the site must always be taken in account.

This functional outlier detection methodology can be used as an early warning tool
that allows authorities to take preventive decisions and effective measures to preserve the
health of citizens.
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