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Abstract: This work proposes a new algorithm for optimizing hyper-parameters of a machine
learning algorithm, RHOASo, based on conditional optimization of concave asymptotic functions.
A comparative analysis of the algorithm is presented, giving particular emphasis to two important
properties: the capability of the algorithm to work efficiently with a small part of a dataset and to finish
the tuning process automatically, that is, without making explicit, by the user, the number of iterations
that the algorithm must perform. Statistical analyses over 16 public benchmark datasets comparing
the performance of seven hyper-parameter optimization algorithms with RHOASo were carried out.
The efficiency of RHOASo presents the positive statistically significant differences concerning the
other hyper-parameter optimization algorithms considered in the experiments. Furthermore, it is
shown that, on average, the algorithm needs around 70% of the iterations needed by other algorithms
to achieve competitive performance. The results show that the algorithm presents significant stability
regarding the size of the used dataset partition.

Keywords: hyperparameters; machine learning; optimization; inference

1. Introduction

Tuning the hyper-parameter configuration of a machine learning (ML) algorithm is a
recommended procedure to obtain a successful ML model for a given problem. Different
ML algorithms have specific hyper-parameters whose configuration requires a deep under-
standing of both the model and the task. Since the hyper-parameter configuration greatly
impacts the models’ performance, the research in automatic hyper-parameter optimization
(HPO) is focused on developing techniques that efficiently find optimal values for the
hyper-parameters, maximizing accuracy while avoiding complex and expensive operations.
However, this process remains a challenge because not all optimization methods are always
suitable for a given problem.

Although there are several methods for tuning both continuous and discrete hyper-
parameters, they do not perform equally for all ML algorithms, displaying different con-
sumption of computational resources and stability. The process becomes computationally
expensive if too many function evaluations of hyper-parameter values must be carried out
to obtain a suitable accuracy. Since the size of the dataset in the HPO phase influences the
dynamic complexity of the classifier but not its accuracy [1], another possible limitation is
that a HPO algorithm may require a large dataset to work efficiently. Finally, most HPO
algorithms are iterative, which suggests that stopping the algorithm when the expected
improvement of testing new configurations is low can be a good option [2]. Nevertheless,
the ML user does not have information about the rate of convergence and the loss func-
tion values. Therefore, the user usually tends to leave the default parameters (more than
50 iterations) or set a high number of iterations to assure good performance ([3]). This fact
implies that the algorithm may perform more iterations than needed to obtain an adequate
accuracy, with the consequent increased computational cost.
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This article proposes a novel early stop HPO algorithm, RHOASo (RIASC hyper-
optimization automatic software). The work aims to analyze RHOASo, compare its behavior
with different state-of-the-art HPO algorithms, and measure its early-stop feature, which
entails minimal human intervention.

The research questions that will be studied regarding this new algorithm are the following:
RQ1: Given a dataset, how good is the performance (accuracy, time complexity,

sensibility, and specificity) of a ML algorithm when RHOASo is applied?
RQ2: How many iterations does the algorithm need until it stops? How much faster

or slower is RHOASo, compared with the other HPO algorithms?
RQ3: Are there statistically meaningful differences between the performance of

RHOASo and other HPO algorithms?
RQ4: Are the above results consistent? That is, do they hold for different HPO algo-

rithms and different datasets with different characteristics (size, number of features, etc.)?
In order to test the behavior of RHOASo and answer the above questions, we have

evaluated the efficiency of the algorithm combined with three well-known classifier algo-
rithms: random forest (RF), gradient boosting (GB), and multi-layer perceptron (MLP). We
choose these three supervised models because each follows a different learning paradigm:
RF and GB are ensemble models (bagging and boosting models), and MLP is a type of
neural network. Therefore, it is possible to study whether a particular type of model works
better with the application of RHOASo.

We have measured the efficiency of RHOASo, by itself and carrying out statistical
inference to evaluate how well it performs compared with the other seven HPO algorithms
from several families (decision theoretic approaches, Bayesian optimization, evolutionary
strategies, etc). The variables considered in the article are the accuracy, the MCC (Matthews
correlation coefficient), the time complexity of the whole optimization (from initialization
to termination), the sensibility, and the specificity of the obtained models. These variables
are collected by applying HPOs over 16 well-known public datasets. Furthermore, the
algorithm’s performances are studied by working with four different size partitions of each
dataset to study their impact on the optimization performance. All of these comparisons
are studied through two experiments: (a) Experiment 1 in which RHOASo carries out the
number of iterations that it needs until it stops, and the other HPOs have a default input
(50 iterations); and (b) Experiment 2 in which the other HPOs perform the same number of
trials that RHOASo has conducted. This means that we avoid biased comparisons at the
same time that we evaluate RHOASo under the default number of evaluations that a user
could specify ([3]).

The results show that RHOASo works efficiently in low-dimension hyper-parameter
spaces, and it is competitive in terms of accuracy and computational cost. On average,
RHOASo achieves a statistically significant positive difference in terms of efficiency over
70% of the times that the algorithms are applied and obtains good results when it uses
small parts of the datasets. Sensitivity and specificity also show positive results in general,
although in some unbalanced datasets, there is a bias toward the majority class. Lastly, the
automatic early-stop feature of RHOASo lets it finish the tuning process before reaching
the fixed number of iterations given as input in the other hyper-parameter optimization
methods (Me = 34 vs. 50), with a 30% reduction. When fixing an equal number of iterations
for all algorithms, RHOASo loses the advantage decreasing its gain to 50% on average, but
remains competitive in two of the three evaluated models. It shows weakness when it is
applied with MLP in some datasets.

The article is organized as follows. In Section 2, we state the hyper-parameters
optimization problem when the size of the dataset is left as a variable, and we provide an
overview of the state-of-the-art methods. In Section 3, we describe the proposed algorithm.
First, we set and solve a conditional optimization problem for the logistic function. The
solution is a simple iterative algorithm whose discrete analogous is used as the base to
define RHOASo. In Section 4, we describe the experimental details of the study. Finally,
in Section 5, we develop the obtained results. We analyze the performance of RHOASo
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when it is run together with the three ML algorithms mentioned above, and it is compared
with other HPO algorithms. This is done in two different ways. On one hand, we let the
number of iterations of the HPO algorithms have their default values. On the other hand,
we allow the HPO algorithms to be run for the same number of iterations that RHOASo
needs until it stops.

Additionally, we have included an appendix with the results concerning the first
experiment in which case the ML algorithms are decision tree (DT and K-nearest neighbor
(KNN). It is shown that the performance of RHOASo compared with the other HPO
algorithms is substantially better. Due to the superiority of the performance of RHOASo
with respect to the rest of the HPO algorithms when they are run with DT and KNN, we
have carried out the complete analysis only with the RF, GB and MLP algorithms.

In order to facilitate the reading of the article, we include below a scheme describing
the experimentation and validation phases that were carried out.

1) Description of RHOASo // Mathematical Foundations // Algorithm

2) Experimentation // Applying RHOASo and other 7 HPO well-known algorithms //

++tt

Over 16 public datasets (split on and complete)

��
Using three ML Models (RF,GB, and MLP)

Experiment 1 //

��

Collect

��

Experiment 2oo

��
Number of iterations of RHOASo: until it stops

��

Accuracy and Mathews Correlation Coefficient (MCC)

��

Number of iterations of RHOASo: until it stops

��
Number of iterations of the rest of algorithms: 50 Time complexity (TC)

��

Number of iterations of the rest of algorithms: equal to RHOASo

Sensitivity and Specificity

3) Validation of RHOASo

��
Analysis of performance of RHOASo

��

// Descriptive analyses about...

--

// Accuracy, MCC, TC, sensitivity, and specificity

Number of iterations

Comparisons with the other HPO algorithms

��

// Inference analyses by gain levels //

--

Accuracy and TC for balanced datasets

MCC and TC for unbalanced datasets

Consistency of the results // Rates of superiority of RHOASo //

--

Per partitions of the datasets

Per datasets

2. Related Work

A hyper-parameter of a ML algorithm is a hidden component that directly influ-
ences the algorithm’s behavior. Tuning it allows the user to control the performance of
the algorithm.

2.1. Problem Statement

Definition 1. Let X be a tuple of random variables. Let Y be the space labels. Let Dtrain ∈ X ×Y
be an i. i. d. sample whose distribution function is P .

A machine learning algorithm A is a functional as follows:

A : ∪n∈N(X ×Y)n −→ H

Dtrain 7→ A(Dtrain) := hA,Dtrain : X −→ Y
x 7→ hA,Dtrain(x) = y

(1)

The model hA,Dtrain(x) predicts the label of (unseen) instance x minimizing the expected loss
function, L(Dtrain, hA,Dtrain).

This loss function measures the discrepancy between a hypothesis h ∈ H and an
ideal predictor. The target space of functions of the algorithm, H, depends on specific
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parameters, λ = (λ1, . . . , λn) ∈ Λ , that might take discrete or continuous values and have
to be fixed before applying the algorithm. We use the notation Aλ to refer to the algorithm
with the hyper-parameter configuration λ.

In this scenario, another independent data set, D := Dtrain ∪ Dtest, serves to evaluate
the loss function, L(Dtest, hAλ ,Dtrain), provided by the algorithm Aλ(Dtrain). Let the hyper-
parameters λ = (λ1, . . . , λn) remain free in L(Dtest, hAλ ,Dtrain).

In the case of a classification ML problem, we can take the loss function L as the error
rate, that is, one minus the cross-validation value. In this situation, one can define the
following function:

ΦA,D : Λ −→ [0, 1]

λ 7→ meanDtestL(Dtest, hAλ ,Dtrain)
(2)

The hyper-parameter optimization (HPO) problem consists of trying to reach
λ∗ := minλ(meanDtestL(Dtest, hAλ ,Dtrain)).

2.2. Overview of the State-of-the-Art Methods

Since the hyper-parameter configuration has a significant effect on the performance
of a ML model, the main goal in the HPO research is to find optimal values for the
hyper-parameters that maximize the accuracy of the model while minimizing the costs
and avoiding manual tuning. In the case where hyper-parameters are continuous, HPO
algorithms usually work using gradient descent-based methods ([4–6]) in which the search
direction in the hyper-parameter space is determined by the gradient of a model selection
criterion at any step.

The discrete case has several approaches that perform differently depending on the
ML algorithm and the dataset. Bayesian HPO is a type of surrogate-based optimization ([7])
that tunes the hyper-parameters by keeping the assumed prior distribution of the loss
function updated, taking into account the new observations that are selected by the acquisi-
tion function. The construction of this surrogate model and the hyper-parameter selection
criteria result in several types of sequential model-based optimization (SMBO). The main
methods model the error distribution with a Gaussian process ([8]) or tree-based algorithms,
such as sequential model-based algorithm configuration (SMAC) or the Tree Parzen Esti-
mators (TPE) method ([9,10]). Another perspective is the radial basis function optimization
(RBFOpt) that proposes a deterministic surrogate model to approximate the error function
of the hyper-parameters through dynamic coordinate search. These methods require fewer
evaluations, improving the associated costs of Gaussian process methods ([11]). Regarding
the selection function to choose the next promising hyper-parameter configuration to test
in the surrogate-based optimization, the typical approach is to use the expected improve-
ment ([8]). There are other alternatives, such as the predictive entropy search ([12]. Other
variants of SMBO can be found in [13,14], where different datasets and tasks are character-
ized by several measurements that allow to predict a ranking of several combinations of
hyper-parameter values.

Another important HPO approach is the decision-theoretic method, where the al-
gorithm obtains the hyper-parameter setting by searching the hyper-parameter space
directly following some particular strategy. As examples, we have grid search, which uses
brute force, and the simple and effective random search (RS) that tests randomly sampled
configurations from the hyper-parameter space [15,16]).

Other optimization algorithms are applied to the problem of discrete hyper-parameter
values selection. This is the case, for instance, of the evolutionary algorithms, such as the
covariance matrix adaptation evolutionary (CMA-ES) method [17], the simplex Nelder–
Mead (NM) method ([18,19]) or the application of continuous techniques over the discrete
case such as the particle swarm (PS) ([20,21]).

Although there are several options, these methods provide different results and
consumption of computational resources, and they do not perform equally well with all
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ML algorithms. Then, we need to consider the costs to choose the HPO method, the size of
the data required to run the optimization process effectively, and the human interaction
needed. These issues arise in several open research challenges that we have summarized
in Table 1.

Table 1. Open research challenge in HPO. Content extracted from [3].

Research Challenge Description

HPO vs. CASH tools Research conducted to specialized tools and algorithms for HPO or to CASH
(Combined algorithm selection and hyper-parameter optimization) problem

Monitoring HPO Tools that let the user follow the progress in an interactive way
Less computational costs HPO remains computationally extremely expensive for certain tasks
Overtuning HPO Control resampling in an efficient way
Closed black-box The user can not take decisions about the optimization process

and cannot analyze the HPO procedure.
Not supervised learning Developing HPO algorithms for more types of machine

learning models, not only for supervised ones.
Users do not make use of Potential users have a poor understanding of HPO methods.
advanced HPO approaches Missing guidance makes difficult the choice and configuration of of HPO methods
Finishing an HPO method There are several ways to configure the end of an HPO

method, not all of them are easily configurable.

RHOASo is an HPO algorithm that is designed in order for the potential user not
to have to configure the end of the process. Currently, the termination of a general HPO
algorithm can be carried out in several ways ([3]): (1) an amount of runtime fixed by the
user based on intuition; (2) a lower bound of the generalization error specified by the
user; and (3) considering the convergence of HPO if no progress is identified. All of these
procedures can lead to over-optimistic bounds or excessive runtime that increases the
computational cost. In this scenario, RHOASo is able to stop automatically, without losing
accuracy and with minimal intervention of the user.

Additionally, many of the state-of-the-art HPO algorithms have, in turn, parameters
that must be set up before running them. For instance, when a user wants to tune an
(unbounded) integer-valued hyper-parameter of a given ML algorithm, the HPO algorithm
requires the user to pre-configure a grid over which it is to be run. In many cases, the higher
the size of the grid, the higher the execution cost of the HPO algorithm. A natural way to
proceed in these cases is to accelerate the hyper-parameter running process, using early-
stopping techniques ([2,22–24]). However, these algorithms still have other parameters
that must be set up. Therefore, in some sense, HPO algorithms move the hyper-parameter
tuning problem from ML algorithms to themselves, which increases the complexity and cost
of the whole process. Table 2 below shows the parameters on which the HPO algorithms
used in this work depend.

Table 2. Hyper-parameters of the HPO algorithms considered in this work.

Name Hyper-Parameters Library

Particle Swarm 6 [21]
Tree Parzen Estimators 2 [25]
CMA-ES 3 [26]
Nelder–Mead 2 [26]
Random Search 1 [26]
SMAC 30 [27]
RBFOpt 46 [28]

Thus, the natural question is how to tune hyper-parameters of HPO algorithms
without increasing the complexity. Since using HPO algorithms over themselves does not
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solve the problem, it is natural to ask for HPO algorithms depending on as few hyper-
parameters as possible and achieving good performance, compared with state-of-the-art
HPO algorithms.

Our aim is to present a novel HPO algorithm with only one parameter to be tuned
and to analyze its performance, compared with other state-of-the-art HPO algorithms.

3. The Proposed Algorithm: RHOASo

RHOASo is an approach to the HPO problem, whose underlying idea is the reversible
gradient-based HPO method proposed for the continuous case ([5]).

Open source code for RHOASo is hosted in GitHub (https://github.com/amunc/
RHOASo, accessed on: 25 July 2021), and it is available under the GPL license (version 3).
Users do not need to install software separately, save for the Python language. Additionally,
this is included in a ML intelligent system, RADSSo (RIASC automated decision support
software), and it was used in several research works ([29,30]).

3.1. The Setup

Recall from Section 2.1 that the space of functions in which a learning algorithm takes
values is assumed to depend on certain parameters λ = (λ1, . . . , λn), and this space of
functions is denoted byHλ. We make the following assumptions:

1. The hyper-parameters λi are discrete.
2. If λ∗ = (λ1, . . . , λi + 1, . . . , λn), thenHλ ⊂ Hλ∗ .

Typical examples of hyper-parameters satisfying such assumptions are the maximum
depth in any tree-based machine learning model, the number of trees if the output of the
model is a weighted average of the outputs of all the trees, or the number of neurons in
hidden layers of a multilayer perceptron (the weights of the inputs of a given neuron may
be zero).

Let ΦA,D be the functional given in Equation (2) for a given machine learning model
defined by a dataset D and a model Hλ. If we plot the functional Φλ,D considering, for
example, the model random forest with hyper-parameters maximum depth (x-axis) and
number of trees (y-axis), we can obtain a figure like those shown in Figure 1 (the plots are
obtained from two different datasets).

From the expression ΦA,D(λ) = meanDtestL(Dtest, fAλ ,Dtrain) it follows that if we let
both the size of the dataset and the number of iterations in the cross-validation go to infinity,
the surface given in Figure 1 becomes smoother, and takes the form shown in Figure 2,
which is a concave surface with an asymptote in the plane z = z0 ≤ 1.

At this point, one can ask for an algorithm to find a value of λ = (λ1, λ2) at which
ΦA,D attains a sufficiently high value while keeping λ1 and λ2 as small as possible.

3.2. Motivation of the Algorithm

In order to motivate the algorithm, consider the logistic function f (x) = 1/(1 + e−x)
restricted to R>0. This is a concave function with an asymptote in y = 1, thus it has no
maximum. Although the maximization problem of this function has no sense, we can ask
for the point x0 ∈ R with higher value f (x) subject to the condition that making x0 smaller
makes the decrease in f important. One way to formalize this question is by considering the
maximization problem of the function Stb(x) = f (x) f ′(x) = e−x f (x)3. In a certain sense,
maximizing Stb(x) consists of choosing a point x0 with a sufficiently large image f (x0) but
whose slope at that point is not too low. Note that Stb(x)′ = e−x f (x)3(−1 + 3e−x f (x)),
and therefore Stb(x)′ = 0, has only one solution, x = ln(2), which is a maximum.

Consider now the function Stb(x, n) = xn f (x) f ′(x), n being a natural number. Then,
taking n > ln(2), the equation Stb′(x, n) = 0 has only one solution x0, which is greater
than ln(2), and becomes larger as we make n increase. Thus, we can control how small the
slope is at the solution x0 by making n vary.

https://github.com/amunc/RHOASo
https://github.com/amunc/RHOASo
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(a)

(b)

Figure 1. Surface of Φλ,D for random forest. (a) Φ in RF. (b) Φ in RF.

Figure 2. Smoothing of ΦA,D.

In order to explain how RHOASo works, and to link directly with the form it is
presented below, let us denote the function f by ΦA,D and let us restrict its domain of
definition to the set of natural numbers. The variable is now denoted by λ. Then, instead
of the derivative, we may consider the following function:

ΦA,D(λ + h)−ΦA,D(λ)

h
,
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where h is a natural number. In order to simplify the notation, we set h = 1. Thus, we may
consider the optimization problem defined by the following:

maxλ{Stb(λ, n)},

where
Stb(λ, n) := λnΦA,D(λ)(ΦA,D(λ + 1)−ΦA,D(λ)).

Now, we can give a simple iterative algorithm to find the value λ close to that at which
ΦA,D attains a sufficiently high value while keeping the magnitude of such coordinate as
low as possible; at the iteration i, do: if Stb(λi + 1) > Stb(λi), then λi+1 := λi + 1 and
stop otherwise. This is just the most basic algorithm to solve the optimization problem
maxλ{Stb(λ, n)}. Observe that the convergence is always ensured because of the properties
of the function Stb(λ).

See Figure 3 to show how the stabilizer function, Stb, behaves in two particular cases.

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

stb
ΦA,D

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

stb
ΦA,D

(a) (b)

Figure 3. Stabilizer Stb(λ) in dimension one. (a) Stabilizer for logistic function. (b) Stabilizer for
arctangent function.

3.3. The Algorithm

There are two important features we want for the algorithm to have. On one hand, we
want to avoid meta-parameters, that is, we want for the algorithm not to depend (strongly)
on extra parameters. In state-of-the-art HPO algorithms, the user has to set as input the
exact number of iterations that the algorithm must perform. On the other hand, we want
the algorithm to give a good result when it is run, giving as input not the whole dataset but
a small part of it. The proposed HPO algorithm exploits the consequences derived from
assumptions 1 and 2 to reach the objective in a simple way.

Since the hyper-parameters we will work with are discrete, we may assume that the
hyper-parameter space is Γ = Nn. Suppose that we are at the point λ ∈ Γ = Nn of the
hyper-parameter space. The decision about to which next point the algorithm must jump
is based on two basic rules:

1. Fix a natural number h. Let Shifts = {0, h}n \ {(0, . . . , 0)}. We look at the points
λ + Shifts. These are the next points at each possible direction in the space Γ. Since
Hλ ⊂ Hλ+η , for each η ∈ Shifts, it is likely that for each η, λ + η will give a better
result than λ.

2. Given λ = (λ1, . . . , λn) ∈ Γ, define its stabilizer as follows:

stb(λ) = max{λi} ·ΦA,D(λ) · ∑
λ′∈λ+Shifts

(ΦA,D(λ
′)−ΦA,D(λ)) (3)

If we are at point λ, we will transit at point λ∗ ∈ λ + Shifts if the inequality
stb(λ∗) > stb(λ) holds true and stb(λ∗) = max{stb(λ′)| λ′ ∈ λ + Shifts}.

3. Once the algorithm stops at some point λ∗ ∈ Ω, there is a final step at which the point
λ′ ∈ λ∗ + Shifts with maximum ΦA,D is found and given as the final output.



Mathematics 2021, 9, 2334 9 of 52

The pseudo-code of the algorithm is included in Algorithms 1–4.

Algorithm 1 Computing stabilizer.

1: Input: data, train_data, test_data, features, target
2: Output: stb ∈ R used for stopping criterion
3: procedure GETSTAB(Input,λcurrent)
4: Values = ∅
5: Shifts = {0, 1}N

6: for η in Shifts do
7: λ← λcurrent + η
8: Values← Values

⋃{ac(λ)− ac(λcurrent)}
9: . ac(λ) means the accuracy of the model on Dtest_data trained with Dtrain_data

with hyper-parameter configuration λ
10: end for
11: tot← sum(Values)
12: stb← tot · ac(λcurrent) ·max(λcurrent)
13: return stb
14: end procedure

Algorithm 2 Computing best neighbor.

1: Input: data, train_data, test_data, features, target
2: Output: best next hyper-parameters
3: procedure GETBESTNEIGH(Input,λcurrent)
4: Stb = ∅
5: Shifts = {0, 1}N

6: for η in Shifts do
7: λ← λcurrent + η
8: Stb← Stb

⋃{GETSTB(Input, λ)}
9: end for

10: maximum = maxλStb
11: return maximum, max_Stb
12: end procedure

4. Materials and Methods

Some experiments were carried out in order to answer the research questions formu-
lated in the introduction:

1. RQ1: Given a dataset, how good is the performance (accuracy, time complexity,
sensibility, and specificity) of a ML algorithm when RHOASo is applied?

Algorithm 3 Last phase.

1: Input: data, train_data, test_data, features, target
2: Output: next hyper-parameters giving best accuracy
3: procedure LASTPHASE(λcurrent)
4: Acc = ∅
5: Shifts = {0, 1}N

6: for η in Shifts do
7: λ← λcurrent + η
8: Acc← Acc

⋃{ac(λ)}
9: end for

10: maximum = maxλAcc
11: return maximum
12: end procedure
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Algorithm 4 RHOASo algorithm.

1: Input: data, train_data, test_data, features, target, max_pars
2: Output: best hyper-parameters
3: Initialize λcurrent = (1, . . . , 1)
4: while True do
5: stbcurrent ← GETSTAB(λcurrent)
6: λ, stb← GETBESTNEIGH(λcurrent)
7: if stb > stbcurrent then
8: λcurrent ← λ
9: else

10: break
11: end if
12: end while
13: λfinal = LASTPHASE(λcurrent)
14: return λfinal

2. RQ2: How many iterations does the algorithm need until it stops? How much faster
or slower is RHOASo, compared with the other HPO algorithms?

3. RQ3: Are there statistically meaningful differences between the performance of
RHOASo and other HPO algorithms?

4. RQ4: Are the above results consistent? That is, do they hold for different HPO
algorithms and different datasets with different characteristics (size, number of fea-
tures, etc.)?

The analyses aim to measure the quality of the proposed algorithm and decide whether
there are statistically meaningful differences between the performance of the selected HPO
methods and RHOASo.

4.1. ML and HPO Algorithms

We have evaluated the efficiency of three well-known ML algorithms:

1. RF is an ensemble classifier consisting of a set of decision trees. Each tree is con-
structed by applying bootstrap re-sampling (bagging) to the training set, which
extracts a subset of samples for training each tree. Therefore, the trees will have a
weak correlation and give independent results. In the case of RF, we have two main
hyper-parameters: the number of decision trees to be used and the maximum depth
for each of them ([31]).

2. GB is another ensemble technique in which the predictors are made sequentially,
learning from the previous predictor’s mistakes to optimize the subsequent learner. It
usually takes fewer iterations to reach close-to-actual predictions, but the stopping
criteria have to be chosen carefully. This technique reduces bias and variance but
can induce overfitting if too much importance is assigned to the previous errors. We
tune two discrete hyper-parameters: the number of predictors and their maximum
depth ([32,33]).

3. A MLP is a graph-type model that is organized in ordered layers (input layer, output
layer, and hidden layers). Each layer consists of a set of nodes with no connections
between them, so the connections occur between nodes belonging to different and
contiguous layers. In this study, we set two hidden layers, and we tune the number
of neurons in each of these hidden layers.

In Table 3, we give a summary of the ML algorithms we have used together with
the hyper-parameters we have tuned. The search space for all hyper-parameters is in the
interval [1, 50]. All hyper-parameters not being tuned are set to their default values as
per scikit-learn implementation ([34]). We have used 10-fold cross-validation to assess the
performance of all ML models combined with the HPO algorithms.

On the other hand, in Table 4 a summary of the HPO algorithms selected for this study
is given.



Mathematics 2021, 9, 2334 11 of 52

Table 3. ML algorithms together with hyper-parameters we have considered.

Name Hyper-Parameter 1 Hyper-Parameter 2

RF Num. Trees Max. Depth
GB Num. Trees Max. Depth

MLP (2 hidden layers) Num. Neurons Layer 1 Num. Neurons Layer 2

Table 4. HPO algorithms used. Colors explanation: Bayesian methods in blue, decision-theoretic
techniques in pink, evolutionary algorithms in brown, and other optimization algorithms in green.

Name Reference Python Automatic Library
Version Early Stop

Particle Swarm [20,35] 2.7 y 3 X [21]
Tree Parzen Estimators [10] 2.7, 3 X [25]
CMA-ES [17] 2.7, 3 X [26]
Nelder–Mead [18] 2.7, 3

√
[26]

Random Search [15] 2.7, 3 X [26]
SMAC [9] 3 X [27]
RBFOpt [11,36] 2.7, 3 X [28]

4.2. Datasets

The datasets selected for the experiments are described in Table 5. The choice was
motivated by different reasons: availability in public servers to verify the results, the
number of instances and classes, and the type of features. There are 16 public benchmark
datasets with a different number of variables (8–300), rows (4601–284,807), and classes
(2–10). Since the size of the dataset in the HPO phase influences the performance of the
classifier ([1]), the performances of the algorithms are analyzed with four different-sized
partitions of each dataset (P = {P1 = 8.3%, P2 = 16.6%, P3 = 50%, P4 = Di}). These
proportions are chosen because, in this way, the number of instances is in different orders
of magnitude. In addition, each dataset is divided into train data (80%) and validation data
(20%) Dtrain

i ∪ Dvalid
i = Di, and the partitioning scheme above is applied to obtain train

and validation subsets with the corresponding proportions Pj(Di).
The transformation of features to obtain treatable datasets to input directly to each

model is manually implemented with Python.

Table 5. Descriptions of datasets.

Dataset = Di Topic Classes Majority Class Features Instances = P4 P1 P2 P3 Reference
Proportion

D1 First order proving 2 0.82 51 4589 382 764 2294 [37]
D2 Spambase 2 0.6 57 4601 383 766 2300 [38]
D3 Polish companies 2 0.978 64 4885 407 814 2442 [39]

Bankruptcy
D4 Opto digits 10 0.1 64 5620 468 936 2810 [40]
D5 Grammatical 2 0.64 300 27,936 2328 4656 13,968 [41]

Facial Expressions
D6 Credit card 2 0.99 30 284,807 23,733 47,467 142,403 [42]

Fraud Detection
D7 Magic Telescope 2 0.64 10 19,020 1585 3170 9519 [43]
D8 Electricity 2 0.57 8 45,312 3776 7552 22,656 [44,45]
D9 Wall Robot 4 0.4 24 5456 454 909 2728 [46]
D10 Eye 2 0.55 14 14,980 1248 2496 7490 [47]
D11 Connect 4 3 0.65 43 67,557 5629 11,259 33,778 [48]
D12 Amazon 2 0.94 9 32,769 2730 5461 16,384 [49]
D13 Phishing websites 2 0.55 30 11,055 921 1842 5527 [50]
D14 Higgs 2 0.52 28 98,049 8170 16,341 49,025 [51]
D15 NSL-KDD 6 0.51 42 148,517 12,376 24,752 74,258 [52,53]
D16 Robots in RTLS 3 0.73 12 6422 535 1070 3211 [54]
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4.3. Construction of the Response Variables

In order to build response variables to measure the performance of the HPO algo-
rithms, we apply them to each ML model Hk over each partition, Pj(Di), obtaining a
hyper-parameter configuration λk

i,j forHk. Then, the learning algorithm with the obtained

hyper-parameter configuration is run over Dtrain
i to construct a classifier that is validated

over Dvalid
i . At this step, we collect the obtained accuracy. This scenario is repeated a

number of times (trials), giving rise to two different experiments.

1. Experiment 1: the experimentation is repeated 50 times (trials) for all HPOs, except
for RHOASo, which automatically stops when it considers that it has obtained an
optimal hyper-parameter configuration.

2. Experiment 2: the experimentation is repeated for all HPOs as many times (trials) as
RHOASo has carried out until stopping.

The time complexity of the whole process is stored as well. The time complexity,
measured in seconds, is the sum of the time needed by the HPO algorithm to find the opti-
mal hyper-parameter configuration, and the time that the ML algorithm uses for training.
Then, we create two response variables. We denote by Acck

i,j the number of trials× 1 array

where the m-th component is the accuracy of the predictive model tested on Dvalid
i that was

trained over Dtrain
i with the hyper-parameters (λk

i,j)m at the m-th trial. TCk
i,j is the notation

for time complexity.
We have also collected the sensitivity and the specificity of each iteration for RHOASo

to measure its performance more accurately.
Additionally, we have collected the MCC (Matthew correlation coefficient), which is

defined as follows:

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false
negatives, respectively. This coefficient works as a substitute metric of the accuracy for
unbalanced datasets [55,56]. Since some datasets contain a certain degree of imbalance, we
present our results with both indicators, accuracy and MCC.

4.4. Statistical Analyses

Our main objective is to analyze the quality of the RHOASo algorithm and compare it
with other HPO algorithms. In order to analyze whether there are meaningful statistical
differences among the obtained results by the HPO algorithms and RHOASo, we perform
the following statistical analysis:

1. We have conducted descriptive and exploratory analyses of AccRHOASo
i,j , TCRHOASo

i,j ,
the MCC, the sensibility, and the specificity of RHOASo in order to check how well
RHOASo performs the tasks.

2. We have computed the average of iterations that RHOASo executes until it automati-
cally stops.
The following inference tests are carried out for both Experiments 1 and 2.

3. To compare RHOASo’s efficiency with that of the other HPO algorithms, we carry out
non-parametric tests, due to the non-normality of the data Acck

i,j and TCk
i,j. Wilcoxon’s

tests for two paired samples are conducted comparing each Acck
i,j with AccRHOASo

i,j

and TCk
i,j with TCRHOASo

i,j for all datasets and for the three selected ML algorithms.
The choice of Wilcoxon’s test is because the response variables that we compare are
obtained by the application of the ML algorithms over the same dataset but with
different settings (λk

i,j). We obtain the results at a significance level of α = 0.05.

4. Once we apply the inference described above, we obtain the p-values of 7 compar-
isons along 16 datasets with 4 partitions in each one, providing a total of 448 deci-
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sions on statistical difference for each ML algorithm and for each response variable,
obtaining, thus, 2688 p-values. From these results, we have computed how many times
we obtain positive difference (validity(RHOASo) > validity(Hk)), negative difference
(validity(RHOASo) < validity(Hk)) or equality (validity(RHOASo) = validity(Hk)),
see Table 6.

Table 6. Conditions of validity. The symbols =,>,< denote statistically meaningful equality and
difference, and Me denotes the median.

Validity Pj Me(TCRHOASo
i,j ) > Me(TCk

i,j) Me(TCRHOASo
i,j ) = Me(TCk

i,j) Me(TCRHOASo
i,j ) < Me(TCk

i,j)

| D1 | . . . | D16 | | D1 | . . . | D16 | | D1 | . . . | D16 |

P1
P2

Me(AccRHOASo
i,j ) > Me(Acck

i,j) P3 V∗ V+ V+
P4

P1
P2

Me(AccRHOASo
i,j ) = Me(Acck

i,j) P3 V− V= V+
P4

P1
P2

Me(AccRHOASo
i,j ) < Me(Acck

i,j) P3 V− V− V?
P4

5. Since the blue cells may be understood as being both a positive difference or negative
difference, depending on the improvement that we obtain, we have reclassified
the results, creating a new table, correcting these cases by the rule described in
Equation (5).

V∗ =
{
V+ if ∆(Acci,j(k)) > ∆(TCi,j(k))
V− if ∆(Acci,j(k)) < ∆(TCi,j(k))

(5)

where

∆(Acci,j(k)) =
| Me(AccRHOASo

i,j )−Me(Acck
i,j) |

min(Me(AccRHOASo
i,j ), Me(Acck

i,j))
(6)

and

∆(TCi,j(k)) =
| Me(TCRHOASo

i,j )−Me(TCk
i,j) |

min(Me(TCRHOASo
i,j ), Me(TCk

i,j))
(7)

6. We have completed the analysis by computing the rate of each type of validity (red,
yellow and green cells) as follows:

RV• =
number of cases in the class V•

N
. (8)

where N denotes the number of total possible comparisons. Since we have performed
the computations for each ML algorithm, we have N = 448.

7. Finally, we computeRV• per partition and per dataset to analyze the consistency of
the results.

Note that for studying the cases of unbalanced datasets, we have carried out the
analyses described above by changing the accuracy for the MCC.

4.5. Technical Details

The analyses are carried out at high-performance computing over HP ProLiant SL270s
Gen8 SE, with two processors, Intel Xeon CPU E5-2670 v2 @ 2.50GHz, with 10 cores each
and 128 GB of RAM and one hard disk of 1 TB. The analysis script is implemented in
Python language.
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5. Results and Discussion

This section is organized according to the research questions we have formulated in
the introduction.

5.1. Research Question 1: Given a Dataset, How Good Are the ML Models When RHOASo
Is Applied?

Since the behavior of RHOASo is similar in both Experiments 1 and 2, in this section,
we detail the performance of RHOASo in Experiment 1, and we include a summary of the
results for Experiment 2.

5.1.1. Performance in Experiment 1

We can see in Figure 4 the median of the accuracy when RHOASo is applied. The
median for RF is 0.92, for GB it is 0.9058, and for MLP it is 0.8182. We can see that in all of
these cases, it is greater than 0.80. We can observe that the achieved accuracy by RHOASo
presents great stability in terms of the partitions of the dataset, except for dataset D6 with
model RF, and dataset D16 with model GB. In the case of D6, the variation appears when
we change from P3 to P4. This dataset is the largest one in the study, with the highest rate
of unbalanced data. Then, the most appropriate metric is the MCC. As is discussed later,
the MCC remains stable for D6 in all the partitions. The case of D16 is more involved. The
most frequent hyper-parameter configurations that RHOASo computes for each partition
are max. depth: 5, number trees: 9 for P1 (14 times out of 50), max. depth: 9, number trees: 3
for P2 (50 times out of 50), max. depth : 3, number trees: 9 for P3 (31 times out of 50), and
max. depth: 9, number trees: 3 for P4 (50 times out of 50). Since the number of features in D16
is 12, there are few instances, and the dataset is unbalanced, the most probable explanation
is that the model is overfitting the training data. This behavior appears also in the rest of the
metrics with the combination D16 and GB. The stability is not as evident when the dataset
changes, although the general trend is maintained through the ML models. For instance,
the obtained models with D10 provide the worst accuracy for the three ML algorithms.
Although it may seem that the accuracy is not very high, the rest of the HPO does not
achieve better results, as is outlined below. For this reason, the fit achieved by RHOASo is
considered to be sufficient.

We can see in Figure 5 the median of the MCC (∈ [−1, 1]) when RHOASo is applied.
The median for RF is 0.51, for GB it is 0.40, and for MLP it is 0.32. The MCC value considers
class imbalance, so the results worsen for accuracy, particularly in datasets 3 and 12, which
are highly unbalanced: the minority classes contain less than 1% of total instances. Apart
from unbalanced datasets, the trends are similar to those presented when evaluating
the accuracy.

As far as the time complexity is concerned, the median results are included in Figure 6.
The median value for RF is 1.3028 s, and for GB it is 4.2567 s. The MLP stands out for its
high computational cost, with 259.8138 s. Regarding the stability, as expected, the larger the
partition size that is used, the larger the time complexity, independently of the ML algorithm
used together with RHOASo. Nevertheless, this behavior is different for each ML algorithm.
It is worth noting that in the case of RF, the increase in time complexity as the size of the
partitions increases is much smoother for most of the datasets, compared to GB and MLP.

Sensitivity and specificity are plotted in Figures 7 and 8. The results are stable across
partitions and datasets, which achieve similar results, even when using different models,
except for D16 and GB. The median of sensitivity is 0.9 for GB, 0.91 for MLP, and 0.88 for
RF. In contrast, specificity has a median of 0.7 for GB, 0.69 for MLP, and 0.733 for RF. The
lower specificity could be caused by the imbalance between classes in specific datasets (see
Table 5), which causes the models to be biased toward the majority class. However, D11
has both low specificity and low sensitivity. Overall, the trends are similar to those found
in the evaluation of accuracy.
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(a)

(b)

(c)
Figure 4. Behavior of RHOASo: accuracy. Each line represents a dataset. (a) Accuracy for RF. Axis X:
the partition of the dataset. Axis Y: the obtained accuracy. (b) Accuracy for GB. Axis X: the partition
of the dataset. Axis Y: the obtained accuracy. (c) Accuracy for MLP. Axis X: the partition of the dataset.
Axis Y: the obtained accuracy.
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(a)

(b)

(c)
Figure 5. Behavior of RHOASo: MCC. Each line represents a dataset. (a) MCC for RF. Axis X: the
partition of the dataset. Axis Y: the obtained MCC. (b) MCC for GB. Axis X: the partition of the
dataset. Axis Y: the obtained MCC. (c) MCC for MLP. Axis X: the partition of the dataset. Axis Y: the
obtained MCC.
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(a)

(b)

(c)
Figure 6. Behavior of RHOASo: time complexity. Each line represents a dataset. (a) Time complexity
for RF. Axis X: the partition of the dataset. Axis Y: the obtained time complexity in seconds. (b) Time
complexity for GB. Axis X: the partition of the dataset. Axis Y: the obtained time complexity in
seconds. (c) Time complexity for MLP. Axis X: the partition of the dataset. Axis Y: the obtained time
complexity in seconds.
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(a)

(b)

(c)
Figure 7. Behavior RHOASo: sensitivity. The datasets are represented with a bar chart for each
partition. (a) Sensitivity for RF. Axis X: the partition of the dataset. Axis Y: the obtained sensitivity.
(b) Sensitivity for GB. Axis X: the partition of the dataset. Axis Y: the obtained sensitivity. (c)
Sensitivity for MLP. Axis X: the partition of the dataset. Axis Y: the obtained sensitivity.
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(a)

(b)

(c)
Figure 8. Behavior RHOASo: specificity. The datasets are represented with a bar chart for each
partition. (a) Specificity for RF. Axis X: the partition of the dataset. Axis Y: the obtained specificity.
(b) Specificity for GB. Axis X: the partition of the dataset. Axis Y: the obtained specificity. (c) Specificity
for MLP. Axis X: the partition of the dataset. Axis Y: the obtained specificity.

5.1.2. Performance in Experiment 2

Since the behavior of RHOASo in both experiments is the same, we include in Table 7
a summary with the median of all metrics (without taking into account partitions) that
RHOASo has obtained in Experiment 2.
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Table 7. Medians of response variables for RHOASo in Experiment 2.

Dataset Accuracy MCC Time Complexity Sensitivity Specificity Iterations

D1
RF
GB

MLP

0.8024
0.8194
0.8018

0.1776
0.0002
0.1811

0.904
1.2169

256.0706

0.9419
0.9999
0.9367

0.1743
0.0

0.1971

32.0
30.5
35.0

D2
RF
GB

MLP

0.923
0.9108
0.9244

0.8394
0.8141
0.8432

0.7208
1.0615

237.3997

0.9563
0.9675
0.9362

0.8732
0.8274
0.9079

37.0
28.5
32.5

D3
RF
GB

MLP

0.9632
0.9681
0.9771

0.0496
0.1249

0.0

0.9074
1.29

280.6122

0.9835
0.9866
0.999

0.0573
0.1127

0.0

27.0
29.0
27.0

D4
RF
GB

MLP

0.9499
0.8994
0.934

0.9445
0.8886
0.9269

0.8897
14.3729

339.9584

0.95
0.8994
0.934

0.9944
0.9888
0.9927

37.0
33.0
34.5

D5
RF
GB

MLP

0.7175
0.6384
0.6464

0.4067
0.2443

0.0

16.6164
189.5368
321.7485

0.7885
0.7401

1.0

0.589
0.4527

0.0

37.0
38.0
27.0

D6
RF
GB

MLP

0.9876
0.9009
0.9922

0.7332
0.6211
0.0028

35.5843
127.1753
218.3069

0.9916
0.9013

1.0

0.6794
0.6999
0.0036

33.0
33.0
27.0

D7
RF
GB

MLP

0.8588
0.8609
0.8266

0.6845
0.6916
0.6106

2.4416
5.1165

109.3366

0.9483
0.9629
0.9256

0.6965
0.673
0.6444

35.0
37.0
33.5

D8
RF
GB

MLP

0.7325
0.6726
0.7374

0.4688
0.3437
0.4963

2.4364
9.2316

225.6947

0.8881
0.7504
0.8138

0.5518
0.567
0.6372

34.5
38.0
31.0

D9
RF
GB

MLP

0.9756
0.9775
0.8014

0.9635
0.9664
0.7016

1.1602
3.9133

48.2327

0.9549
0.9508
0.765

0.9908
0.9907
0.9251

36.0
32.0
35.0

D10
RF
GB

MLP

0.5654
0.5703
0.5457

0.1156
0.1244
0.0021

1.2617
3.665

10.986

0.6625
0.6664
0.9297

0.445
0.4559
0.0709

37.0
37.5
27.0

D11
RF
GB

MLP

0.6583
0.6434
0.6309

0.0276
0.1519
0.1779

1.3408
77.7497

534.4388

0.3358
0.381

0.4034

0.6683
0.7023
0.7164

33.0
38.0
34.0

D12
RF
GB

MLP

0.9406
0.9421
0.942

0.1435
0.0
0.0

1.1293
0.9947

50.6516

0.068
0.0
0.0

0.9938
1.0

0.9999

29.0
27.0
27.0

D13
RF
GB

MLP

0.9436
0.9474
0.9427

0.886
0.8936
0.8841

0.6895
1.303

94.5033

0.9124
0.9273
0.9245

0.9682
0.9649
0.957

37.0
34.0
34.5

D14
RF
GB

MLP

0.6897
0.7068
0.7003

0.3766
0.4104
0.3993

20.5842
81.4707

515.4725

0.6307
0.6568
0.6811

0.7431
0.7517
0.7177

38.0
38.0
37.0

D15
RF
GB

MLP

0.9782
0.9919
0.9217

0.9608
0.9885
0.8595

4.5483
305.4672
474.1431

0.6555
0.9417
0.5171

0.9933
0.9987
0.9739

33.5
35.5
34.0

D16
RF
GB

MLP

0.9312
0.8687
0.7348

0.8643
0.6586

0.0

0.5872
0.9878

11.8172

0.8498
0.7524
0.3333

0.9385
0.8705
0.6667

35.0
30.0
27.0
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5.2. Research Question 2: How Many Iterations Does the Algorithm Need Until It Stops? How
Faster or Slower Is RHOASo Compared with the Other HPO Algorithms?

The number of iterations that RHOASo has needed until stopping for Experiment 1 is
included in Figure 9. In the case of Experiment 2, this information can be observed in Table 7.

(a)

(b)

(c)
Figure 9. Number of iterations per partition. Each line represents a dataset (medians). (a) Number
of iterations RF. In axis X, the partition of the dataset. In axis Y, the number of the iterations that
RHOASo has carried out. (b) Number of iterations GB. In axis X, the partition of the dataset. In axis
Y, the number of the iterations that RHOASo has carried out. (c) Number of iterations MLP. In axis X,
the partition of the dataset. In axis Y, the number of the iterations that RHOASo has carried out.
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In Experiment 1, we can see the median of the number of iterations needed by
RHOASo for each ML algorithm, each dataset and each partition. As general result,
the median of the number of iterations for each partition (computed over all datasets) is
35 for RF, 33.5 for GB, and 34 iterations for MLP. Taking into account that the number
of iterations given as input (by default) in the rest of HPO algorithms is equal to 50, it
implies that, on average, RHOASo needs approximately 70% of the iterations required
by the other algorithms. Additionally, it stops the process by itself. As a consequence of
this fact, less time is required by RHOASo to obtain a good enough accuracy and is able
to be more competitive than other algorithms. This is most significant in the case of MLP,
where each iteration is highly resource consuming. There is not a clear trend relating the
partition size and number of iterations, especially in the case of GB, in which there is a
greater variability in the number of iterations. It could be expected that a greater amount
of data would contribute to a faster convergence, but this is not case. Therefore, it is likely
that the functional ΦA,D may not be as concave, as it would be desirable to perform an
effective early stopping.

We have not compared whether RHOASo is faster or slower, compared with the other
HPO algorithms for Experiment 2 by the very nature of the design of the experiment.

5.3. Research Question 3: Are There Statistically Meaningful Differences between the Performance
of RHOASo and the Other HPO Algorithms?

We remind that we have carried out two experiments:

1. Experiment 1: the experimentation is repeated 50 times (trials) for all HPOs except
for RHOASo, which automatically stops when it considers that it has obtained an
optimal hyper-parameter configuration.

2. Experiment 2: the experimentation is repeated for all HPOs as many times (trials) as
RHOASo has carried out until stopping.

5.3.1. Experiment 1

In Figures 10 and 11, the performances (accuracies and time complexities) that are
achieved by the HPO algorithms over each dataset are shown.

However, if we want to compare whether RHOASo obtains any gain against the other
HPO algorithms, we need to carry out more detailed analyses. This is the study of the
validity of RHOASo.

The rates of validity that are obtained by RHOASo, compared to the rest of the HPO
algorithms are included in Table 8. Note that these computations are carried out with the
accuracies and time complexities by the analyses that are explained in Section 4.4.

Table 8. Rate of validity of RHOASo vs. HPO across all Di (% with accuracy and time complexity).

Validity RF GB MLP Average

V 13.39% 12.27% 15.17% 13.61%
V 5.58% 0.08% 3.12% 2.92%
V 56.25% 45.08% 60.04% 53.79%
V 24.77% 41.74% 21.65% 29.38%
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(a)

(b)

(c)
Figure 10. Accuracy complexity. (a) Accuracy in RF. In axis X, the dataset. In axis Y, the accuracy
obtained. Each line represents a HPO algorithm. (b) Accuracy in GB. In axis X, the dataset. In axis Y,
the accuracy obtained. Each line represents a HPO algorithm. (c) Accuracy in MLP. In axis X, the
dataset. In axis Y, the accuracy obtained. Each line represents a HPO algorithm.
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(a)

(b)

(c)
Figure 11. Time complexity. (a) Time complexity in RF. In axis X, the dataset. In axis Y, the total time
obtained measured in seconds. Each line represents a HPO algorithm. (b) Time complexity in GB.
In axis X, the dataset. In axis Y, the total time obtained measured in seconds. Each line represents a
HPO algorithm. (c) Time complexity in MLP. In axis X, the dataset. In axis Y, the total time obtained
measured in seconds. Each line represents a HPO algorithm.
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On average, the class corresponding to positive statistically significative differences
(green class) is higher than 50%. This can be considered a good result since RHOASo
achieves better results than the rest of the algorithms in more than half of the cases analyzed.
However, there is still a high rate in the blue class. Once we have transformed the blue
class (see Section 4.4), we can analyze whether RHOASo is more effective than the rest of
the HPO algorithms. The results are included in Table 9, which show that, on average, the
class corresponding to positive statistically significative differences is higher than 70%.

Table 9. Rate of validity of RHOASo vs. HPO across all Di (% with accuracy and time complexity).

Validity RF GB MLP Average

V 22.76% 21.65% 30.13% 24.74%
V 5.58% 0.89% 3.12% 3.19%
V 71.65% 77.45% 66.74% 71.94%

After confirming that RHOASo is 70% more efficient than the rest of the HPO algo-
rithms, the question that arises is whether there is a pattern in the 30% of the cases in which
it does not succeed. For example, it might be possible for RHOASo to fail for datasets
with a certain dimensionality, or for a specific ML algorithm. Another possibility is that
RHOASo always loses against the same HPO algorithm. For this reason, we are going to
study in depth the consistency of the previous results.

Since we have dealt with unbalanced datasets, such as D1,D3D4,D6 or D12, we
have repeated the analyses, changing the metric of accuracy by MCC so as to avoid over-
optimistic scores. In Figure 12, the MCCs that are achieved by the HPO algorithms over
each dataset are shown.

The rates of validity that are obtained by RHOASo, compared to the rest of the HPO
algorithms, are included in Table 10. Note that these computations are carried out with the
MCCs and time complexities by the analyses that are explained in Section 4.4.

Table 10. Rate of validity of RHOASo vs. HPO across all Di (% with MCC and time complexity).

Validity RF GB MLP Average

V 22.09% 22.76% 31.02% 25.29%
V 4.68% 0.66% 2.90% 2.75%
V 73.21% 76.56% 66.07% 71.94%

We can observe that RHOASo maintains its rate of gain, overcoming 70% of the cases.
In Section 5.4, we study the consistency of these results as well as those situations in which
RHOASo does not obtain a gain.
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(a)

(b)

(c)
Figure 12. MCC of all HPO algorithms. (a) MCC in RF. In axis X, the dataset. In axis Y, the MCC
obtained. Each line represents a HPO algorithm. (b) MCC in GB. In axis X, the dataset. In axis Y, the
MCC obtained. Each line represents a HPO algorithm. (c) MCC in MLP. In axis X, the dataset. In axis
Y, the MCC obtained. Each line represents a HPO algorithm.
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5.3.2. Experiment 2

In Figures 13 and 14, the performances (accuracies and time complexities) that are
achieved by the HPO algorithms over each dataset are shown.

(a)

(b)

(c)
Figure 13. Experiment 2: Accuracy complexity. (a) Accuracy in RF. In axis X, the dataset. In axis
Y, the accuracy obtained. Each line represents a HPO algorithm. (b) Accuracy in GB. In axis X, the
dataset. In axis Y, the accuracy obtained. Each line represents a HPO algorithm. (c) Accuracy in MLP.
In axis X, the dataset. In axis Y, the accuracy obtained. Each line represents a HPO algorithm.
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(a)

(b)

(c)
Figure 14. Experiment 2: Time complexity. (a) Time complexity in RF. In axis X, the dataset. In axis
Y, the total time obtained measured in seconds. Each line represents a HPO algorithm. (b) Time
complexity in GB. In axis X, the dataset. In axis Y, the total time obtained measured in seconds. Each
line represents a HPO algorithm. (c) Time complexity in MLP. In axis X, the dataset. In axis Y, the
total time obtained measured in seconds. Each line represents a HPO algorithm.

The rates of validity that have been obtained by RHOASo compared to the rest of
HPO of algorithms are included in Table 11. Note that these computations are carried out
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with the accuracies and time complexities by the analyses that are explained in Section 4.4
for Experiment 2.

Table 11. Experiment 2: Rate of validity of RHOASo vs. HPO across all Di (% with accuracy and
time complexity).

Validity RF GB MLP Average

V 46.87% 30.80% 54.91% 44.19%
V 1.33% 1.33% 3.12% 1.93%
V 51.78% 67.85% 41.96% 53.86%

In this experiment, RHOASo loses some of its advantage over other HPO algorithms,
mainly because the improvement in execution time is lower since the number of iterations of
the other algorithms is fixed to be equal to that of RHOASo. The average gain is of 53.86%,
which is lower than the 71.96% obtained when evaluating the accuracy. Nevertheless,
RHOASo performs better for GB, has a slight advantage for RF and is outperformed
in MLP. This fact may be related to the search strategy of RHOASo. MLP has worse
performance than other models across all datasets and configurations, which increases the
number of neurons that tend to perform better, but the search strategy of RHOASo favors
configurations with low magnitude of hyper-parameter values. Therefore, the performance
when tuning MLP can be expected to be less satisfactory.

For the unbalanced datasets, we have included the analyses changing the metric of
accuracy by MCC. In Figure 15, the MCCs that are achieved by the HPO algorithms over
each dataset are shown.

The rates of validity that are obtained by RHOASo, compared to the rest of HPO of
algorithms are included in Table 12. Note that these computations are carried out with the
MCCs and time complexities by the analyses that are explained in Section 4.4.

Table 12. Experiment 2: rate of validity of RHOASo Vs HPO across all Di (% with MCC and
time complexity).

Validity RF GB MLP Average

V 43.97% 32.58% 57.58% 44.71%
V 2.23% 0.89% 2.90% 2.00%
V 53.79% 66.51% 39.50% 53.27%

When using MCC as the reference metric, the results follow similar trends to that of
accuracy. RHOASo gains a slight advantage for RF and incurs a slight loss for MLP, but
there are no significant differences.
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(a)

(b)

(c)
Figure 15. Experiment 2: MCC of all HPO algorithms. (a) MCC in RF. In axis X, the dataset. In axis
Y, the MCC obtained. Each line represents a HPO algorithm. (b) MCC in GB. In axis X, the dataset.
In axis Y, the MCC obtained. Each line represents a HPO algorithm. (c) MCC in MLP. In axis X, the
dataset. In axis Y, the MCC obtained. Each line represents a HPO algorithm.
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5.4. Research Question 4: Are the above Results Consistent?

In this section, we analyze whether RHOASo achieves a significant performance
improvement consistently across datasets and partitions.

5.4.1. Experiment 1

The rates of validity for each partition computed with the accuracy and time com-
plexity are included in Figure 16. The consistency of the green class is clear when we
discriminate them by partitions. That is to say, if we only consider the partitions, RHOASo
always outperforms the rest of the HPO algorithms. This may be due to the early stop of
RHOASo, consuming less time but achieving good accuracy.

(a)

(b)

(c)
Figure 16. Experiment 1: consistency per partition (accuracy and time complexity). (a) Rate of
validity per partition in RF. In axis X, the partition of the dataset. In axis Y, the rate of RHOASo for
each class of validity. (b) Rate of validity per partition in GB. In axis X, the partition of the dataset. In
axis Y, the rate of RHOASo for each class of validity. (c) Rate of validity per partition in MLP. In axis
X, the partition of the dataset. In axis Y, the rate of RHOASo for each class of validity.

As we can see in Figure 17, the above conclusion is not so general when we discrimi-
nate them by datasets, except for the case of GB. Nonetheless, the results concerning RF
and MLP are not so far from being consistent (RF being closer than MLP), and a deeper
analysis should be performed regarding this fact.
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(a)

(b)

(c)
Figure 17. Experiment 1: consistency per dataset. Rate of validity with the accuracy and time
complexity. (a) Rate of vx per dataset in RF. In axis X, the dataset. In axis Y, the rate of RHOASo for
each class of validity. (b) Rate of validity per dataset in GB. In axis X, the dataset. In axis Y, the rate of
RHOASo for each class of validity. (c) Rate of validity per dataset in MLP. In axis X, the dataset. In
axis Y, the rate of RHOASo for each class of validity.

In the case of MLP, there is a clear trend for the datasets in which RHOASo losses
are D1, D2, D3, and D4. That is, datasets with a low number of instances (<10,000) but
with a high number of features > 50. This failure in the large-dimension small-sized
datasets can be due to the early-stop characteristic of the algorithm. Datasets with high
dimensionality and low number of instances tend to increase the variance of the results,
which contributes to create an irregular surface in ΦA,D, possibly trapping RHOASo in a
local maximum. A possible solution could be to substitute the function that maps elements
from the hyper-parameter space to the performance of the trained ML model on a validation
dataset with an approximated probabilistic model of such function. This suggests that
combining the underlying ideas of Bayesian hyper-parameter optimization algorithms
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with those presented in this paper could yield an early-stop algorithm that works efficiently
in high dimensions.

In the case of RF, the gain of RHOASo is not enough for datasets D5, D9, and D14.
Unlike in the case of MLP, these datasets have no clear commonalities, so we can only
hypothesize. We believe that the problem is the same as in the case of MLP: high variance
in the results diminishes the effectiveness of RHOASo. However, in this case, this vari-
ance could be ascribed to the inherent randomness in the training of RF or in the cross
validation sampling.

As we can see in Figure 18, the behavior of the rates of validity for each partition
remains consistent when these are computed with the MCC and time complexity.

(a)

(b)

(c)
Figure 18. Experiment 1: consistency per partition (MCC and time complexity). (a) Rate of validity
per partition in RF. In axis X, the partition of the dataset. In axis Y, the rate of RHOASo for each class
of validity. (b) Rate of validity per partition in GB. In axis X, the partition of the dataset. In axis Y,
the rate of RHOASo for each class of validity. (c) Rate of validity per partition in MLP. In axis X, the
partition of the dataset. In axis Y, the rate of RHOASo for each class of validity.

As we can see in Figure 19, the same conclusions as in the case of accuracy are obtained
when we discriminate them by datasets. Nonetheless, the results concerning RF and MLP
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are not so far from being consistent (RF being closer than MLP), and a deeper analysis
should be performed regarding this fact. We note that, in some cases, the green class is
increased; this has not occurred for the red class in the unbalanced datasets.

(a)

(b)

(c)
Figure 19. Consistency per dataset: rate of validity with the MCC and time complexity. (a) Rate
of validity per dataset in RF. In axis X, the dataset. In axis Y, the rate of RHOASo for each class of
validity. (b) Rate of validity per dataset in GB. In axis X, the dataset. In axis Y, the rate of RHOASo
for each class of validity. (c) Rate of validity per dataset in MLP. In axis X, the dataset. In axis Y, the
rate of RHOASo for each class of validity.

5.4.2. Experiment 2

The rates of validity for each partition computed with the accuracy and time complex-
ity are included in Figure 20. In this experiment, RHOASo is more inconsistent since it loses
the advantage of execution time that it had over the other HPOs. RHOASo has a consistent
advantage for all partition sizes in GB, but for RF it only improves other algorithms for
partitions 3 and 4 and is inferior in MLP in all partitions, although the results improve
when the size of the partition increases. This trend is also present for RF and GB. The
reasons for this trend are probably the same as those we discussed in Section 5.4.1: the
variance in the results trapping RHOASo in the local maxima.
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(a)

(b)

(c)
Figure 20. Experiment 2: consistency per partition (accuracy and time complexity). (a) Rate of
validity per partition in RF. In axis X, the partition of the dataset. In axis Y, the rate of RHOASo for
each class of validity. (b) Rate of validity per partition in GB. In axis X, the partition of the dataset. In
axis Y, the rate of RHOASo for each class of validity. (c) Rate of validity per partition in MLP. In axis
X, the partition of the dataset. In axis Y, the rate of RHOASo for each class of validity.

As we can see in Figure 21, the validity per dataset is negatively affected. In RF, there
is a general decrease, with only datasets 10, 12, 12 and 15 showing a clear advantage for
RHOASo. For GB, RHOASo maintains better results than other algorithms for all datasets,
except 5 and 6. However, the consistency is lower than in experiment 1. Finally, in MLP,
the validity of RHOASo is the lowest among all models, being consistently outperformed
in five datasets: 1, 2, 3, 4 and 13.
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The datasets with the worst results for each model have no clear commonalities, so it is
possible that the neutralization of the execution time advantage of RHOASo is a significant
factor in the deterioration of the results.

(a)

(b)

(c)
Figure 21. Experiment 2: consistency per dataset. Rate of validity with the accuracy and time
complexity. (a) Rate of validity per dataset in RF. In axis X, the dataset. In axis Y, the rate of RHOASo
for each class of validity. (b) Rate of validity per dataset in GB. In axis X, the dataset. In axis Y, the
rate of RHOASo for each class of validity. (c) Rate of validity per dataset in MLP. In axis X, the dataset.
In axis Y, the rate of RHOASo for each class of validity.

In Figure 22, we show the results of the above analysis with the MCC and the time
time complexity. The results are very similar to those achieved with accuracy. The main
difference is that the validity for RF is improved for partitions 1 and 2, increasing the
consistency of the results.



Mathematics 2021, 9, 2334 37 of 52

(a)

(b)

(c)
Figure 22. Experiment 2: consistency per partition (MCC and time complexity). (a) Rate of validity
per partition in RF. In axis X, the partition of the dataset. In axis Y, the rate of RHOASo for each class
of validity. (b) Rate of validity per partition in GB. In axis X, the partition of the dataset. In axis Y,
the rate of RHOASo for each class of validity. (c) Rate of validity per partition in MLP. In axis X, the
partition of the dataset. In axis Y, the rate of RHOASo for each class of validity.

In Figure 23, we show the rate of validity per dataset, using the MCC as the reference
metric. As happened in Experiment 1, the trends are mostly the same as those present
when evaluating the accuracy.
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(a)

(b)

(c)
Figure 23. Experiment 2: consistency per dataset. Rate of validity with the MCC and time complexity.
(a) Rate of validity per dataset in RF. In axis X, the dataset. In axis Y, the rate of RHOASo for each
class of validity. (b) Rate of validity per dataset in GB. In axis X, the dataset. In axis Y, the rate of
RHOASo for each class of validity. (c) Rate of validity per dataset in MLP. In axis X, the dataset. In
axis Y, the rate of RHOASo for each class of validity.

6. Conclusions

ML provides several powerful tools for data processing that find applications in
different fields. Most of the existent models have several hyper-parameters that need to be
tuned and have a noticeable impact on their performance. Therefore, HPO algorithms are
essential to achieve the highest possible accuracy with minimal human intervention.

In this work, a new HPO algorithm is described as a generalization of the discrete
analog of a basic iterative algorithm to obtain the solutions to certain conditional opti-
mization problems for the logistic function. It is shown that its performance is weakly
disturbed by changing the size of the data subset with which it is run. The algorithm
shows positive statistically meaningful differences in efficiency, regarding the other HPO
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algorithms considered in this study. The algorithm can finish the tuning process by itself
and only requires an upper bound on the number of iterations to perform. Furthermore,
it is shown that, on average, it needs around 70% of the iterations needed by the other
hyper-parameter optimization algorithms to achieve competitive results.

The results show that the algorithm achieves high accuracy, with similar results for all
classifiers on each dataset. In addition, RHOASo can effectively use a small partition size to
accelerate the HPO process without sacrificing the final accuracy of the model. Lastly, the
automatic early stop ends the tuning process before reaching the fixed number of iterations
(Me = 34), further increasing its efficiency.

Future work can be aimed at several lines:

• Test the RHOASO’s performance with more machine learning algorithms, such as
decision trees or k-nearest neighbors.

• Include more HPO algorithms in the comparison of the effectivity of RHOASo.
• Optimize RHOASo so it can be effective on search spaces of greater dimensions and

can better deal with an extremely indented surface of ΦA,D, possibly using a surrogate
of the target function, such as in Bayesian optimization.

• Factor the possible inclusion and effect of parallelization.
• Assess RHOASo on data streams.
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Appendix A. Additional Results

In this appendix, we show the results concerning Experiment 1 in the case that the ML
algorithms are DT and KNN. Due to the great difference in the performance of RHOASo
with respect to the rest of the HPO algorithms when they are run with these ML algorithms,
we have excluded the analyses from the body of the article. However, we believe that the
obtained results may be of interest.

We give a brief description of DT and KNN below.

1. DT is a tree-like model, where the internal nodes and their edges encode possibilities
and the ending nodes (leafs) encode decisions. Te maximum length of the paths
joining the root node and a leaf is called the depth of the tree. There are a number of
DT training algorithms, among which we can point out ID3, ID4, ID5 and CART. In
this study, we have chosen CART.

2. KNN is a non-parametric classification model the may be also used in regression
problems. The training examples are simply vectors in the feature space, carrying
their class label. The training phase does not consist of constructing an internal
mathematical model but simply allocating training data instances in the feature space.
The classification phase is done by looking at the majority label of the k-nearest
neighbors of each point. This implies the choice of a metric on the feature space,
which by default is usually taken as the p = 2 Minkowski distance.

In Table A1, we include the hyper-parameters that we have tuned. We have chosen
them because of their influence on the corresponding ML algorithms (see [3], Appendixes
A1, A4).Concerning the hyper-parameters of DT to be tuned, we have chosen the minimum
number of samples required to split an internal node (min_smaples_split) and the minimum
number of samples required to be at a leaf node (min_samples_leaf). Regarding the hyper-
parameters of KNN, we have considered the number of neighbors to use for queries and p,
the Minkowski’s distance type.

The search space for all hyper-parameters is in the interval [1, 50]. All hyper-
parameters not being tuned are set to their default values in scikit-learn implementa-
tion ([34]). We have used 10-fold cross-validation to assess the performance of all ML
models combined with the HPO algorithms.

Table A1. ML algorithms together with hyper-parameters we have considered.

Name Hyper-Parameter 1 Hyper-Parameter 2

DT min_smaples_split min_samples_leaf
KNN n_neighbors p

Appendix A.1. Performance of RHOASo

We can see in Figures A1–A6 that we have plotted the median of the accuracy, MCC,
total time, sensitivity, specificity, and the number of iterations when RHOASo is applied
together with DT and KNN. The median of accuracy for DT over all datasets is 0.85 and
for KNN, it is 0.78. We can observe that the achieved accuracy by RHOASo presents great
stability in terms of partitions of the dataset, except for partition P4 and some datasets. The
median of MCC for DT is 0.58, and for KNN it is 0.41. Again, RHOASo presents a similar
behavior to the accuracy. It can be due to P4 does not contribute to improve the fit of the
models, see [1]. Regarding the time complexity, the median value for DT is 1.11 s, and for
KNN it is 22.53 seconds. It can be shown that the total time registered for D4 in KNN is
higher in P3 than in P4. This can be caused because the stabilizer of RHOASo achieves an
optimum value before in the total dataset compared to P3. The median of sensitivity is 0.88
for DT, and 0.87 for KNN. In contrast, specificity has a median of 0.87 for DT, and 0.63 for
KNN. In addition, these plots inherit the same trends as the graphics of the accuracy and
MCC. The median of the number of iterations for DT is 14, and for KNN it is 19. It is worth
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pointing out the number of iterations for P3 is larger than for P4 when we work with KNN
in D4. This is probably caused by the same reason as in the plot of the total time.

(a)

(b)

Figure A1. Behavior of RHOASo: accuracy. Each line represents a dataset. (a) Accuracy for DT.
(b) Accuracy for KNN.
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(a)

(b)

Figure A2. Behavior of RHOASo: MCC. Each line represents a dataset. (a) MCC for DT. (b) MCC
for KNN.

(a)

Figure A3. Cont.
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(b)

Figure A3. Behavior of RHOASo: time complexity. Each line represents a dataset. (a) Time complexity
for DT. (b) Time complexity for KNN.

(a)

(b)

Figure A4. Behavior RHOASo: sensitivity. The datasets are represented with a bar chart for each
partition. (a) Sensitivity for DT. (b) Sensitivity for KNN.
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(a)

(b)

Figure A5. Behavior RHOASo: specificity. The datasets are represented with a bar chart for each
partition. (a) Specificity for DT. (b) Specificity for KNN.

(a)

Figure A6. Cont.
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(b)

Figure A6. Number of iterations per partition. Each line represents a dataset (medians). (a) Number
of iterations DT. (b) Number of iterations KNN.

Appendix A.2. Are There Statistically Meaningful Differences between the Performance of
RHOASo and the Other HPO Algorithms under DT and KNN?

In Figures A7 and A8, the performances (accuracies and time complexities) that are
achieved by the HPO algorithms over each dataset are shown.

(a)

(b)

Figure A7. Accuracy complexity. (a) Accuracy in DT. (b) Accuracy in KNN.
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(a)

(b)

Figure A8. Time complexity. (a) Time complexity in DT. (b) Time complexity in KNN.

The results of validity of RHOASo faced on the rest of HPO algorithms are included
in Table A2, which show that, on average, the class corresponding to positive statistically
significative differences is higher than 90%. Note that these computations are carried out
with the accuracies and time complexities by the analyses that are explained in Section 4.4.

Table A2. Rate of validity of RHOASo vs. HPO across all Di (% with accuracy and time complexity).

Validity DT KNN Average

V 10.93% 8.25% 9.59%
V 0% 0% 0%
V 89.06% 91.74% 90.4%

Since we have dealt with unbalanced datasets, we have repeated the analyses, chang-
ing the metric of accuracy by MCC so as to avoid over-optimistic scores. In Figure A9, the
MCCs that are achieved by the HPO algorithms over each dataset are shown.
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(a)

(b)

Figure A9. MCC of all HPO algorithms. (a) MCC in DT. (b) MCC in KNN.

The rates of validity that are obtained by RHOASo, compared to the rest of HPO of
algorithms with the MCCs and time complexities, are included in Table A3.

Table A3. Rate of validity of RHOASo vs. HPO across all Di (% with MCC and time complexity).

Validity DT KNN Average

V 10.49% 10.04% 10.26%
V 0% 0.44% 0.22%
V 89.50% 89.50% 89.507%

We can observe that the rate of gain of RHOASo overcomes the 89% of the cases.

Appendix A.3. Are the above Results Consistent?

In this section, we analyze whether RHOASo achieves a significant performance
improvement consistently across datasets and partitions.
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The rates of validity for each partition computed with the accuracy and time com-
plexity are included in Figure A10. As can be seen, RHOASo presents a much higher
performance than any other HPO algorithm taken into account in this work, and this
behavior is independent of the partition.

(a)

(b)

Figure A10. Experiment 1: consistency per partition (accuracy and time complexity). (a) Rate of validity per partition in DT.
(b) Rate of validity per partition in KNN.

As we can see in Figure A11, the above conclusion is the same when we discriminate
rates of validity by datasets.

As we can see in Figure A12, the behavior of the rates of validity for each partition
remains consistent when these are computed with the MCC and time complexity. As we
can seen in Figure A13, the same conclusion as in the case of accuracy is obtained when we
discriminate them by datasets.
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(a)

(b)

Figure A11. Experiment 1: consistency per dataset. Rate of validity with the accuracy and time com-
plexity. (a) Rate of validity per dataset in DT. (b) Rate of validity per dataset in KNN.

(a)
Figure A12. Cont.
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(b)
Figure A12. Experiment 1: consistency per partition (MCC and time complexity). (a) Rate of validity
per partition in DT. (b) Rate of validity per partition in KNN.

(a)

(b)
Figure A13. Consistency per dataset: rate of validity with the MCC and time complexity. (a) Rate of
validity per dataset in DT. (b) Rate of validity per dataset in KNN.
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