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Abstract— This paper presents a visual based localization
mechanism for a legged robot. Our proposal, fundamented
on a probabilistic approach, uses a precompiled topological
map where natural landmarks like doors or ceiling lights
are recognized by the robot using its on-board camera.
Experiments have been conducted using the AIBO Sony
robotic dog showing that it is able to deal with noisy sensors
like vision and to approximate world models representing
indoor office environments. The two major contributions of
this work are the use of this technique in legged robots, and
the use of an active camera as the main sensor.

Index Terms— mobile robot navigation, localization, legged
robots

I. INTRODUCTION

One of the basis for mobile robot operations, like posi-
tion based navigation or motion planning techniques, is the
localization capability [1]. This can defined as the ability
of a robot to determine its position in a map using its
own sensors. Many works have been developed to estimate
the robot location. Unfortunately, the most of existing
algorithms have been designed for robots equipped with
wheels, where local precise odometric information can be
achieved.

The solution we present solves the problem for a legged
robot were odometric information is not reliable. The
information needed for the localization has been obtained
by the robot external sensors, mainly from the robot’s
camera. The odometry is a key in the majority of the
localization works with wheeled robots ( [2], [3]). A similar
approach to ours, but applied to a wheeled robot, is exposed
in [4], where an office environment is divided topologically
into states.

Our approach is based on Markov localization [5], a
well-known probabilistic technique that maintains a prob-
ability density (belief) over the entire states space where
the robot moves. This technique is also used in many others
works as [6], where sensor as ultrasonic or infrared sensors
are use to determine the obstacles around the robot and [7],
but always applied to wheeled robots. In the first case with
sensors as ultrasonic or infrared sensors to determine the
obstacles around the robot.

In section II the fundamentals of the implementation of
this technique is shown. There are another approaches that
use another well-know sampling algorithm for localization
Monte Carlo, but it has reported [8] not to be enough
effective in noisy environments as the ours. Despite of

This work has been partially financed by Spanish Government under
project DPI2004-07993-C01-01

this, we have not discarded to evaluate this algorithm in
the future.

(a) Sony AIBO ERS7. Front (image from AIBO site)

(b) Sony AIBO ERS7. Back (image from AIBO site)

Fig. 1. AIBO ERS7 Anatomy

Depending on the state granularity defined over the map,
the connectivity information and the angles inference, we
consider a localization method as topological or metric.
For instance, in [5] a metric approach is used, with a linear
resolution between 10 and 40 cm and the angular resolution
set between 2 and 5 degrees. This resolution leads to a
vast amount of states, even in not so big maps (7.200.000
states for 30x30m2 map) which need some techniques like
sampling for being computable.

Our approach is topological because the connectivity
information is important for our navigation task, and the
exact robot position is not so important . The office environ-
ment division into states is similar to [9] and [10], where
the set of nodes is built depending on the observations
that can be obtained in each place of this environment, but



again, these approaches are used to locate wheeled robots.
With very few exceptions ( [5]), most of the approaches

are passive, i.e. neither the position nor sensor orientation
can be controlled. Our approach is active, setting the
sensor orientation to get the information we wish from the
environment.

The platform where this system has been developed is
the Sony AIBO robot. The Sony AIBO ERS7 robot (figure
I) is a completely autonomous robot which incorporates
an embedded MIPS processor running at 576MHz, and
64MB of main memory. It gets information from the
environment mainly through a 350K-pixel color camera
and 2 infrared sensors. Another of the AIBO locomotion
main characteristics is its dog aspect with four legs. AIBO
also incorporates IEEE 802.11b Wireless LAN card.

The main reason to choose this robotic platform for our
research is its generalization as low cost legged robotic
platform. Our group is committed with the use of com-
mon platforms and the availability of source code, letting
research claims be checked by peers.

The rest of this paper is organized as follows: in section
II we make a brief review of Markov Localization tech-
nique used. In section III we describe our model and its
components, showing the experiments and results in section
IV. Finally, we will expose our conclusions in section V.

II. MARKOVIAN LOCALIZATION FRAMEWORK

Localization based on indirect information provided by
the robot sensors (sonar, laser, etc.) has been successfully
integrated in the probabilistic framework and has shown
good results [2], [11]. In particular, sampling methods that
speeds the estimation [5], are currently the most popular
methods.

In our work, we have used a Partially Observable Markov
Decision Processes (POMDP) where a probability distribu-
tion Bel, over all the possible locations S = {s1, s2, ...},
is defined at a time t, so Belt(S = s) will represent belief
of being in the state s at the time t.

Depending on the knowledge about the initial localiza-
tion of the robot Bel0(S) will be uniformly distributed if
the initial state is not known, or will be centered in a state
if the initial position is known.

The belief actualization is divided in two atomic steps.
In the movement step an action is executed by the robot.
The belief is modified according to the action executed.
In the observation step the belief is updated according to
the observations taken from the sensors. In each robot
movement these two steps are executed sequently. The
description of these two steps is presented as follows:

Movement step. Robot motion is modelled by the
probability p(s′|s, a). This is the probability of reaching
state s′ if an action a is executed at state s. To obtain the
a priori belief for the whole set of states Belt(S

′) Bayes
update is assumed. When an action is executed, and before
it is corrected by the data from the sensors, we apply:

Belt(s
′) =

∑

s∈S

p(s′|s, a) · Belt−1(s),

∀s′ ∈ S (1)

Observation step. To calculate the corrected belief
Belt(S) we take p(o|s) as the probability of getting the
observation o being in the state s and we operate, as it is
described in [4], as follows:

Belt(s) = p(o|s) · Belt(s
′),

∀s, s′ ∈ S (2)

If there are many observations and they are independents
between them, we can use them as a product of independ-
ents terms:

Belt(s) = p(o1|s) · p(o2|s) · · · p(on|s)

·Belt(s
′),∀s, s′ ∈ S (3)

Obviously, p(o|s) has to be known. In our case, this
information is inferred from the map of the environment.
The way it is calculated is described in next section.

III. OUR MODEL

Summarizing, our localization method needs three com-
ponents to be defined:

1) The environment map and how it is translated to a
set of states.

2) A set of actions the robot can perform and the
probabilistic action model.

3) A set of observations a robot perceives from its
environment and its probabilistic model related to
states.

A. The state space

Our robot is going to move around in an indoor office
environment made up by corridors and rooms, as shown
in figure 2. This environment has been manually coded as
a set of topological nodes representing places with similar
characteristics. For example, a node could be a continuous
corridor region where there isn’t doors in the right neither
in the left.

Once the set of nodes has been defined, each node is
divided in four different states, representing the same robot
position with four orientations with angular resolution of
90o (north, east, south, and west).

In the top left diagram of figure 2 we can see a portion
of office environment. At the top right of the same figure it
has been divided in nodes attending to their characteristics.
So, a region where there are doors at both sides of the
corridor is different to the region where there is only one
or to the region there is none. The division is guided by
the number of doors or ceiling lights the robot can sense
in each position, because they are the landmarks the robot
is able to perceive from its raw camera images.



Note this is a topological division, where nodes represent
areas of different sizes. States are then defined over the
nodes with different orientation. In this way, for example,
in figure 2 node 4 is divided into states 4 to 7, node 5 into
states 8 to 11 and so on (lower part of figure 2):

Fig. 2. From map to states

B. Action model

The action primitives we implement in this work are:
to turn 90o on the left, to turn 90o on the right and go
forward the necessary time to reach the next state with the
same orientation. The model supports uncertainly in the
movement primitives. In figure I we can see the uncertainly
in action execution. If the robot execute the turn 90o in the
left, for example, we have in mind that the robot could
do nothing(N), to turn correctly(T) or to turn more than
90o(TT). If the movement is go forward, the robot could
do not reach the next state nothing(N), reach the next state
(F), to pass slightly the correct state (FF) or to make a
really big travel (FFF).

TABLE I
UNCERTAINLY IN ACTION EXECUTION.

In figure 3 two nodes from the map are shown: the robot
starts at position A and performs the action aforward. The
robot moves forward, but with this movement it does not
reach the next state, being in position B instead of C. In
the forward action, to do nothing (N) do not implies the
robot has not moved. It implies the robot has not reached
the next state, but in the model this is taken as the same.

When the robot execute a action primitive, i.e. when
the robot moves (this is called actuation phase) our system
updates the belief as it is shown in equation 4. The action
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Fig. 3. Transition of states

model defines p(s′|s, a) as the probability of to reach state
s′, starting at state s and executing the action a:

p(s′|s, a),∀s ∈ S,∀a ∈ A (4)

A = {a{F}, a{TL}, a{TR}}

This probability p(s′|s, a) will be our action model and
it is calculated a priori depending on the possible action
the robot can perform in the state space and the table I.

The robot must be centered in the corridor as much as
possible, and oriented to the wall or to the corridor in order
to a correct observation of the environment. If we turn on
the left 90o, we want the action to be atomic, i.e. turn
90o or turn 0o. Mov 60o, for example, is not desirable for
the sensing tasks. For correcting orientation errors, after an
action was performed, a correction phase is needed.

To improve action primitives accuracy the robot correct
its position after an action is executed. For this purpose, the
robot obtain infrared measures with distinct angles respect
to its body position, turning the head the angles we want.
There are two possibles situations depending on the first
infrared measure taken with 0o of deviation with respect the
body: if the robot does not detect any obstacle, we suppose
to be oriented faced to the end of corridor, almost pararell
to wall. On the other hand, if we detect any obstacle, we
consider it faced to wall. Let’s describe these situations:

Faced to wall. If the robot is faced to corridor, we obtain
infrared measures getting the distance to an obstacle in -30,
-15, 0, 15 and 30 degrees (see figure III-B) with respect the
body, turning the dog’s neck to orientate the infrared sensor.
As we see in figure 6, we can obtain the 2D points of
the obstacles obtained in their measures. By the minimum
quadratic method, we can obtain the angle with the wall
which will be used for correcting the robot position.

Fig. 4. The robot takes infrared measures when it is faced to wall with
-30, -15, 0, 15 and 30 degrees

Face to corridor. The method is the same as before,
but the angles are -90, -80, -70, 70, 80 and 90 degrees (see
figure III-B) . We can obtain two lines corresponding to
the walls of the corridor. With these lines we can correct
the robot orientation and position with respect the corridor.



Fig. 5. The robot takes infrared measures when it is faced to corridor
with -90, -80, -70, 70, 80 and 90 degrees
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Fig. 6. When we have calculated the 2D points corresponding to
sensor measures, we calculate by Minimum quadratic method the line
corresponding to an obstacle. The angle a will be used to correct the
robot position

C. Sensor Model

Our sensor model take three types of sensations from the
image taken by the robot’s camera: textbfdepth. The main
target for this observation is measure how far the robot
is from the wall when it is orientated to the end of the
corridor. For this purpose we detect the number of ceiling
lights that the robot perceive. If the number of ceiling lights
is high, the robot is far from the end. If this measure is low,
the robot is near to the end. In figure III-C we can see the
original image and the image with the ceiling lights and
doors detected.

Doors. Due a color analisys of the image, the robot is
able to count the number of doors it can observe ahead.
The doors must be vertical to the floor and the jambs must
be pararell between them. If a image region comply with
these specifications, it is assumed to be a door.

near landmark. This observation give us information
about which landmarks the robot found around itself. We
define landmarks as the doors, walls or corridor that are
situated in the right, left and front side of robot. For

(a) Detecting 6 ceiling lights and 8 doors

(b) Detecting one ceiling light and 5 doors

Fig. 7. Image information extraction results

example, a observation could detect there is a door at the
left side, a wall at the right side and in front of the robot
there is a corridor.

Fig. 8. Detecting the landmarks surrounding. In this situation the robot
must know it is face to the corridor, it has a wall on its right and it has
a door on its left

To take this observation, the robot detects if there is
an obstacle ahead with an infrared sensor. If there is one
obstacle, it must determine if it is a wall or a door by
analyzing and image taken from its camera. The robot
repeats the same operation turning its head left and right.

Once the data is collected, we apply the equation 3 for
correct the belief as follows,

Belsubsequent(s) = p(o|s) · Belprevious(s),∀s ∈ S (5)

Belsubsequent(s) = p(oceilinglights|s ·

p(odoors|s) ·

p(onearlandmarks|s) ·

Belprevious(s),∀s ∈ S (6)

IV. EXPERIMENTS

In order to verify the correct operation of our approach,
we will realize several experiments in a corridor of an



office environment. In figure 9 we can see the corridor
that we have used for the experiments and how we have
topologically divided it into nodes. Afterwards we divide
again the set of nodes into states. This office environment
is very simetric and that is why this scenario entails much
more difficulty for the localization system.

Fig. 9. Map divided into nodes

For the experimental results, we use the error function
shown in equation 7, where statemayor denotes the state
with the greatest belief and stateactual is the robot actual
position. The distancex is measured as the number of steps
needed to reach a state from another.

error = abs(prob(statemayor − prob(stateactual))) ·

·distance(statemayor, stateactual)) (7)

A. Ability for recovery of action error

In the first experiment we want to verify if the system
is robust to action errors. The system must be able to
detect when the movement was wrong using its sensors,
and recover from this situation.

For this purpose, we situated the robot in state 15 (see
map in figure 9) and we ordered it to go forward along the
corridor. The robot knows where it is at the beginning, in
other words, the probability distribution is concentrated in
the state 15. Due to the imperfections of the actions, the
error localization increases in each step. In the figure 10(a)
the green line is the localization error if the movements was
perfect, and the red line is the localization error using our
approach. As we see in the graph, using our localization
the error is 0 because the system recover in all the cases
from action errors.

B. Speed in localization

In this experiment the robot does not know where it is at
the beginning, so the first time the probability distribution is
uniform. This experiment was realized with a lot of sensor
noise because there were a lot of people walking along
the corridor. Despite this difficulty, the robot is able to be
localized with a small error in a few movements and can
recovery to sensor error quickly, as we see in figure 11(a)-
11(d).

In 11(a) the robot starts at node one and the distribution
(painted in green) is uniform along all the nodes. For this

(a) Experiment IV-A: Error in the localization

(b) Experiment IV-B: Recovering from sensor errors

Fig. 10. Experiments results

explanation we will talk about node instead of states, which
is actually what we use in our model, to simplify this
explanation. So, a node will be padded in green depending
on the belief of the state situated in this node, orientated
on the right. When the robot moves forward it reach to
the node 2 (Fig. 11(b)) and it takes data from its sensors.
With this data the model evolves and the probability is
concentrated in state 2 and 17, because these two states
have almost the same observation properties. The robot
goes forward, but an error occurs and the robot reaches
node 4, instead of node 3. This anomaly is observed in the
model and it is corrected in the observation phase, as we
see in 11(c). In the last movement the robot reaches the
node 5 and then the simetry is broken, concentrating the
probability in the node 5, as we see in Figure 11(d).

Figure 10(b) shows the error evolution during the exper-
iment.

V. CONCLUSIONS

This article has presented the preliminary results for an
approach to localization of legged robot, using mainly the
vision as an active input sensor to extract characteristics
from the environment. We have shown that the robot is able
to localize itself even in environments with noise produced
by the normal activity in a real office.



(a) Initial state for the experiment. The belief (green) is
the same for every states.

(b) After the first movement was finished, there is a
couple of states where the robot could be, due to the
corridor simetry.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(c) In the next step the movement was no correct (it
skips the node 3), but the robot can localize itself by the
observation. The simetry still do not let us know where
the robot is.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(d) In this step the simetry is broken and the robot knows
its position.

Fig. 11. Experiment done in a corridor. The amount of green in each
state represent the belief in it.

The data obtained from sensors, mainly the camera, is
very rich and let a fast convergence from an initial unknown
state where the belief over the set of states is uniform. Also
we demonstrated that the robot can detect action failures
when it is localized, and recover from them in a efficient
way.

The set of observations have been descriptive enough
to be efficient in the localization process. The way we
determine the number of doors and ceiling lights the robot
can perceive has been the key for the localization system.

Despite these results, there are some limitations that de-
serve future research. One of the key limitations arises from
the low accuracy in the localization due to the granularity
of the large areas defined as states in the map building.

Maybe granularities near to the metric approximation could
be more useful for many indoors applications.

We believe that probabilistic navigation techniques hold
great promise for getting legged robots reliable enough to
operate in real office environments. Although the exper-
iment results shows the system works, but for a correct
evaluation an immediate task is to realize more experiments
to evaluate this system in a more complex and longer
scenarios.
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