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APPLICATION OF SATELLITE IMAGES TO LOCATE AND

INVENTORY VINEYARDS IN THE DESIGNATION

OF ORIGIN “BIERZO” IN SPAIN

J. R. Rodríguez,  D. Miranda,  C. J. Álvarez

ABSTRACT. With a view to contributing to the improvement of the current vineyard registers, this study presents a methodology
for vineyard mapping based on satellite remote sensing systems. The procedure was validated for the Designation of Origin
“Bierzo” in Spain. Different supervised classifications were performed based on two Landsat images acquired in the same
year. The objectives of the present study were to determine which classification yielded the best results and to quantify the
influence of different factors that affected the overall classification accuracy, such as the resampling method, the use of
georeferenced mosaics, or the combination of the two images. The classification accuracy was determined by using confusion
matrices that were applied to two ground truth images: one of the images consisted of a 700 × 700 m pixel grid, and another
image was generated from validation sites. The percentages of agreement obtained exceeded 75%. Based on the results
obtained, the area under vines at the municipal level was estimated by linear regression. A strong correlation (R > 0.84) was
observed between the official statistical data and the data obtained from image classifications.

Keywords. Landsat TM, Remote sensing, Vineyard registers, Vineyards.

emote sensing techniques have enabled the devel-
opment of many applications related to vines. In
the last few years, the progression has been so
strong that up to 18 variables that affect vineyard

productivity have been identified using multispectral image
data (Franson, 2001; Hall et al., 2002). Research in this field
began in the mid-1980s and was oriented towards classifica-
tion of land uses and quantification of erosion problems. In
the 1990s, new research lines were developed to detect stress
problems in vines by using hyperspectral images. The most
recent applications have focused on precision viticulture, and
on grapevine environment modeling for integrated crop man-
agement.

Remote sensing vineyard identification presents some
problems that must be overcome. The land cover of vineyards
is discontinuous (the soil surface is not completely covered)
because vines are planted at a specific spacing. Therefore, the
soil pattern has a remarkable influence on the image. The
arrangement of vines requires the use of high spatial
resolution sensors that entail a high economic cost. However,
some authors have obtained good results using medium
spatial resolution images (Tsiligirides, 1998). The results of
this type of research are strongly influenced by local
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conditions. Although it is possible to determine the spectral
response for the typical vineyard, this response is largely
affected by the physicochemical properties of soil (Arán et
al., 2001).

One of the first research works that classified vineyards
using Landsat imagery was carried out in the state of New
York (Troiler et al., 1989), but the results obtained were not
as satisfactory as initially expected. Another approach to the
problem of vineyard identification consists of conducting
multitemporal  studies or combining bands of multispectral
images. In this way, good results have been obtained with TM
(Landsat 5) using masking classification methods (Lanjeri,
1998; Lanjeri et al., 2001a). The improvements achieved in
the studies mentioned consisted of classifying the different
land uses in successive stages: rainfed crops were extracted
by principal component analysis; fallow, forest, and olive
land uses were extracted by using supervised classifications
of an image acquired in May; irrigated crops, urban areas, and
ponds were extracted by using a supervised classification;
and the rest of the surface was considered as vineyard. Each
step in the process consisted of generating a mask for each
discriminated cover. The generated mask removed the
classified pixels from the image.

Another classification technique is based on identifying
the combinations of bands that optimize the separability
between vines and the rest of the crops (Rubio et al., 2001a,
2001b). This classification technique has been validated with
an accuracy of 91% for vineyards located in Tomelloso,
Ciudad Real, Spain. The validated technique can be im-
proved by using images from different seasons.

In Portugal, remote sensing systems have been used to
map vineyards (Bessa, 1994). The project developed a
methodology for defining the area under vines from Landsat
images and color-infrared photographs. Such information
was included in a Geographical Information System (GIS)
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together with data of the physical environment (topography,
petrology, climatology, etc.). The data obtained were inte-
grated with the analysis capabilities of GIS.

In the same research line, some authors have studied crop
evolution during a given period. The main objective of their
research was to assess the effects of the Common Agricultur-
al Policy of the European Union (Lanjeri et al., 2001b; García
and García, 2001). Other authors have used active sensors,
such as radar, to classify vineyards (Company et al., 1994;
Bugden et al., 1999). Good results were obtained with these
sensors: vineyards were classified with an accuracy of 80%.
However, these systems are expensive and very sensitive to
vine training system (spur prune, cordon training, trellis
training, etc.).

Until now, the best results have been obtained by applying
techniques based on the Fourier transform to high-resolution
color aerial photographs (Robbez-Masson et al., 2001;
Wassenaar et al., 2001) and color-infrared aerial photographs
(Ranchin et al., 2001). By using these techniques, vines can
be identified from regular planting because the techniques
analyze the repetition of patterns such as form, texture, and
orientation of vines, rather than the spectral response of
vines. The main advantage of using this group of classifiers
is the achievement of certain automation of the process
(Escalera, 2001).

In Spain, research projects concerned with remote sensing
of vineyards are currently being developed. The European
Union has funded the project titled “Methodological ap-
proach for vineyard inventory and management (BAC-
CHUS),” carried out between 2003 and 2005 in Castilla-La
Mancha, central Spain. The aim of the project was to develop
a remote sensing based methodology to inventory and
manage vineyards, which was validated for the study area.

European Union of the Council Regulation (EC) No.
1493/1999 on the common organization of the market in
wine, dated 17 May 1999, established that the member states
should have reliable and updated information about wine-
producing holdings, vine-growing areas, and wine produced.
The regulation established the need to compile a regional
inventory of wine production.

In Spain, vineyard registers already exist. Act 25/1970
established the first Vineyard Register. The former National
Institute of Designations of Origin (Instituto Nacional de
Denominaciones de Origen − INDO) compiled a National
Vineyard Register composed of graphic and alphanumeric
databases. Moreover, the Orders of 23 May 1986 and 18 July
1998 of the Regional Ministry of Agriculture, Farming and
Forestry of the autonomous community of Castilla y León
established the creation of a register of vineyards and
replanting rights in this community, in which the present
study was conducted. However, the registers are currently
outdated, and the compilation of a new Vineyard Register
with updated land references has been considered necessary.
With the compilation of the new register, all the areas under
vines in Castilla y León have been regularized pursuant to
Regulation (EC) No. 1493/1999.

Vineyard Registers currently use information from the
official agricultural censuses conducted by the Spanish
Ministry of Agriculture every ten years. The latest agricultur-
al census was conducted in 1999. The data contained in the
agricultural  censuses are gathered from interviews with all
the farm owners, who provide information about areas, crops,
types of land use, and other socioeconomic variables. Based

on this information, a given number of farms are selected and
field sampling is conducted every three years in order to an-
ticipate modifications of census data. However, preliminary
surveys are usually expensive, are not systematic, and lack
thorough quality control. Consequently, a new methodology
is required to avoid such problems.

OBJECTIVES

The objective of this study is to present a methodology for
mapping vineyards from satellite imagery, and to validate the
methodology. This methodology aims to be useful in the
development and management of Vineyard Registers, and to
contribute in a reliable and cost-effective manner to the
estimation of the area under vines at the municipal level
(Rodríguez, 2003).

The research work was divided into two well-differen-
tiated stages: (1) determination of the most efficient classifi-
cation method to identify vineyards, and (2) quantification of
the vineyard area in El Bierzo.

MATERIALS AND METHODS
The region of El Bierzo, with an area of approximately

3000 km2, is located to the northwest of the Autonomous
Community of Castilla y León, Spain. The study area covers
the municipalities that compose the Designation of Origin
Bierzo, which accounts for an area of 1,410.07 km2 (fig. 1).

This zone satisfies the degree of variability required
because it shows a high level of fragmentation of crops, soils,
and topography. Moreover, the results obtained for this
region can be extrapolated to other wine-producing areas
because the study area is sufficiently large.

According to the data gathered from official statistics and
from the Regulating Cabinet, the vineyards in El Bierzo
present the following characteristics:

� High fragmentation level, which involves a very small
vineyard size (the average size of plots is 0.2 ha). Frag-
mentation is an important structural limitation for the
application of new cultivation techniques.

� Low professionalization, which causes delay in the im-
plementation of new cultivation techniques. Wine-pro-
ducing holdings are managed by non-professional vine
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Figure 1. Location of the region of El Bierzo, Autonomous Community of
Castilla y León, Spain.
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Figure 2. Methodological process developed for image classification.

growers or part-time farmers who consider that the aim
of the wine-producing holding is productivity and do
not take into consideration criteria to improve the qual-
ity of grapes.

� Investment in research, development, and innovation
in viticulture is limited to grants from the Regional Ad-
ministration for vineyard renovation.

Our research was based on two Landsat (TM and ETM+)
images of the study area, acquired at two different times (June
and September 2000). In addition, digital cartography (with
spatial resolution at 1:10000 scale) and color orthophotos
(0.7 m2 pixels) acquired between September and October
2000 were used to georeference the satellite images. Color
orthophotos were used to define the areas for training and
validating the results of the classifications.

With regard to software, ENVI was used to visualize and
process images. IDRISI version R.02 was used for manage-
ment and analysis of georeferenced data and for digital
processing of images. AutoCAD, particularly the Autodesk
Map tool, was used to generate topologies, store drawing data
in an Oracle Spatial database, import cartographic data from
other CAD and GIS systems, link maps to associated
databases, and manage, extract, and store graphic and
alphanumeric  data. Other software packages such as Arc-
View, ECW Header Editor, ERViewer 2.0c, ECW Compres-

sor 2.3 (www.ermapper.com), and MicroStation (Bentley)
were also used. Figure 2 summarizes the methodological
process developed in this study.

This methodological process consisted of the following
five phases, which are explained in detail in the following
sections:

1. Pre-processing of the images for correction of geomet-
ric distortions.

2. Classification of each image using different algorithms
in order to determine which algorithm yields the best
results in the study area.

3. Quantification of the effects of different factors on the
classification: pixel resampling method, differences
between using images with the digital number values
and calibrated images, and contribution of thermal
bands.

4. Combination of the two classified images (acquired in
June and September) to improve the results obtained
from the initial classifications.

5. Estimation of the area under vines based on the classifi-
cations obtained by correlating the results with statisti-
cal data at the municipal level.

PHASE 1: PRE-PROCESSING OF THE IMAGES

The images acquired in different seasons were geometri-
cally corrected and georeferenced before classification.
Correction of geometric distortions consists of modifying
pixel location and allows transformation of images into
cartographic projections with minimum digital number (DN)
changes (Lillesand and Kiefer, 1994). Transformations are
based on numerical functions that assign a new location to
each pixel according to the input matrix or vector coordi-
nates. Digital format makes process automation easier.

The mathematical formulation of geometric corrections is
expressed as (Chuvieco, 2002; Pinilla, 1995):
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where (x, y) are the vector coordinates of the pixel, (c, l) are
the column-row matrix coordinates, and (u, v) are the cor-
rected coordinates.

The most common methods for geometric correction of
images are: (1) correction using the orbital model, and
(2) correction using ground control points (GCPs), which
was the empirical procedure used in this research. GCP
coordinates were determined from digital orthophotos and
vector maps, and were assigned to the corresponding pixel
(column, row). Therefore, the acquisition of coordinates was
based on orthophotos, from which a mosaic was generated.

With regard to spectral analysis, an initial assessment was
conducted by determining the basic statistical parameters
(means, extreme values, and standard deviation).

PHASE 2: CLASSIFICATION OF IMAGES USING DIFFERENT

ALGORITHMS
An initial visual interpretation was carried out by

producing different color composites, which verified the high
degree of heterogeneity of the land cover in the area. The
complexity of the tessellation became more evident in
vineyard areas due to the small size of the plots. Moreover,
many vineyards were abandoned during the last few years,
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and visual detection of the areas covered by vines became
difficult because of the spatial resolution of the TM sensor
(30 m).

The definition of the land cover types to be discriminated
and of the training areas was based on visual interpretation of
images, orthophotos (a total of 85), and field visits and
surveys performed across the municipalities included in the
study area. An unsupervised classification was conducted in
order to guarantee the statistical distinction between the
cover types. In this classification, a maximum of 30 classes
were initially defined, with a change threshold of 5% and a
minimum class size of 50 pixels.

To select the land covers to discriminate, previous studies
were considered (Rodríguez et al., 2002), in addition to the
most representative covers and other less common covers
that must be differentiated from vines. Although 38 classes
were initially identified, the validation of results required
reorganization of the discriminated cover types.

Four different classification algorithms were used to
classify the images: maximum likelihood (with a likelihood
threshold of 80%), parallelepiped classification (with a
maximum standard deviation of 3.00), minimum distance
(with the same value as the previous algorithm), and
Mahalanobis distance (without restrictions). These classifi-
cation algorithms are explained below. In previous studies
with similar images, the best classifications were obtained by
using the maximum likelihood algorithm (Rodríguez et al.,
2002; Martínez et al., 2002).

Maximum Likelihood Classification
The maximum likelihood algorithm is a direct application

of the Bayesian decision theory. This method calculates the
probabilities that a pixel belongs to each possible class and
assigns the pixel to the most likely class. The maximum
likelihood algorithm assumes that the class histograms are
normally distributed (RSI, 2000).

Assuming a normal distribution of DNs within each class,
a probability function can be used to describe each category
according to the mean vector and variance-covariance matrix
of the category, in order to determine the probability that a
pixel belongs to a particular class. The calculation is
performed for each category involved in the classification,
and the pixel is assigned to the category that maximizes the
probability function (Gibson and Power, 2000).

Normal distribution functions are previously calculated
for each class using the mean and variance values obtained
in training areas, and each pixel is assigned (as a function of
DN) to the most likely class. Considering only one band of
an image, the probability that a pixel with a value z belongs
to a particular class is quantified by:
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where �i and �i are the parameters that characterize Ci. For
a total of n classes, it can be concluded that the pixel belongs
to Ci if the following expression is verified:
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It is generally assumed that the probabilities for all the
classes are equal. However, if we know that this condition is

not fulfilled, then we can specify weighting factors for each
class that implement the different probabilities in the expres-
sion. Such factors can be considered as weights that are incor-
porated into the expression:
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where p(Ci) and p(Cj) are the a priori probabilities for each
class.

Determining values for the weighting factors is not easy.
A commonly used criterion consists of assigning a probabili-
ty to each class that is proportional to the area covered by that
class in the study area. However, the determination of such
probability is not easy without knowledge of the area
(Eastman, 1999). Figure 3 shows, in one dimension, the
effect of changing the a priori probability of a class.

In addition, probability thresholds can be established for
each class so that the elements whose maximum probability
of belonging to a class is lower than the threshold established
for that class remain unclassified (fig. 4). If the number of
unclassified pixels is high, either the training areas must be
redefined or the probability threshold must be lowered a
posteriori.

The maximum likelihood algorithm is the most complex
classifier and demands a large number of calculations.
However, it is the most widely used algorithm in remote
sensing because it is robust and fits the arrangement of
original data more strictly (Chuvieco, 2002).

Parallelepiped Classification
In the parallelepiped method, a decision region is defined

for each class based on the highest and lowest values of each

Figure 3. Maximum likelihood classification.

Figure 4. Definition of probability thresholds.
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Figure 5. Parallelepiped classification method.

class. Some modifications of this method establish other lim-
its based on the central tendency and dispersion of values.
The geometric shape of the area is a parallelepiped that de-
fines each region in the n-dimensional pattern space (fig. 5).

As shown in figure 5, a pixel belongs to a particular class
if it lies in the parallelepiped defined by that class.
Consequently, a pixel with a digital number value of DN(k)
in band k of the n bands that compose the image is assigned
to class C if the following expression is verified (Pinilla,
1995):
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where RC is the dispersion range around the mean value. Al-
though the dispersion range is established by the analyst, it
usually corresponds to standard deviation or some multiple
of standard deviation (Chuvieco, 2002).

The parallelepiped classifier is a fast and simple method
that requires little sample information. However, this method
has two main drawbacks: some pixels may remain unclassi-
fied (such as P and P’ in fig. 5), and some parallelepipeds
may overlap. The problem of overlapping parallelepipeds is
usually solved by assigning the pixel to the first class
identified or to the class with the minimum Euclidean
distance.

Minimum Distance Classification
Minimum distance classification assigns the unknown

pixel to the category that minimizes the distance between the
pixel and the class centroid (fig. 6). Distance must be
understood as spectral distance, not geographical distance.
The centroid of a class can be defined as a vector whose
components are the average sample values of the pixels in
each band for that class. Euclidean distance is used to
compute the distance between the pixel and the class
centroid, according to the expression:
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Therefore, the distance between the pixel and the class
centroid is computed as the square root of the sum for all the
bands of the squares of the difference between the digital
number of the cell (DNi) and the average of the digital
numbers of the cells that compose class Ci (Pinilla, 1995).

Generally, a threshold is defined for each class in order to
establish the maximum distance at which a pixel can be
assigned to a given class. As a result, maximum distances are
parameterized for each class according to the degree of pixel

P
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x

Figure 6. Minimum-distance classification method.

clustering. This procedure is simple and fast, but insensitive
to class variability and dispersion.

Mahalanobis Distance Classification
Mahalanobis distance classification improves minimum

distance classification. Mahalanobis distance assumes that
the histograms of the classes are normally distributed and that
the scatter diagram representing the set of pixels assigned to
a class has the shape of an ellipsoid. Figure 7 shows the shape
of the scatter diagram for two bands. The ellipsoidal shape of
the diagram depends on the mean, variances, and covariances
of data.

Mahalanobis distance is sensitive to class variability. For
example, when classifying urban areas, which are largely
variable, this method can correctly classify “urban” pixels
that are closer to the centroid of the “water” class, whose
values are more clustered and show lower variance. Figure 7
illustrates this example. Using minimum distance classifica-
tion, point P would have been assigned to class C2. However,
the intrinsic nature of the correlation between the pixels in
each class suggests that point P actually belongs to C1. The
Mahalanobis distance method is sensitive to this consider-
ation. The Mahalanobis distance is computed for each class
according to the following expression:

 dM � (�z
�� �

�
)t���1(�z

�� �
�
)�  (7)

where z�is the matrix of digital numbers (vector of data), ��

is the matrix of mean values (mean vector), and �−1 is the in-
verse of the covariance matrix.

PHASE 3: QUANTIFICATION OF THE EFFECTS OF DIFFERENT

FACTORS ON THE CLASSIFICATION
In regard to DN resampling, the use of transformation

functions enables correction of the image position, but it is
necessary to transfer DNs in each band. Such operation is
termed resampling and is used to obtain the transformed

P C

C
y

x

Figure 7. Mahalanobis distance.
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image from the corrected image. Resampling is a complex
process because each pixel of the new image is surrounded
by several pixels of the original image. This problem be-
comes more serious when the geometric resolution is altered
during image transformation.

DN transfer can be performed according to different
methods, such as nearest neighbor resampling, bilinear
interpolation,  or cubic convolution. Nearest neighbor resam-
pling does not alter the DNs of the original image, while
bilinear interpolation and cubic convolution interpolate
original DNs (Pinilla, 1995).

With the nearest neighbor method, each pixel of the
corrected image is assigned the value of the nearest pixel in
the original image. Nearest neighbor resampling is rapid and
does not alter original DNs. However, it introduces distor-
tions in linear elements. This method can be algebraically
expressed as:
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where f(c, l) is the digital number assigned to cell (c, l) of the
corrected image; � x and � y are the differences in row and
column direction between the center of the corrected pixel
and the center of the transformed pixel, expressed in fractions
of a pixel; and f(x, y) is the value of the transformed image
pixel, located in a position defined by a real number, where:
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Bilinear interpolation finds the average of the DNs of the
four nearest pixels in the original image. The computed
average is weighted according to the distance between the
original pixel and the corrected pixel (Chuvieco, 2002). This
method avoids distortions in linear elements but reduces the
spatial contrast in the image. The mathematical formulation
of bilinear interpolation can be expressed as:
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where ci are the weighting values defined as follows:
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Cubic convolution resampling considers the DNs of the 16
nearest pixels, which improves the visual aspect but requires
high computing capacity (Gibson and Power, 2000). This
method uses third-order bivariate procedures. The 16 pixels
involved are averaged according to distance and then linearly
interpolated in groups of four lines with four pixels in order
to create four interpolants. Then, another linear interpolation

is performed between the four values obtained. The result of
this process constitutes the transferred DN.

The expression for the one-dimensional interpolation as a
function of the four values in a line is the following:
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which, expressed as a function of the luminances of each cell,
gives:
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where f(l) is the interpolant assigned to the central cell (l) of
each of the four lines in the corrected image, and f(x) is the
value of the output image pixel located in the position defined
by the real number.

The interpolating polynomial between the four f(l) values
obtained is expressed as:
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Different methods can be used to resample the corrected
image, and all of them alter the DNs of the new image more
or less severely. Figure 8 shows the result of the resampling
process for the three methods. The pixels involved in each
resampling method are plotted in three levels of gray.

With regard to the contribution of the thermal band, the
influence of the thermal band on the maximum likelihood
method was verified by reclassifying the images without
using the infrared record.

Nearest neighbor

Bilinear interpolation

Cubic convolution

Original image

Corrected image

Figure 8. Resampling methods.
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Figure 9. Detail of training areas.

PHASE 4: COMBINATION OF CLASSIFIED IMAGES TO
IMPROVE RESULTS OF INITIAL CLASSIFICATION

The images acquired in June and September and classified
by using the maximum likelihood algorithm were combined.
In the combined image, each pixel was assigned a cover type
if, and only if, the informational class coincided in both
images. Consequently, the pixels that were classified as
vineyard in the combined image were also classified as
vineyard in the images from June (image I) and September
(image II). Unclassified pixels corresponded to pixels
assigned to different cover types in images I and II. The
classifications of images I and II were combined either
directly or converted to vector format.

PHASE 5: ESTIMATION OF AREA UNDER VINES BY

CORRELATING RESULTS WITH STATISTICAL DATA
From among the different classifications conducted, the

most accurate classifications were determined by using
confusion matrices. Two validation methods were used:
systematic sampling, and plot sampling.

The sampling unit used in the first validation method was
the pixel. The sample size was calculated for 95% confidence
(z = 1.96), with a maximum acceptable error (�) of 5%, and
assuming 50% probability of success/failure (p = q). As a
result, the number of pixels that had to be sampled (n) was:

 385
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In order to guarantee the representativeness of the
validation pixels, a simple random sampling was designed by
developing a 700 × 700 m grid that covered all the
municipalities  included in the Designation of Origin “Bier-
zo.” Two ground truth images were generated from this grid,
based on the characteristics of the two images studied.
Therefore, the sampling pixels for images I and II were the
same, which enabled comparison of results. The pixel size
generated using ENVI software was 28 × 28 m.

A second validation was carried out by using sampling
areas (plots) selected by the classifier. These plots were
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located in zones with homogeneous cover that were represen-
tative of the whole study area.

A confusion matrix was used to measure overall classifi-
cation accuracy, user’s and producer’s accuracy, kappa
statistic (�), etc. In the confusion matrix, each cell contained
a number that represented the amount (or percent) of pixels
in the sample that, although belonging to row class in the
classified image, was shown to belong to column class by
actual verification. The accuracy of the classification
increases with the increase in the values contained in the
major diagonal as compared to the rest of the values.
Non-diagonal errors represent classification errors of two
types: (1) omission errors: column residuals show cover types
that have not been correctly assigned to their class (type I
error), and (2) commission errors: the elements included in
the same row represent pixels that were assigned to a
category while belonging to another (type II error). This type
of error can be observed in row residuals.

RESULTS AND DISCUSSION
In regard to the pre-processing phase, 557 ground control

points (GCP) were used to correct the geometric distortions
of image I (25 June 2000), and 475 control points were used
in the case of image II (5 Sept. 2000). A better fit was
obtained for image II, with a root mean square error (RMSE)
of 0.670010 (fig. 9).

According to spectral analysis, the longest wavelength
bands were the most heterogeneous bands in both images,
except for band 6, which was the most homogeneous band,
and band 4 in image II, with a maximum value of 178. The
range of variation of the visible bands was very wide but
deviations were small, which suggests a clustering of the DN
values around the mean.

With regard to image classification, visual interpretation
showed that the most recent vineyards covered larger areas.
However, these vineyards were confused with bare soil or
new forests due to trellis training and scarce vine develop-
ment. In general, the colors that characterized vineyards were
similar to the colors of agricultural land before harvest.

Image II, acquired in September, showed darker and more
intense colors than image I, acquired in June, due to the
differences in cover, vigor, and atmospheric conditions.
Table 1 shows the 18 classes identified by using the training
areas. The final classes were obtained after reorganization of
the initial 38 discriminated cover types.

Training areas were defined on the images so that these
areas were as representative as possible. A sufficient number
of plots were defined for each class in order to cover the
different types of slope, orientation, elevation, density, vigor,
etc. Moreover, the training sites selected showed the same
location in both images in order to allow for comparison of
classifications.

The use of classification algorithms showed that the visual
appearance of all the classified images was very similar,
except for parallelepiped classification, in which the pixels
assigned to the cover types “vineyard” and “other unproduc-
tive land” prevailed. This type of classification yielded the
poorest results. The classifications obtained by using mini-
mum distance and Mahalanobis distance were very similar.
However, in the minimum distance classification, the pixels
assigned to agricultural crops prevailed, while the Mahalano-
bis classification showed an increase in the forested cover.
These trends were maintained in the classifications obtained
for image II.

In image I, the vineyard area estimated with minimum
distance classification exceeded by more than 100 ha the
vineyard area estimated with Mahalanobis distance classifica-
tion. The comparison of these classifications with the image
from September yielded differences of more than 1900 ha.

The two images were classified by using the maximum
likelihood method and resampled according to the two
approaches considered. The differences between the areas
obtained for each cover type depended on the season in which
the images were acquired rather than on the resampling
method. The largest differences were observed for the cover
types “bracken” and “conifers,” which covered 2500 ha less
with cubic convolution resampling. In the image from
September, the most relevant changes were observed for the
cubic convolution method, and mainly for agricultural crops.

Table 1. Definition of the discriminated land cover types.
Class Cover Type Description

1 Irrigated cropland Agricultural land that shows evidence of some irrigation system.
2 Rainfed cropland Agricultural land used for rainfed crops. Fallow land and abandoned crops are included in this cover type.
3 Grasslands Irrigated or rainfed areas covered by herbaceous species and used for grazing or mowing.
4 Bracken Areas covered by bracken.
5 Pasture Herbaceous pastures with less than 20% cover of small shrub and/or trees.
6 Shrubland Sub-shrubs (thyme, true lavender, etc.) and shrubs (strawberry tree, broom, gum rockrose, etc.).
7 Shrubland with trees Shrubland areas with less than 30% cover of trees.
8 Forest: broadleaf Forested areas with more than 60% cover of chestnut, common oak or evergreen oak.
9 Forest: riparian Areas near water courses with cover of poplar, alder tree and other riparian vegetation.

10 Forest: conifers Reforested areas with more than 70% cover of conifers.
11 New forests Recently reforested areas with less than 30% cover of forest.
12 Bare land Areas with bare soil prepared for reforestation, rocky areas, clearings, and dumps.
13 Urban and roads Spaces structured into built-up areas (continuous or discontinuous), streets and road networks.
14 Other unproductive land Industrial areas, dumps, stockpiles of material, etc.
15 Water Reservoirs for water storage and water courses.

16 Vineyard: trellis
Recently planted vines or vines trained on a trellis, covering less than 20% of soil during the maximum

growth period.

17 Vineyard: wide spacing
Adult vineyards with low planting density that cover less than 60% of soil during the maximum growth

period, or vineyards that have not reached maximum growth.
18 Vineyard: close spacing Adult vineyards with low planting density that cover up to 60% of soil during the maximum growth period.
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Figure 10. Example of classification for image I.

Table 2. Area (ha) of each cover type according to the classification algorithm used (image I).

Cover Type Parallelepiped
Minimum
Distance

Mahalanobis
Distance

Maximum Likelihood

Cubic Convolution Nearest Neighbor

Irrigated cropland 0.00 10231.51 8609.88 9270.87 7133.38
Rainfed cropland 0.00 9271.42 5707.36 7710.87 7065.17
Grasslands 59.11 4847.23 6745.30 7393.66 5479.21
Bracken 42.80 8495.42 7757.28 3078.84 5561.06
Pasture 51.97 3359.04 4031.48 3096.01 3820.74
Shrubland 5.33 9052.76 8527.72 10332.33 8392.64
Shrubland with trees 0.00 24705.48 26798.68 15920.06 16270.50
Forest: broadleaf 1629.54 12157.33 15384.98 22806.63 23288.95
Forest: riparian 816.37 7272.69 5034.06 4746.88 5934.25
Forest: conifers 378.75 8832.70 9383.46 8600.40 11616.76
New forests 448.36 10638.88 10680.74 9582.51 7932.27
Bare land 5521.63 1182.82 1338.44 3558.81 3499.93
Urban and road 18469.55 1447.34 2084.10 4882.43 4942.57
Other unproductive land 62586.40 2953.95 2287.47 3921.80 3673.90
Water 626.65 1059.81 1034.95 809.32 858.55
Vineyard: trellis 1004.46 2457.99 1978.03 1142.99 1569.33
Vineyard: wide spacing 12850.54 5058.83 4491.14 5068.32 3589.54
Vineyard: close spacing 21049.38 3146.03 4296.16 4248.49 5542.48
Unclassified 630.41 0.00 0.00 0.00 0.00

Total area under vines 34904.38 10662.85 10765.33 10459.8 10701.35
Total 126171.31 126171.32 126171.32 126171.32 126171.32

The areas under vines obtained with the maximum
likelihood algorithm were similar for both resampling
methods. However, the results of the classifications obtained

by using the image acquired in September were much higher.
Figure 10 and table 2 show the results obtained for image I.
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In regard to the effects of the different factors, we first
considered the resampling method. The DNs of the original
image were transferred to the corrected image by a resam-
pling process. Nearest neighbor and cubic convolution were
used. The nearest neighbor method was used because it was
the approach that least distorted the original DN values
(Pinilla, 1995). The results obtained for the different
resampling and classification methods used are jointly
presented and discussed further in this section.

Contrary to what was expected, the results obtained for the
contribution of thermal bands to maximum likelihood
classification showed significant variation when thermal
bands were excluded from the classification. The most
remarkable changes affected the cover types “grasslands,”
“forest,” and “other unproductive land.” However, these
changes hardly affected the areas assigned to vines. In the
image from June, the area under vines increased by 28 ha,
while in the image from September, the area under vines
increased by 18 ha. These results revealed a decrease in the
accuracy levels, but such a decrease was not relevant.
Therefore, the use of the thermal band contributed to
improving the accuracy of the maximum likelihood classifi-
cation conducted.

By combining the images from June and September, large
differences were observed in data for “shrubland with trees”
(more than 4200 ha) and “other unproductive land” (more
than 1200 ha). The area assigned to vineyards with this
methodology amounted to 3200 ha in the case of the image
from June and 3500 ha in the case of the image from
September, while the actual area covered by this crop in El
Bierzo accounts for about 7000 ha.

The results obtained for the images classified by using the
maximum likelihood algorithm were combined. The confu-
sion matrix obtained by overlaying the image from Septem-
ber on the image from June revealed a considerable increase
in overall accuracy and a decrease in errors of commission
and omission, as expected. However, many pixels that were
not assigned to the same cover type in both images were lost.
The highest producer’s accuracy corresponded to the vine-
yards with the lowest planting density, and trellised vines
showed the lowest error of commission. The results obtained
by overlaying the image acquired in June on the image
acquired in September showed little variation. As in the
previous case, the main errors were caused by confusion of
vineyards with grasslands.

The combination of both images caused a decrease in the
number of classified pixels. However, the overall classifica-
tion accuracy increased up to more than 54%. With regard to
vineyard cover, user’s accuracy increased up to 86% to 92%,
and errors of commission decreased to 35% to 34%.

Images I and II were combined after conversion to vector
format. The results were similar to the results obtained with
raster combination, but the value of the kappa statistic
increased up to 0.50 to 0.49. Conversely, errors of commis-
sion increased when each vineyard type was considered

separately. In this type of combination, the percentage of
agreement improved considerably, errors of omission and
commission decreased, and sampling errors increased be-
cause fewer classified pixels were used for validation.

After combining the classifications of the images from
June and September, either directly or converted to vector
format, wide areas remained unclassified: 80,000 ha for the
combinations based on the classifications of the image from
June, and 77,000 ha for the image from September.

SYSTEMATIC SAMPLING VALIDATION METHOD

This section presents the validation results obtained for
the systematic sampling method, which provides statistical
robustness. However, systematic sampling works with indi-
vidual pixels and does not consider the surrounding pixels,
which can be a problem in zones with highly fragmented and
heterogeneous covers, as in the case of El Bierzo. In other
words, in highly tessellated areas, a DN value often
corresponds to more that one cover, unless the pixel is located
within a uniform tile that is larger than the spatial resolution
of the sensor (30 m for Landsat images).

Each type of classification was validated by crossing the
ground truth images with the classified images. Because the
best values were obtained with maximum likelihood classifi-
cations, the results of these classifications are presented
below.

Table 3 shows the results obtained for the image acquired
in June. These results suggest that accuracy depended on the
resampling method used. Although similar values were
obtained with both methods, a higher accuracy value was
obtained with cubic convolution than with nearest neighbor.
In general, overall accuracy values were low. Better accuracy
values were obtained for vineyards as compared to previous
classifications,  but overestimation of the areas under vines
still occurred, with considerable errors of commission.
Table 4 shows the confusion matrix for the image acquired in
June, resampled by using the cubic convolution method.
Errors derive from the confusion of vineyards with agricul-
tural areas, grasslands, and shrubland with trees.

In the case of nearest neighbor resampling, errors occurred
in agricultural areas, grasslands, and forests, and confusion
increased in pasture areas and pure shrub covers. With regard
to accuracy, the vineyards that were best identified by the
user were widely spaced vineyards (21.33%), while the
vineyards best identified by the producer were vineyards with
high planting densities (37.77%).

The confusion matrices for the image acquired in
September revealed errors in the classification of vineyard
covers, which were confused with shrubland, and with
agricultural  and farming covers. In addition, there was an
increase in the error of commission, caused by the vineyards
with the highest planting densities.

The maximum likelihood algorithm improved the accura-
cy of the classifications. However, the accuracy levels
obtained were considerably low. A possible explanation for

Table 3. Effect of the resampling method on the classification (image I).
All Covers Vineyard Covers

Maximum
Likelihood

Overall
Accuracy

Sampling
Error

Confidence
Interval Kappa

Accuracy Error

Producer User Omission Commission

Cubic convolution 36.23 0.9502 1.862 0.2961 73.33 39.63 26.67 60.37
Nearest neighbor 32.99 0.9294 1.822 0.2617 65.83 37.26 34.17 62.74
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Table 4. Summarized confusion matrix for maximum likelihood classification (image I using cubic convolution).

User’s
AccuracyClass 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total

1 28 18 28 0 10 12 45 10 9 3 6 1 10 0 0 1 3 4 188 14.89
2 29 32 28 0 13 17 13 1 1 0 6 2 6 0 0 1 5 3 157 20.38
3 7 11 58 1 23 4 28 11 2 0 0 1 0 0 0 0 0 5 151 38.41
4 2 0 11 4 4 2 21 20 1 0 0 0 0 0 0 0 0 0 65 6.15
5 3 11 6 0 17 9 3 0 0 0 2 3 0 0 0 3 1 0 58 29.31
6 3 2 1 0 15 100 29 10 4 13 25 4 0 0 1 0 0 0 207 48.30
7 2 2 8 0 15 77 107 77 8 17 7 1 0 0 0 0 0 0 321 33.33
8 0 0 11 2 8 12 80 308 24 18 2 0 0 0 0 0 0 0 465 66.23
9 1 0 3 0 1 0 10 33 36 7 0 0 0 0 0 0 0 0 91 39.56

10 0 0 1 0 1 31 38 38 3 48 6 0 0 0 0 0 0 0 166 28.91
11 5 3 8 0 27 40 28 8 2 3 49 7 7 1 0 0 0 1 189 25.92
12 3 4 3 0 7 4 1 1 0 3 5 30 20 0 0 3 0 0 84 35.71
13 4 3 6 0 3 7 3 1 1 3 2 7 45 1 1 0 2 0 89 50.56
14 0 0 3 0 7 32 20 8 0 5 3 5 2 5 0 0 0 0 90 5.55
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 16 100.00
16 3 4 0 0 1 0 0 0 0 0 1 4 0 0 0 7 5 4 29 24.13
17 10 15 13 0 3 6 9 0 0 1 2 2 2 0 0 1 23 14 101 22.77
18 7 9 23 1 8 2 7 0 0 0 0 1 0 0 0 0 20 14 92 15.21

Total 107 114 211 8 163 355 442 526 91 121 116 68 92 7 18 16 59 45 2559

Producer’s
accuracy

26.16 28.07 27.48 50.00 10.42 28.16 24.20 58.55 39.56 39.66 42.24 44.11 48.91 71.42 88.88 43.75 38.98 31.11

low accuracy levels is the high fragmentation of the covers
and the loss of accuracy in the geographical location of the
pixels that composed the ground truth images.

PLOT SAMPLING VALIDATION METHOD

Table 5 summarizes the number of plots sampled, the
number of pixels, and the area of each cover type in both
images. In the validation images, a total of 65 plots under
vines with a mean surface area of 4000 m2, which corre-
sponds to five pixels, were sampled. These figures suggested
that confusion matrices would contain approximately
1800 pixels (about 140 ha) assigned to vineyards.

As in the case of systematic sampling, the plot sampling
validation method estimated the influence of the resampling
method and of thermal bands on maximum likelihood
classification.  The analysis of the results obtained for the
images acquired in June and September suggested that the
sampling method used for geometric correction affected the
results of the classification. The use of plot sampling
(targeted sampling) yielded much higher accuracy levels
than the use of systematic sampling.

The overall accuracy obtained for the image acquired in
June amounted to almost 80% with cubic convolution and
75% with nearest neighbor. Considering the vineyards as a
whole, user’s accuracy and producer’s accuracy increased by
five percentage points (on average) with cubic convolution
as compared to nearest neighbor resampling (table 6). The
improvement in validation results became very evident in the
analysis of the confusion matrices. The confusion of
vineyards with herbaceous crops was lower in the case of
cubic convolution, as compared to nearest neighbor. Another
source of error in the classification derived from the
confusion of bare land with recently planted vines, usually
trained on a trellis. Type II vineyards showed considerable
errors with both resampling methods. However, confusion
was observed mainly in type III vineyards, which were very
dense. The accuracy of the vineyard cover considered as a
whole was not severely affected.

Table 5. Characteristics of ground truth images (validation plots).

Cover

No.
of

Plots

Image I
(25 June 2000)

Image II
(5 Sept. 2000)

Pixels
Area
(ha) Pixels

Area
(ha)

Irrigated cropland 117 628 49.23 629 49.31
Rainfed cropland 64 469 36.76 474 37.16
Grasslands 155 644 50.48 643 50.41
Bracken 17 29 2.27 38 2.97
Pasture 95 1075 84.28 1070 83.88
Shrubland 95 665 52.13 656 51.43
Shrubland with trees 34 227 17.79 236 18.5
Forest: broadleaf 241 1990 156.01 1993 156.25
Forest: riparian 131 761 59.66 767 60.13
Forest: conifers 102 929 72.83 938 73.53
New forests 71 532 41.7 538 42.17
Bare land 107 867 67.97 863 67.65
Urban and roads 132 845 66.24 850 66.64
Other unproductive land 62 404 31.67 415 32.53
Water 26 5906 463.03 5895 462.16
Vineyard: trellis 55 393 30.81 391 30.65
Vineyard: wide spacing 102 491 38.49 479 37.55
Vineyard: close spacing 208 917 71.89 922 72.28

Total 1814 17772 1393.24 17797 1395.20

With regard to the classification based on the image from
September, good results were obtained, with kappa values
higher than 0.70. Errors of omission (15% to 19%) and
commission (20% to 24%) for vineyards were maintained
within an acceptable range. In the confusion matrices for
September, some pixels that corresponded to sparse ever-
green oaks (included in the land cover “broadleaf forests”)
were classified as vines. These results confirm the results
obtained by using systematic sampling: the cubic convolu-
tion resampling method improves the accuracy of the
maximum likelihood classification.

With a view to assessing the contribution of the thermal
band to the classification, the images were reclassified by
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Table 6. Effect of the resampling method on image II (validation plots).
All Covers Vineyard Covers

Maximum
Likelihood

Overall
Accuracy

Sampling
Error

Confidence
Interval Kappa

Accuracy Error

Producer User Omission Commission

Cubic convolution 79.43 0.3032 0.594 0.7598 89.95 85.98 10.05 14.02
Nearest neighbor 74.79 0.3257 0.638 0.7057 84.95 81.03 15.05 18.97

Table 7. Influence of the use of the thermal band on the classification (validation plots).

All Covers Vineyard Covers

Maximum
Likelihood

Overall
Accuracy

Sampling
Error

Confidence
Interval Kappa

Accuracy Error

Producer User Omission Commission

June (6 bands) 78.41 0.3086 0.605 0.7479 88.72 85.59 11.28 14.41
September (6 bands) 77.25 0.3142 0.616 0.7347 82.42 79.23 17.58 20.77

using bands 1, 2, 3, 4, 5, and 7. When validation was carried
out by using validation plots, the following overall results
were obtained: Accuracy decreased by one or two percentage
points as compared to the classification of the images re-
sampled with cubic convolution. However, accuracy in-
creased as compared to the nearest neighbor classification of
the images (table 7). Kappa values decreased from 0.7598 to
0.7479 for the image acquired in June and from 0.7611 to
0.7347 for the image acquired in September. Therefore, it can
be stated that the thermal band provides useful information
for the maximum likelihood algorithm.

The analysis of the confusion matrices revealed that the
main errors (relevant to this research) occurred due to
confusion of vineyards with agricultural and farm uses. In the
classification of the image from June, there was an increase
in the number of pixels that corresponded to “pasture” and
were classified as “vineyard.” In the case of September, an
increase occurred in the “broadleaf forest” pixels that were
classified as “vineyard.” The main errors of omission in
vineyards (larger than 60%) were caused by confusion
between cover types 17 and 18 (both of them “vineyard”
classes). In this case, errors of commission exceeded 50%
due to this type of confusion in the classification.

Like in the previous validations, the accuracy of the
combination of the two classified images was determined by
using the maximum likelihood algorithm. Again, the best
results were obtained with the combination of the images
acquired in June and September. The overall accuracy rate
was about 94%, and the producer’s accuracy for the three
types of vineyards exceeded 97%, while the user’s accuracy
was 94%.

The analysis of the complete confusion matrices sug-
gested that good results were maintained. The most remark-
able errors obtained with the combination based on image I
were: classification of 14 pixels that corresponded to trellis
vines as “pasture,” classification of 14 pixels that were (in all
likelihood) fruit orchards as irrigated crops, and classifica-
tion of 42 “bare land” pixels as trellis vines.

The verified pattern was confirmed by conducting the
combination based on the image from September. The
producer’s accuracy obtained for the classification of trellis
vines was 88.14%, and the error of commission was 15.91%.
For widely spaced vines, the user’s accuracy and the
producer’s accuracy decreased to 76.68% and 57.81%,
respectively. Closely spaced vines were classified with an
error of omission of 4.56% and an error of commission of
14.89%.

The accuracy levels were maintained when the combina-
tion of images was carried out by converting classifications
to vector format for subsequent rasterization. Kappa values
of 0.9065 and 0.8991 were obtained for the combinations
based on the images from June and September, respectively.
The partial results obtained for each type of vineyard were
maintained.

By combining the images that were classified without
considering the thermal band, producer’s accuracy exceeded
96% and user’s accuracy reached 93.31%. With the plot
sampling method, the confusion of vineyards with agricultur-
al and farming covers decreased considerably. However, the
confusion between vineyards with high planting densities
and vineyards with low planting densities was maintained.

Although many unclassified pixels were lost in this
validation,  the sampling errors increased less than in
validations conducted by using a random grid, in which the
number of sampling areas was considerably lower.

The last part of this study focused on determining the
relationship between the results obtained and the statistical
data available. Table 8 shows the areas under vines estimated
for each municipality, specifically the areas estimated using
the maximum likelihood algorithm and combining the two

Table 8. Estimated and actual areas under
vines in the different municipalities.

Vector Combination (ha) New Register
JCyL (2003) (ha)Municipality June September

Arganza 229.71 260.84 562.06
Bembibre 43.67 53.86 78.21
Borrenes 52.99 54.88 103.23
Cabañas Raras 129.98 144.09 289.67
Cacabelos 397.88 429.87 976.36
Camponaraya 446.64 492.19 1110.17
Carracedelo 99.96 112.50 207.12
Carucedo 6.97 7.68 20.09
Castropodame 70.09 75.11 108.85
Congosto 72.99 86.71 123.7
Corullón 127.87 145.04 219.41
Cubillos + Fresnedo 90.79 105.06 7.64
Molinaseca 24.38 25.72 65.73
Ponferrada 501.37 547.78 1402.06
Priaranza del Bierzo 27.98 27.05 138.96
Sancedo 63.19 74.56 152.49
Vega de Espinareda 119.79 138.21 18.81
Villadecanes 239.98 261.54 520.11
Villafranca del Bierzo 468.67 502.62 1112.88

Bierzo total 3277.12 3612.28 7322.37



289Vol. 49(1): 277−290

Ponferrada

Cubillos Vega de Espinareda

)

y = 2.6617x − 75.26

R   = 0.95862

Figure 11. Linear regression between the New Vineyard Register of Castilla y León and the combination of vector images based on the image from June.

images converted to vector format (vector combination).
Considerable differences can be observed between the classi-
fication of the image acquired in June and the classification
of the image acquired in September because of the different
conditions under which the images were acquired. The last
column shows updated information about the area under
vines in El Bierzo. This information corresponds to the new
Vineyard Register of Castilla y León (VRCyL), compiled in
2002.

Table 8 shows very large differences between the data
obtained from our classification and the statistical source
consulted. Nevertheless, the correlations between the data
obtained in this study and the official statistical data were
determined by verifying their statistical significance. The
regressions of the relationship between the statistical data
contained in the VRCyL and the combinations of the images
converted to vector format exceeded 95%. To complement
regression, the linear equations obtained in the fit (for the best
result obtained) are presented in figure 11.

The regression lines for the relationship between the
vineyard areas estimated from the image acquired in
September and the data from the new VRCyL yielded the
poorest results. The area under vines was overestimated for
some municipalities in which shrubland prevailed (Vega,
Corullón, etc.). However, the estimations for other munici-
palities such as Cacabelos or Camponaraya were more
approximate but deviated from the line due to the poor fit
caused by the distortions mentioned above. The best
regression was obtained by relating the information from the
VRCyL and the result of combining the two classifications in
vector format, based on image I. Figure 11 shows this
regression. Despite the good fit obtained, the underestima-
tion of the area under vines due to the small size of vineyards
was very evident. Underestimation caused transfer of an error
in the classification of one pixel to this combination.

Poor spatial resolution, as in the case of the imagery used
in this study, can cause occurrence of mixed signals from two
or more covers in the same pixel; excessive bandwidth or an
insufficient number of bands may neglect some differences.
Moreover, in regard to temporal resolution, data collected in

the same season of the year can lead to confusion between
covers in particular moments of their phenological develop-
ment (Chuvieco, 2002).

CONCLUSIONS
Considering the need for reliable and timely statistical

information on vineyards, remote sensing can be used as a
tool to map and estimate vineyards in a fast and efficient
manner, so that such information is available for decision
making in key moments. The use of satellite imagery as a tool
to determine cultivated areas offers a fast and economic
method to acquire data.

After comparing the most widely used classification
methods, the method that yielded the best results for the
identification  of vineyards in the Designation of Origin
“Bierzo” was the maximum likelihood algorithm. Moreover,
the most correct vineyard classifications were obtained by
using the image from June due to the higher vegetative vigor
of vines, which enabled better identification of vines in that
season.

The best validation results for the classifications con-
ducted were obtained by distributing plots with targeted
sampling.

The resampling method affected classification accuracy.
However, the incidence of this factor was not very relevant.
The results obtained for both images suggest that the cubic
convolution approach is more appropriate than the nearest
neighbor approach.

Within the geographical framework of study, and for the
images used, the use of thermal bands in the classification
contributed to improving overall and specific accuracy of
vineyard classification.

The two classified images were combined to improve
accuracy. The pixels classified as vineyard in the combined
image coincided with the pixels classified as vineyard in each
individual image. By combining the images, the kappa
statistic of the classification improved considerably, but the
number of unclassified pixels increased.
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The data obtained from the classification showed a strong
correlation with the most reliable statistical data available on
vineyard areas at the municipal level. Such strong correlation
contributed to establishing linear regressions that enabled
estimation of the municipal area under vines based on the
classifications.

In view of the results obtained, we can conclude that the
use of Landsat TM imagery is appropriate to record overall
variations in the study area every three years. The proposed
method can replace the field sampling method currently used
to update vineyard registers. However, the accuracy of this
type of sensing technique is inadequate to compile invento-
ries that require detailed classification of land uses. Sensors
with higher spatial resolution should be used for this purpose.
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