
Introduction

The vineyard register (VR) is a tool for managing
and controlling the Common Organisation of the Market
in Wine (COMW) in the European Union (EU). The
purpose of this tool is dual: to compile an exhaustive
inventory of wine production potential and to meet
administrative and control requirements. In order to
better identify vineyard parcels, some Member States,

including Spain, decided to use aerial photographs in
addition to the existing cadastre or land registry maps.
The data contained in the VR should provide Member
States and EU authorities with information to better
manage the COMW by estimating potential production,
actual production and current stocks of wine, and by
keeping records of the declarations and controls of
measures (Masson and Leo, 2002). The VR must be
maintained and regularly updated to be useful for its
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Abstract

The European Union requires member states to estimate their wine growing potential. For this purpose, most member
states have developed or updated vineyard registers. The present study suggests locating vineyards using medium
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Designation of Origin «Bierzo», León, Spain. The methodology described in this paper yields a producer’s accuracy
of 0.88 and a user’s accuracy of 0.63. The vineyard areas for each municipality were estimated from the classified
images by linear regression, with fits of R2 > 0.80. The method gives good results at the municipal scale.
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Resumen

Estimación de la superficie de viñedo mediante imágenes de satélite de resolución espacial media

La Unión Europea requiere que sus estados miembros determinen su potencial de producción de vino. Para reali-
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main aim. The present work focuses on providing a
tool for updating the VR using remote sensing imagery.

Vineyard identification by remote sensing is beset
with difficulties, such as the presence of discontinuous
cover within areas planted with a given type of crop.
In these areas, the influence of the soil on the image is
very noticeable. The arrangement of vines requires the
use of high spatial resolution sensors, at a high cost.
However, experiments have been performed using
medium spatial resolution imagery with good results
(Hall et al., 2002). The results obtained from remotely
sensed imagery were strongly influenced by local
conditions, and the spectral response for the type of
vine was influenced by the physical and chemical
characteristics of the soil (Arán et al., 2001).

One of the f irst experiments that classif ied vines
using Landsat images was performed in the state of
New York (Trolier et al., 1989). In this experiment, the
maximum likelihood classif ier was applied to four
Landsat images acquired at the beginning and end of
the growth period (June-August). Accuracy ratings of
0.88 were achieved. However, the experiment discrimi-
nated only six types of soil cover and was carried out
in areas with large vineyards. The authors recommended
that classifications were made using images acquired
at the period of maximum growth (mid-July), and that
the likelihood classif iers were supplemented with
additional techniques such as the use of masks to
incorporate land use cartography. Williamson (1989)
compared two different images of irrigated vineyards
located at Riverland, Australia, acquired with SPOT
VRH (pixel size of 20 m) and Daedalus 1268 ATM (pixel
size of 10 m and 11 bands). The study showed that the
results obtained with SPOT under these conditions
(accuracy rate of 0.85-0.95) were as good as the results
obtained for the Daedalus 1268 ATM image. Average
plot size (16 ha), image acquisition date and crop type
were among the factors that controlled classification
accuracy, and most of the information in the images
was contained in the red and infrared bands. Therefore,
the use of three or more bands did not improve accuracy.

Another way to tackle the problem is to use multi-
temporal studies, change analysis and a combination
of multispectral bands. In this regard, mask classi-
f ication methods have been applied to Landsat-5
imagery (García and García, 2001; Lanjeri et al., 2001,
2004). The methodology consists in classifying the
different land uses in successive stages: non-irrigated
crops are determined by analyzing principal components;
fallow land, woodland and olive groves are detected

through supervised classifications of an image acquired
in May; irrigated crops, urban areas and small lakes
are detected using supervised classification; and the
remainder is considered as vineyard. Therefore, each
step in the process produces a mask for each discrimi-
nated cover.

Other classif ications are based on the search for
band combinations that optimize the separability of
vines from other crops (Rubio et al., 2001). This tech-
nique has proved effective for vineyards in Tomelloso,
Ciudad Real (Spain), with an accuracy of 0.91 that
could be improved by using seasonal image analysis.

In Portugal, experiments have been carried out to
locate vineyards by remote sensing (Bessa, 1994). The
aim of that work was to develop a method for determining
the area under vines using Landsat imagery and false-
colour infrared photographs. The classified maps were
combined in a GIS (Geographical Information Systems)
with layers of the physical environment (topography,
petrology, climatology, etc.). This methodology generated
a map of the potential wine growing area in the region
around Oporto. Along the same line, studies on crop
evolution over a period of time have been developed,
with the main aim of assessing the impact of the European
Common Agricultural Policy (García and García, 2001;
Lanjeri et al., 2004).

Other authors have used active sensors (radar) to
classify vineyards (Company et al., 1994; Bugden et
al., 1999). The results are quite good, with an accuracy
of 80% for vineyard classif ication. However, these
methods are very sensitive to the vine training system
(goblet pruning, cordon, trellis, etc.). So far, the best
results have been obtained by applying Fourier-
transform based techniques to high-resolution aerial
colour photographs (Ranchin et al., 2001; Robbez-
Masson et al., 2001; Wassenaar et al., 2001), with
overall accuracies over 0.82 (Kappa = 0.64), user’s
accuracies of 0.96 and producer’s accuracies of 0.74.
These techniques identify vines by their regular planting
pattern, i.e. by the repetition of patterns such as vine
shape, texture and orientation, rather than by their spectral
response. The great advantage of this group of classifiers
is that they allow for some automation of the process,
thus avoiding the need for the photo-interpreter to carry
out inconvenient visual analyses, point out training
areas, etc.

Lately, Gong et al. (2003) have proposed a method
using airborne multispectral digital camera imagery.
Raw images are processed to generate feature ima-
ges including grey level co-occurrence based texture
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measures, low pass and Laplacian f iltering results,
Gram-Schmidt orthogonalization, principal components,
and NDVI. The procedure averaged an overall accuracy
of 0.81 for the six digital images tested. Rabatel et al.
(2008) proposed an automatic methodology for vine-
yard detection in aerial images (pixel size: 0.5 m) based
on Gabor filters. The detection process was assessed
in a vine cultivation zone of France and more than 0.84%
of vineyards were detected.

Given the need for vineyard inventories, the EU started
to apply space technologies for providing independent
and timely information on crop areas and yields. In the
1990s, the «Vinident Study» (included in the Moni-
toring of Agriculture with Remote Sensing - MARS
project) started the evaluation of vineyard identification
using aerial photographs (Masson and Leo, 2002). The
«Bacchus Project» is a more recent work funded by the
European Community, whose main scientific aim is to
provide methodologies for vine area location, parcel
identification and vine description based on the use of
very high resolution remote sensing data and GIS

(Fuso et al., 2004; Montesinos and Quintanilla, 2006).
The expected results are optimum; but the cost for
maintenance derived from using very high resolution
imagery turns the Bacchus procedure unfeasible for
extensive areas.

The general aim of this study is to propose a method
to improve the current methods used in vineyard registers
by using medium-spatial-resolution multispectral satellite
imagery. Such a method must be simple, feasible, eco-
nomically viable and applicable to other wine growing
areas, since vineyard registers need continuous updating.
The proposed method was applied to the Designation
of Origin «Bierzo» (DO Bierzo) (Fig. 1).

Material and Methods

Study area description

The study area was the district of El Bierzo (Fig. 1),
which is located to the West of the province of León,
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Figure 1. The Study area is the Designation of Origin Bierzo (DO Bierzo). This district is located to the North-West of the Region
of Castilla y León, and to North of León province (Spain).
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Spain, and covers 2,954 km2 (18% of the province).
Because El Bierzo is the most important district for
wine production in the province, the wine produced in
the district was awarded the status of quality wine
grown in specif ic regions on December 11, 1989,
whereby the DO Bierzo was established.

From 2003 to 2007, the average production has
increased to 22,458,828 kg of grapes and 15,721,180
L of wine per year. There are 4,183 wine growers and
about 3,890 ha of vineyards registered in the DO
Bierzo. Furthermore, the 55 wineries registered in the
district have sold 6,899,368 bottles of wine per year,
3% of which have been exported to Denmark, Germany
and the USA, among other countries.

Environmental conditions in El Bierzo allow for
growing wine grapes: an average altitude of 600 m and
an Atlantic microclimate (average temperature of
12.3°C and average rainfall of 721 mm) favour the quality
of cultivars such as Mencía and Godello. Bud break
usually occurs in mid-March and bloom occurs one month
later. By the first of June, leaves are fully expanded
and maximum growth occurs 25 days later. Crops are
harvested during early September or October depending
on seasonal climate conditions. Senescence begins in
October and the dormant period extends until the end
of February.

The standard vine spacing is 1.2-1.5 m and plant
density is generally over 6,900-4,500 vines ha-1 depending
on the training system. Vineyards are very old in this
area, and 90% of them have existed for over 40 years.
Yields are fairly high as compared to the yields in the
rest of the province, with an average of 6,000-8,000
kg ha-1.

Wine grape growing in El Bierzo has serious struc-
tural diff iculties because the systems used and the
spacing of vines are not appropriate for the application
of new viticulture techniques, and because the average
parcel size is 0.20 ha. Yet, in the last few years, small
wineries have specialized in quality wines and compete
with other wines offering good value. In new vineyards,
vines are planted at a spacing of 3 × 1.2 m, grown using
a trellis system and trained with unilateral pruning
cordon.

Images and maps

Two Landsat subscenes were used: a Thematic Mapper
(TM) subscene acquired on June 25, 2000 (Image 1)
and an Enhanced Thematic Mapper Plus (ETM+) sub-

scene acquired on September 5, 2000 (Image 2). Both
images (Table 1) belong to path 203/row 30, and are
Level 1G System Corrected products. These images
(not included) allowed monitoring the twenty munici-
palities included in the DO Bierzo (Fig. 1), which
accounts for 97% of the vineyards in the district.

Digital vector maps and colour orthophotos were
used to georeference images, select training areas and
validate the classif ications. Cartographic data were
projected using the UTM coordinates in the European
Coordinate System1950 (ED-1950; UTM-Zone30N).

Image pre-processing

The Landsat images were calibrated. Calibration of
raw digital values to reflectance was performed using
the information included in the header files following
standard procedures (Markham and Barker, 1986). The
atmospheric effects were corrected by obtaining nor-
malisation functions from the radiometric responses
of invariant cover classes for both images. After atmos-
pheric correction, the images were co-registered and
georeferenced using the control point procedure and
resampling by nearest neighbour. Root mean square
(RMS) errors for correction were lower than one pixel
for both images, which ensures the spatial integrity
required by the proposed method. All the images were
processed using ENVI 3.4 software (Research System,
Inc.; www.RSInc.com).

Image classification

Visual analysis (3/2/1 and 4/3/2 compositions) allowed
locating training areas and identifying land cover
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Table 1. Characteristics of the satellite images

Image 1 Image 2

Date/time 25-June-2000/ 05-September-2000/
10:43:44 10:57:54

Satellite Landsat-5 Landsat-7
Sensor TM1 ETM+2

Bands/pixel size 1,2,3,4,5,7/30 m 1,2,3,2,5,7/30 m
Pixel resolution 30 m 30 m
Sun azimuth 124.78° 146.87°
Sun elevation 60.98° 48.94°
Centre 
(latitude/longitude) 43°10'N/5°58'W 43°10'N/5°59'W

1 TM: thematic mapper. 2 ETM+: enhanced thematic mapper plus.



classes for the classifications. Eighteen classes were
defined, including irrigated crops (class 1), non-irri-
gated crops (class 2), grasslands (class 3), ferns (class 4),
pastures (class 5), bushes (class 6), bushes & trees
(class 7), deciduous trees (class 8), riverside trees
(class 9), conifer trees (class 10), reforestation areas
(class 11), bare soil (class 12), urban & routes (class 13),
other non-vegetal covers (class 14), water (class 15)
and three different vineyard classes: newly planted and
trellised vineyards (class 16), vineyards where vines
cover less than 35% of the soil (class 17) and vineyards
with the highest planting density (class 18). The interest
of including land covers different than vineyards was
to know what classes could be confused with vines.
Training areas were defined using ArcGIS 8.3 software
(ESRI, Inc.; www.ESRI.com) by digitizing polygons
on the orthophotos.

Different supervised classification algorithms were
tested for both images, including hard classif iers
(parallelepiped, minimum distance, Mahalanobis distance
and maximum likelihood) and threshold determined
by vegetation indices. The vegetation indices considered
were Normalized Difference Vegetation Index-NDVI
(Rouse et al., 1974) and Soil-Adjusted Vegetation Index-
SAVI (Huete, 1988).

NDVI [Eq. 1] was related to vegetation greenness
and leaf area index:

[1]

where ρNIR and ρR are reflectances in the near-infrared
and red bands, respectively.

SAVI was developed to decrease the noise in vege-
tation response due to soil background effects and to
improve vineyard identification. The SAVI equation
[Eq. 2] introduces a soil-brightness dependent correction
factor (L) that compensates for the difference in soil
background conditions:

[2]

Surveys and visual analysis defined the training areas
for each cover, homogeneously distributed throughout
the ortophotographs and overlapping images. Altogether,
1,303 training areas with an average area of 2.02 ha
were defined. For vineyards, there were 23 newly planted
areas, 72 areas with wide-distance planting and 172
with short-distance planting, which is the commonest
type in the district. To compare results, the same training
areas were chosen from the two images. The separability

of the classes was determined by calculating the trans-
formed divergence and the Jeffries-Matusita distance
for each pair of covers (Jensen, 2000). The values of
these parameters were acceptable (between 1.5 and 1.8)
for most of the pairs studied except for the separability
of the three classes of vineyards from bushes and from
one another.

Then, the training areas were overlaid with the
images to define the spectral signature for all the eighteen
classes; therefore, georeferencing had to be accurate
and previous to classification.

To improve the expected results, the most accurate
classifications of the June and September images were
combined (called Image 1&2), such that each pixel was
assigned a cover class if the cover class was the same
for both classifications.

The classified images were subjected to an accuracy
assessment to compare different classification algorithms
and to obtain a level of confidence for each method.
The sampling unit used was the pixel. The size of the
sample was calculated at 0.95 probability (za/2 = 1.96),
with a maximum allowable error (e) of 0.05, assuming
that the error/accuracy prediction possibility (p = q)
was 0.5 [Eq. 3]. The total number of pixels to sample
(n) was 385:

[3]

Test pixels were defined by a 700 × 700 m grid on
the classif ied image that was then overlapped with
orthophotos to check the cover class assigned. The total
number of pixels sampled was 2,559 from which 120
were vineyard, which is a sufficiently representative
number for the validation designed.

Vineyard area estimation

With a view to assessing the usefulness of the pro-
posed method to estimate vineyard area, and to describe
and analyse the time series for the crop, the classifi-
cations were compared with the official statistics for
the municipalities. This information was required for
use in procedures that allowed for a rapid estimation
of vineyards and their evolution over time. The metho-
dology proposed to achieve this goal consisted in
determining whether there was any correlation between
the vineyards areas obtained from the classifications
and the areas obtained from off icial statistics. The
municipal area of vineyards was estimated by applying

n =
(z2

a/2
) pq

ε 2

SAVI =
ρ

NIR
− ρ

R

ρ
NIR

+ ρ
R

+ L
(1 + L)

NDVI =
ρ
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− ρ
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ρ
NIR

+ ρ
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Vineyard area estimation using medium spatial resolution satellite imagery 445



a mask for each municipality to each classified image.
Comparisons were made for each municipality. If
strong correlations were found, the next step was to fit
the equations for vineyard area estimation as a function
of the results of the classification.

An ANOVA verified the proposed fits statistically.
The Durbin-Watson test was calculated to verify that
the hypothesis of no autocorrelation between the esti-
mated vineyards and the official statistics was true.

Results and Discussion

The results of the different classification methods
are listed in Table 2. The best overall accuracies were
obtained by maximum likelihood, so those classified
images produced Image 1&2. With regard to vineyard
classification, producer’s accuracy increased significantly
but commission errors were over 0.70 for all the six
methods (results not shown). Neither NDVI nor SAVI
improved the classification results because both indices
were statistically similar for vineyards and pastures,
bushes and reforestation areas in the June image, and
for non-irrigated crops and pastures in the September
image (Rodríguez-Pérez et al., 2002; Rodríguez-Pérez,
2004).

In order to analyze the contribution of the different
cover classes, the confusion matrices that resulted from
classifying the June and September images by maximum
likelihood are shown in Tables 3 and 4, respectively.
As suggested in both tables, vineyards were difficult
to identify because crops (classes 1 and 2), grasslands
(class 3), pastures (class 5), bushes (class 6) and bushes
& trees (class 7) had similar spectral signatures. In the
June image, field crops were confused with vineyards
because they were spectrally similar, but the classification
improved in September, when crop senescence began.

Grasslands kept spectral similarity with vineyards in
both periods; in fact, the most important source of error
for vineyard identif ication was grassland cover: 43
grassland pixels were classified as vineyard based on
the June image and 42 grassland pixels were classified
as vineyard based on the September image. Cover class
7 (bushes & trees) was the second source of error for
vineyard confusion in September. Similarly, the algo-
rithms studied were not useful in separating the three
different classes of vineyards.

Table 5 presents the validation results obtained by
combining the June and September classified images
by maximum likelihood. Overall accuracy increases,
as well as the user’s and producer’s accuracies for vine-
yards. The drawback of this method is that the number
of unclassified pixels increases considerably, and that
a very precise geometric correction is required to
ensure the overlay of the two images.

Table 6 summarizes the accuracy indices derived
from Tables 3, 4 and 5. Overall classification accuracy
is 0.36 for Image 1 and 0.37 for Image 2. The κ coefficient
is a measure of how well the classification agrees with
the reference data. The κ values obtained were 0.30 for
Images 1 and 2 and 0.50 for Image 1&2. With regard
to vineyard classifications, 73% of the vines were well-
classif ied using Image 1, 62% were well-classif ied
using Image 2 and 88% were well-classified combining
both classifications.

These ratings are lower than the ratings obtained by
other authors (Company et al., 1994; Bugden et al.,
1999; Ranchin et al., 2001; Robbez-Masson et al.,
2001; Wassenaar et al., 2001). Yet, these authors worked
with high spatial resolution images. In addition, it must
be taken into consideration that we have sought to
differentiate among many types of cover and that the
average vineyard plot size is very small, with over 97%
of vineyards being smaller than 0.05 ha, 85% of which
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Table 2. Summarized accuracies of classification methods

Image 1 Image 2

OA1 SE2 CI3 κκ4 OA1 SE2 CI3 κκ4

Parallelepiped 0.07 0.49 0.96 0.05 0.07 0.52 1.01 0.06
Minimum distance 0.28 0.88 1.73 0.21 0.26 0.87 1.71 0.19
Mahalanobis distance 0.30 0.91 1.78 0.23 0.33 0.93 1.82 0.26
Maximum likelihood 0.36 0.95 1.86 0.30 0.37 0.95 1.87 0.30
NDVI5 0.33 0.93 1.82 0.27 0.33 0.93 1.82 0.26
SAVI6 0.32 0.93 1.81 0.26 0.33 0.99 1.81 0.26

1 OA: overal accuracy. 2 SE: sampling error. 3 CI: confidence interval. 4 κ: kappa coefficient. 5 NDVI: Normalized Difference Vege-
tation Index. 6 SAVI: Soil-Adjusted Vegetation Index.



are 0.02 ha or less. However, vineyards are normally
grouped. Authors such as Trolier et al. (1989) and
Williamson (1989) obtained vineyard classif ication

accuracies of over 0.75, but they only discriminated
among five or six different covers. Another factor that
conditions such low accuracy ratings was the process
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Table 3. Error matrix table for Image 1 (in columns: classes from reference data; in rows: classes from imagery classification)

Classes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total UA1 CE2

1 28 18 28 0 10 12 45 10 9 3 6 1 10 0 0 1 3 4 188 15 85
2 29 32 28 0 13 17 13 1 1 0 6 2 6 0 0 1 5 3 157 20 80
3 7 11 58 1 23 4 28 11 2 0 0 1 0 0 0 0 0 5 151 38 62
4 2 0 11 4 4 2 21 20 1 0 0 0 0 0 0 0 0 0 65 6 94
5 3 11 6 0 17 9 3 0 0 0 2 3 0 0 0 3 1 0 58 29 71
6 3 2 1 0 15 100 29 10 4 13 25 4 0 0 1 0 0 0 207 48 52
7 2 2 8 0 15 77 107 77 8 17 7 1 0 0 0 0 0 0 321 33 67
8 0 0 11 2 8 12 80 308 24 18 2 0 0 0 0 0 0 0 465 66 34
9 1 0 3 0 1 0 10 33 36 7 0 0 0 0 0 0 0 0 91 40 60

10 0 0 1 0 1 31 38 38 3 48 6 0 0 0 0 0 0 0 166 29 71
11 5 3 8 0 27 40 28 8 2 3 49 7 7 1 0 0 0 1 189 26 74
12 3 4 3 0 7 4 1 1 0 3 5 30 20 0 0 3 0 0 84 36 64
13 4 3 6 0 3 7 3 1 1 3 2 7 45 1 1 0 2 0 89 51 49
14 0 0 3 0 7 32 20 8 0 5 3 5 2 5 0 0 0 0 90 6 94
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 16 100 0
16 3 4 0 0 1 0 0 0 0 0 1 4 0 0 0 7 5 4 29 24 76
17 101 5 13 0 3 6 9 0 0 1 2 2 2 0 0 1 23 14 101 23 77
18 7 9 23 1 8 2 7 0 0 0 0 1 0 0 0 0 20 14 92 15 85

Total 107 114 211 8 163 355 442 526 91 121 116 68 92 7 18 16 59 45 2,559
PA3 26 28 27 50 10 28 24 59 40 40 42 44 49 71 89 44 39 31
OE4 74 72 73 50 90 72 76 41 60 60 58 56 51 29 11 56 61 69

Table 4. Error matrix table for Image 2 (in columns: classes from reference data; in rows: classes from imagery classification)

Classes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total UA1 CE2

1 41 10 27 0 5 5 27 12 9 3 2 1 5 0 0 0 3 7 157 26 74
2 16 24 24 2 14 18 17 2 0 2 9 8 10 0 0 2 9 2 159 15 85
3 10 11 59 1 20 11 29 18 5 1 3 0 0 0 0 0 4 3 175 34 66
4 0 0 3 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 11 0 100
5 3 23 11 0 33 12 3 0 0 0 0 2 0 0 0 1 1 0 89 37 63
6 3 5 7 0 31 94 41 13 1 2 10 3 2 1 1 0 2 0 216 44 56
7 3 1 6 1 8 72 111 71 5 21 17 0 0 1 0 0 0 1 318 35 65
8 3 0 7 3 11 33 85 306 26 9 5 1 0 0 0 0 1 0 490 62 38
9 1 0 2 0 1 1 4 24 39 4 0 0 0 0 0 0 0 0 76 51 49

10 0 0 3 0 1 4 10 25 4 54 3 0 0 0 1 0 0 0 105 51 49
11 4 5 11 0 21 54 60 28 1 13 50 13 6 1 0 0 6 1 274 18 82
12 3 17 5 0 4 8 4 2 0 5 2 24 11 0 1 3 0 0 89 27 73
13 7 3 4 0 2 5 2 1 0 1 6 10 51 0 0 0 0 0 92 55 45
14 0 1 0 0 5 28 16 8 0 3 6 0 3 4 1 0 0 0 75 5 95
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 14 100 0
16 3 3 0 0 0 1 1 0 0 0 0 5 0 0 0 9 6 1 29 31 69
17 3 5 18 0 3 8 13 5 0 3 1 0 3 0 0 1 15 17 95 16 84
18 7 6 24 1 4 1 17 5 1 0 2 1 1 0 0 0 12 13 95 14 86

Total 107 114 211 8 163 355 442 526 91 121 116 68 92 7 18 16 59 45 2,559
PA3 38 21 28 0 20 26 25 58 43 45 43 35 55 57 78 56 25 29
OE4 62 79 72 100 80 74 75 42 57 55 57 65 45 43 22 44 75 71

1 UA: user’s accuracy (%). 2 CE: commission errors (%). 3 PA: producer’s  accuracy (%). 4 OE: omission errors (%).



of validation with isolated pixels: κ increased to 0.70-
0.92 by conducting another validation with directed
sampling using parcels (Rodríguez-Pérez, 2004).

The producer’s accuracy for vineyard classification
was always over 0.62 (Table 6), although the commission
error was quite high. Therefore, the probability that a
pixel classified as vineyard was not actually vineyard
was over 0.60. The main mix-ups between vine and
other uses were observed for grasslands, pastures,
croplands and brushes. By combining both images
(Image 1&2), overall classification accuracy increased
to 0.57. This process offered the highest global accuracy
(0.57) and κ (0.50), with one drawback: the number of
unclassified pixels and the sample error increased. By
combining both classified images, commission errors

were reduced by up to 0.37, and producer’s accuracy
exceeded 0.88.

The areas occupied by the three classes of vineyards
(by maximum likelihood algorithm) were determined
(Table 7). Some differences were observed between
the vineyards area estimations using June or September
images. Such variations were due to the different dates
and conditions under which the images were acquired.

Vineyard area was overestimated, and a larger vineyard
area was obtained from the classif ications based on
both Image 1 and Image 2 (Table 8). According to data
available from the National Institute of Designations
of Origin (NIDO) (MAPA, 1999; JCyL, 2004), the
vineyard area inventoried for the DO Bierzo (6,982.6
ha) was much lower than the area obtained by classifying
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Table 5. Error matrix table for Image 1&2 (in columns: classes from reference data; in rows: classes from imagery classification)

Classes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Total UA1 CE2

1 12 2 2 0 1 1 4 1 1 1 0 0 1 0 0 0 0 0 26 46 54
2 10 13 1 0 2 5 1 0 0 0 2 0 2 0 0 0 3 0 39 33 67
3 2 3 31 0 7 2 7 1 0 0 1 0 0 0 0 0 0 0 54 57 43
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
5 2 8 2 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 20 40 60
6 0 0 0 0 6 19 8 0 0 1 0 1 0 0 0 0 0 0 35 54 46
7 0 0 1 0 1 9 21 5 2 1 1 0 0 0 0 0 0 0 41 51 49
8 0 1 11 4 6 8 78 225 10 4 0 0 1 0 0 0 0 0 348 65 35
9 1 0 3 0 0 0 2 7 33 1 0 0 0 0 0 0 0 0 47 70 30

10 0 0 0 0 0 0 6 10 2 34 1 0 0 0 0 0 0 0 53 64 36
11 0 0 2 0 9 15 14 16 0 1 26 1 1 0 0 0 0 0 85 31 69
12 1 3 1 0 5 4 5 0 0 0 5 24 8 0 1 1 0 0 58 41 59
13 4 3 3 0 0 2 0 0 0 1 1 7 50 0 0 0 0 0 71 70 30
14 0 0 0 0 1 19 6 1 0 0 1 0 1 3 0 0 0 0 32 9 91
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 14 100 0
16 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 1 8 50 50
17 3 0 3 0 0 1 1 0 0 1 1 1 0 0 0 2 16 9 38 42 58
18 0 1 6 0 1 0 4 0 0 0 0 0 0 0 0 0 5 9 26 35 65

Total 35 36 66 4 47 85 157 266 48 45 39 34 64 3 15 7 25 19 995
PA3 34 36 47 0 17 22 13 85 69 76 67 71 78 100 93 57 64 47
OE4 66 64 53 100 83 78 87 15 31 24 33 29 22 0 7 43 36 53

1 UA: user’s accuracy (%). 2 CE: commission errors (%). 3 PA: producer’s  accuracy (%). 4 OE: omission errors (%).

Table 6. Summarized accuracies of images classified by maximum likelihood

Vineyards All eighteen covers

PA1 UA2 OE3 CE4 OA5 SE6 CI7 κκ8

Image 1 0.73 0.40 0.27 0.60 0.36 0.95 1.86 0.30
Image 2 0.62 0.34 0.38 0.66 0.37 0.95 1.87 0.30
Image 1&2 0.88 0.63 0.12 0.37 0.57 1.62 3.18 0.50

1 PA: producer’s accuracy. 2 UA: user’s accuracy. 3 OE: omission errors. 4 CE: commission errors. 5 OA: overal accuracy. 6 SE: sam-
pling error. 7 CI: confidence interval. 8 κ: kappa coefficient for all covers.



the June image (10,460.3 ha) or the September image
(11,538.8 ha). The main reason for such an overestimation
was the confusion between new vines and bare soil,
and between widely planted vines and other crops and
brushes. In the Image 1&2, the area obtained for each
cover was smaller because there were many unclassified
pixels (Table 8), and the total area estimated from the
combination of the classified images was 3,612.2 ha;
in absolute terms, the vineyard area estimated by this

method was 3,370.4 ha (52%) smaller than the area
reported in the official source.

Regarding the vineyard area at municipality level
the correlations between the results of the classifications
and the official data were calculated and their statis-
tical signif icance was checked. Table 9 reports the
Pearson correlation coeff icients for the correlation
analysis and shows a noticeably high level of correlation
between the results obtained by classification and the
official sources consulted (always over 0.90): by using
the combination of both images, a very strong correlation
(R = 0.95) with the municipal winegrowing area was
observed.

Linear regressions were determined between official
source and the data obtained from the classifications
because of the strong correlation found between wine-
growing statistics and the results of the classifications.
Table 10 shows the most significant parameters of the
regressions obtained. R2 coefficients of over 0.80 were
obtained for all the regressions, which suggest the good
standard of the linear regressions proposed.

The best fits were obtained by combining the two
images (Image 1&2) achieving R2 = 0.90. Regarding
the Durbin-Watson test, there was no autocorrelation
between each pair of variables considered in the different
regressions (Table 10). Regarding Image 1 and Image 2
the linear fits obtained between each pair of actual and
estimated area was good because the regressions show
very high R2 values. The main shortcoming of the pro-
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Table 7. Vineyard area obtained from the classifications (ha)

Cover class Image 1 Image 2 Image 1&2

Newly planted vines 1,140.6 1,666.7 460.4
Widely planted vines 5,064.4 4,878.4 1,488.0
Closely planted vines 4,255.3 4,993.7 1,663.8
Total vineyards in the DO Bierzo 10,460.3 11,538.8 3,612.2
Other covers 133,215.5 132,117.4 61,152.8
Total area 143,675.8 143,656.2 64,765.0

Image 1: June image classification. Image 2: September image classification. Image 1&2: combi-
ned June and September classifications.

Table 8. Vineyard area by municipality (ha)

Municipality NIDO
Image Image Image

1 2 1&2

1. Arganza 515.1 592.9 619.0 260.8
2. Bembibre 126.9 328.2 322.1 53.9
3. Borrenes 118.1 206.0 167.8 54.9
4. Cabañas Raras 291.5 423.1 447.7 144.1
5. Cacabelos 657.1 865.3 944.5 429.9
6. Camponaraya 749.9 1,131.3 1,004.0 492.2
7. Carracedelo 188.8 417.5 431.4 112.5
8. Carucedo 29.4 62.4 83.1 7.7
9. Castropodame 166.4 295.6 295.0 75.1

10. Congosto 176.3 306.4 326.9 86.7
11. Corullón 296.5 457.2 872.6 145.0
12. Cubillos del Sil 208.3 389.6 554.4 105.1
13. Molinaseca 83.2 126.9 166.4 25.7
14. Noceda del Bierzo 34.6 468.0 571.4 66.9
15. Ponferrada 1,396.2 1,913.7 1,674.9 547.8
16. Priaranza del Bierzo 128.1 117.7 75.7 27.0
17. Sancedo 174.2 212.6 296.3 74.6
18. Vega de Espinareda 98.6 518.5 771.0 138.2
19. Villadecanes 416.3 552.5 516.9 261.5
20. Villafranca del Bierzo 1,127.1 1,074.9 1,397.7 502.6

Total 6,982.6 10,460.3 11,538.8 3,612.2

Official source: NIDO, National Institute of Designations of
Origin (MAPA, 1999; JCyL, 2004). Estimated areas from: Ju-
ne image classification (Image 1); September image classifi-
cation (Image 2); combined June and September classifications
(Image 1&2).

Table 9. Correlation between official statistics (NIDO) and
classified vineyard area

Image 1 Image 2 Image 1&2

NIDO 0.94** 0.90** 0.95**
Image 1 0.94** 0.93**
Image 2 0.90**

** Confidence level of 95%.



posed models is that the mean errors in estimated were
quite high.

Figure 2 shows the linear fits between the estimates
of municipal vineyard area obtained from Images 1, 2
and 1&2, and the vineyard areas reported in NIDO
(actual areas). Using Image 1 or Image 2 (Fig. 2A, 2B)
the vineyard areas were overestimated because the
commission errors were high (0.60 and 0.66, respec-
tively). With regard to Image 1&2 and NIDO (Fig. 2C),
the correlation line shows a good fit. However, the line
slope (b = 2.02) indicates that Image1&2 underestimate
the vineyard area by a factor of two. Some municipalities,
such as Vega de Espinareda (18) and Noceda del Bierzo
(14), did not fit to the model, however both absolute
vineyard areas were good estimates. The information
for Cabañas Raras (4), Cacabelos (5) and Camponaraya
(6) did not fit because of the lack of statistical data.
Conversely, the area under vine for Corullón (11), Pon-
ferrada (15), Priaranza del Bierzo (16), Villadecanes
(19) and Villafranca del Bierzo (20) were underesti-
mated because many vineyards were classified as other
croplands and due to how Image 1&2 was made (a
pixel was classified as vineyard if this was true in both
Image 1 and Image 2).

Currently, the inventorying vineyards require com-
prehensive f ield surveys that must be carried out as
required by European standards, and it is costly in
terms of time and money. So the results shown demons-
trate that the proposed methodology would considerably
reduce the resources needed, since the use of this metho-
dology would allow for the restriction of field surveys.

The main drawback of the model is that it cannot
estimate the absolute value of vineyard area per muni-
cipality because the standard error in the estimation
were 130.73 ha, 166.09 ha and 120.28 ha for Image 1,
Image 2 and Image 1&2 respectively. Nevertheless, the
proposed method is useful for estimating vineyard area
in relative terms and for estimating variations in vine-
yards over time, since vineyard area variation data can
be updated by classifying Landsat images and by
applying the proposed model. Such a prediction would
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Table 10. Regressions between official statistics and classified vineyard area

b a R R2 ‘R2 SE D-WS

Image 1 0.80 –67.56 0.94 0.88 0.88 130.73 1.71*
Image 2 0.78 –101.51 0.90 0.81 0.80 166.09 2.18*
Image 1&2 2.02 –15.59 0.95 0.90 0.90 120.28 1.57*

b, a: linear correlation coefficients. R: Pearson correlation coefficient. ‘R2: adjusted R2. SE: standard error. D-WS: Durbin-Wat-
son Statistic at confidence level of 95%.

Figure 2. Scatter plots showing relationships between official sta-
tistics data and estimated vineyard areas at the municipal level
using Image 1 (A), Image 2 (B) and Image 1&2 (C). Continuous
lines in plots represent linear models fitted with their R2 associa-
ted, and dashed lines represent the ideal prediction (1:1). Numbers
represent the names of the municipalities (see Fig. 1 and Table 8).
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be used as an aid to field surveys, which could be res-
tricted to areas of interest, requiring less time. Thus,
the vineyard inventory process would become more
efficient. In addition, the proposed method is quicker
than the current digitization process. This method is
useful for estimating vineyard areas at large scale, or
for estimating the future evolution of the winegrowing
area in El Bierzo.

Conclusions

This study proposes a methodology for estimating
vineyard area using Landsat satellite imagery. The
proposed methodology should be useful in developing
a vineyard register for El Bierzo.

Accuracy improves by up to 30% by classifying two
Landsat images of the same area acquired at two diffe-
rent times of the year, and by combining both images.
Although some pixels remain unclassified, the proposed
methodology allows for the estimation of vineyard area
at the municipal level.

The vineyard area estimated for the municipalities
included in the DO Bierzo is strongly correlated with
actual vineyard areas from official data. Such a strong
correlation enables the calculation of linear regressions
that accurately estimate municipal vineyard area based
on image classifications.

The proposed method has some advantages over the
methods used currently for developing the vineyard
register in terms of human and material resources, and
enables immediate register update.

Future research work for improving this methodology
will consist in using high spatial resolution imagery
in order to enable vineyard area estimation at the parcel
level.
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