
Chapter 14

USING JAVA AND C# FOR EDUCATIONAL
SIMULATORS: THE CASE OF SIMPLE-2

Ramón-Ángel Fernández, Luis Panizo and Lidia Sánchez
Department of Electrical Engineeering and Electronics. University of Leon
Campus de Vegazana s/n, 24071-León (Spain)

Abstract: Due to the impact of the new technologies in our Society, special efforts to use
them for teaching-learning computer architectures have been done. This work
presents a simulator of a simple architecture (Simple-2) using two different
technologies: Java and C#. In the one hand, the Java version is an applet which
runs inside a web browser; in the other hand, the C# version runs as an
application that needs a virtual machine be installed in the system. The impact
of both technologies on first year Computer Science students has been
analyzed, as well as the degree of learning achieved when using the simulator
for learning an architecture in a semi-autonomous way.

Key words: computer architecture simulation; educational simulator.

1. INTRODUCTION

One of the core fields of Computer Science education at the University
consists on learning those concepts related to computer structure and
organization, as well as the interactions among computer components in
order to run sequences of instructions. The result of this learning is a key
matter in order students can successfully progress with their studies.

To complete this learning, a first stage may be considered to let the
student acquire a global vision of computers, recognizing their functional
units and the operation of every single unit. After that, the student has to
assimilate the different ways in which those functional units interact. During
this stage, ability to relate concepts and integrate them into a higher
abstraction level is required, which involves a considerable difficulty,
especially for first year students.

155
B. Fernández-Manjón et al. (eds.), Computers and Education: E-learning, From Theory
to Practice, 155–162.
© 2007 Springer.

UN
CO

RR
EC

TE
D

PR
O

O
F

156 R. - Á. Fernández et al.

To help the students during this second stage, the concepts explained in
the lectures should be reinforced. Solving exercises and doing practices in
the laboratory usually are not enough, and other additional tools to stimulate
the students to learn should be used. Several software solutions have been
developed that allow the students to interact in order to simulate computer
behavior and to observe program execution events1. There is also software
that graphically represents the activity of every component of a computer
and the way those components interact2,3. Students, in general, and
Computer Science students, in particular, find quite attractive the possibility
of working and learning through the Internet. That is one reason to explain
the efforts in developing network learning tools and checking their
efficiency in the learning process.

In the department of Electrical Engineering and Electronics at the
University of Leon, a simulator of a simple processor (Simple-24) has been
developed so as to be used by the students through a web server. There are
two available versions: a Java applet, which runs in a web browser; and a C#
application that must be downloaded and runs locally in the student’s
computer. Anyway, both versions have the same interface and provide the
same functionality. After using the software, its influence on the learning has
been analyzed on the basis of the results of written tests fulfilled by the
students.

2. JUSTIFICATION OF THE WORK
AND OBJECTIVES

Computer Organization and Technology is one subject that students learn
during their first year of the degree in Computer Science at the University of
Leon (Spain). This subject involves two main blocks: the basics of
Analogical and Digital Electronics, and, based on those fundamentals,
Computer Organization.

The block related to Computer Organization begins with the description
of the main functional units present in Von Neumann architecture based
computers: Central Processing Unit, Memory Unit and Input/Output Unit.
Next, the operation of the datapath is analyzed for a subset of one RISC
processor, the MIPS, as described by Patterson5. The lectures are
complemented with animated slide presentations that can be downloaded
from the departmental website. Those presentations show the paths the data
follow as well as how the control unit manages those paths. In the last part of
the course, the concept of memory system is presented, including the
possibility of using hierarchies to improve the performance. Finally, basic
input/output techniques are studied.

UN
CO

RR
EC

TE
D

PR
O

O
F

Java and C# for Educational Simulators: Simple-2 157

In the laboratory, students learn to develop software using the MIPS
assembly language and the xspim emulator under the Linux operating
system. This software helps the student to assimilate the utility of the banks
of registers, to understand how the information is stored in the memory
system, and to test several input/output techniques. Anyway, xspim does not
include any utility for datapath visualization, nor shows the operation of the
control unit during program execution. Hence, students cannot check in the
laboratory some of those concepts explained in the lectures and required for
solving exercises. Therefore, we have decided to develop an additional
simulator to provide the students a graphical tool to observe the operation of
the computer components altogether.

With the objective of evaluating the impact of the use of a simulator in
the learning process, we have decided to use an architecture different to the
one described in the lectures. Then, the influence of the lecturer on the first
approach to the architecture is bypassed, although students may talk to the
professor and make questions (in the office, by e-mail, instant messages or
Internet forums). The chosen architecture is the pedagogical computer
Simple-24, that is used for teaching Computer Organization and Structure II
at the Escuela Universitaria de Informática at the Universidad Nacional de
Educación a Distancia (UNED, Spain).

Then, the students have to learn the Simple-2 architecture by themselves,
just from a paper with an explanation and with the help of the simulators
they can access through the Internet. In order to increase the motivation of
the students, an extra bonus over their final qualifications is offered by
means of a test about that architecture.

3. SIMPLE-2 SIMULATOR

As mentioned above, two identical versions of the Simple-2 architecture
simulator have been developed1 using platform independent technologies.
The first version is a Java applet, which runs in any Internet browser. The
other one is an application developed using C#. The use of this second
version needs the user install a C# virtual machine as mono
(http://www.mono-project.com).

1 The two versions of the simulator have been developed as Final Projects by Jesús A.

Fernández and Montserrat Sotomayor, students of Computer Science at the University of
Leon.

UN
CO

RR
EC

TE
D

PR
O

O
F

158 R. - Á. Fernández et al.

3.1 User Interface

The graphical user interface has three different panels: one to edit the source
code, one to visualize the machine status, and another one to visualize the
datapath activity.

The panel for the source code (figure 14-1) lets the user write assembly
code and also has a tool for detecting and displaying errors. Once the source
code has no errors, the machine code is displayed for every instruction. This
panel has three main objectives: students learn to write assembly code
correctly, they check whether they are able to translate source code to
machine code, and they also test their skills in using the hexadecimal
representation for binary information.

The panel that displays the machine status (figure 14-2) shows the values
of every register and also the values of the main memory cells during a
program execution. This module helps the students analyze the evolution of
the machine status as long as a program is executed.

The third panel (figure 14-3) graphically displays the activity in the
datapath while the instructions are executed. This module provides a view of
the functional units, the mechanisms they use to interact and the paths
followed by the data to carry out the execution of each instruction. One
Simple-2 instruction consists in a sequence of micro-instructions that need
one clock cycle to finish. As one instruction is composed of a set of micro-
operations, Simple-2 architecture divides each cycle into 4 sub-cycles. At
every moment, the simulator shows the micro-instruction that is running and
the values of its fields. In addition, those functional units that are involved in
the current micro-operation are highlighted in the datapath.

To make easier the analysis of both, the machine status and the flow of
data through the datapath, both versions of the simulator allow pausing and
resuming the execution.

4. EXPERIMENTS

The experiments have been designed in order to analyze the influence of the
simulator over a population of 190 students of Computer Organization and
Technology at the University of Leon.

The questions used to evaluate the learning have the following
objectives:

1. Finding out the version of the simulator used by the student: the Java
applet or the C# application.

UN
CO

RR
EC

TE
D

PR
O

O
F

Java and C# for Educational Simulators: Simple-2 159

2. Evaluating the student skills in writing assembly code for the Simple-2

architecture.
3. Evaluating the student skills in identifying the computer functional units.
4. Evaluating the ability of the student for relating the functional units

working altogether to the execution of instructions.

Figure 14-1. Graphical User Interface: Panel for Simple-2 assembly code edition and machine
code visualization.

Figure 14-2. Graphical User Interface: Values of memory and registers during execution.

UN
CO

RR
EC

TE
D

PR
O

O
F

160 R. - Á. Fernández et al.

Figure 14-3. Graphical User Interface: Datapath status during program execution. At every
moment, the involved microinstruction is displayed. In each sub-cycle, the functional units

that execute the current micro-operation are highlighted.

5. RESULTS AND CONCLUSIONS

The results of the experiments are shown in table 14-1. They show that most
of the students (85.8%) preferred using the Java applet, much easier to
access and that does not require any additional effort to be run. Anyway,
although only a few students chose the C# application (14.2%), all of them
passed the tests. As both versions are identical, the main reason for this
variation in the success rates may only reside in the initial auto-motivation of
the students. At the beginning of the experience, those who chose the C#
application knew that they should do an extra work in order to install a
virtual machine that was not included in any operating system. Therefore, as
they were interested in learning how to install mono and how to run a C#
application, we can assume that they were also more motivated to learn the
details of the architecture than most of the rest of their partners. UN

CO
RR

EC
TE

D
PR

O
O

F

Java and C# for Educational Simulators: Simple-2 161

Table 14-1. Results of the experiments with students of first year in Computer Science. The
qualifications belong to [0,100]

 SOFTWARE VERSION
 Java Applet C# Application
Results of the evaluation Students % Students %
Programming skills
 ≥75 15 7.9 14 7.4
 [50,75) 92 48.4 13 6.8
 <50 56 29.5 0 0.0
 Sum 163 85.8 27 14.2

Functional units identification
 Correct 134 70.5 27 14.2
 Incorrect 29 15.3 0 0.0
 Sum 163 85.8 27 14.2

Ability for relating functional units work to instruction execution
 ≥75 21 11.1 25 13.2
 [50,75) 102 53.7 2 1.0
 <50 40 21.0 0 0.0
 Sum 163 85.8 27 14.2

In former years, the students have also studied the Simple-2 architecture
by themselves, but without the help of any additional software, being the
success rates of below 50%. From table 14-1, we can see that more than 70%
of the students passed the tests (70.5% passed the programming test, 84.7%
passed the functional units test, and 79.0% passed the instruction execution
one). Hence, we can see that the success rates are quite bigger with the use
of the simulators, and we can conclude that they improve the learning of the
students with low costs. Furthermore, the analysis of the software version the
students choose is useful for finding out the initially most auto-motivated
ones and also for paying special attention to the others. Naturally, for the
first semesters, simple computer architectures should be used in order the
students to be able to identify their components and analyze their
functionalities. In addition, the use of simulators increases the interest of
those students with lower motivation, although those with higher initial
motivation get the best results.

6. FUTURE WORK

Future work pretends to increase the possibilities of the simulator in order to
allow the user to define new instructions. The graphical user interface is to
be improved and also a language selection option is going to be included.

UN
CO

RR
EC

TE
D

PR
O

O
F

162 R. - Á. Fernández et al.

The experimental future work will try to develop an evaluation system
that provide some measure of the rate students’ efforts/learning when using
software simulators and comparing them to those rates obtained without the
simulators.

REFERENCES

Moure, J.C., Rexachs, D.I., and Luque, E., 2002, The Kscalar simulator, ACM Journal of
Educational Resources in Computing (JERIC), 2(1): 73-116.

Campos, A.M., García, D.F., Entrialgo, J., and Díaz, J.L., 2002, Simulador educacional de un
computador elemental basado en la arquitectura Von Neumann, Actas de las XXIII
Jornadas de Paralelismo, Lleida, 95-98.

Brorsson, M., 2002, MipsIt - a simulation and development environment using animation for
computer architecture education, Proceedings of the Workshop on Computer Architecture
Education. Anchorage, Alaska, 65-72.

Dormido, S., Canto, M.A., Mira, J., and Delgado, A.E., 2000, Estructura y Tecnología de
Computadores, Sanz y Torres, Madrid.

Patterson, D.A., and Hennesy, J.L., 1997, Computer Organization and Design: The
Hardware/Software Interface, 2nd ed., Morgan-Kaufmann, San Mateo, Ca.

UN
CO

RR
EC

TE
D

PR
O

O
F

