

susceptible to florfenicol and most of them to cephalothin; however, a high rate of resistance was observed to tetracycline. A bimodal or multimodal distribution of isolates over the MIC range were observed for penicillins, tetracycline, trimethoprim, sulfisoxazole and nalidixic acid, suggesting the development of acquired resistance. Eight resistance patterns were established, and 21.1% of the isolates were resistant to at least two antimicrobials. In addition, a considerable increase in the resistance to tetracyclines was observed during the last decade in Spain, when compared with other *A. pleuropneumoniae* strains isolated during 1987–1988 (Gutiérrez, C.B., Píriz, S., Vadillo, S., Rodríguez Ferri, E.F., 1993. In vitro susceptibility of *Actinobacillus pleuropneumoniae* strains to 42 antimicrobial agents. Am. J. Vet. Res. 54, 546–550); this finding was also observed for gentamicin in minor percentage. © 2005 Published by Elsevier B.V.

28 Keywords: Actinobacillus pleuropneumoniae; Pleuropneumonia; Antimicrobial susceptibility; Clinical isolates; Pig; Spain

1. Introduction

31 32

33

34

29

30

Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, a severe respiratory disease which is a serious problem in pig

* Corresponding author. Tel.: +34 987 291 203; fax: +34 987 291 304.

E-mail address: dsacgm@unileon.es (C.B. Gutiérrez-Martín).

production worldwide. The acute form of the disease 35 is highly contagious and often fatal, resulting in 36 considerable economic losses for pig producers 37 (Sebunya and Saunders, 1983). Based on NAD 38 requirements, A. pleuropneumoniae has been tradi-39 tionally divided into biovar 1 strains, which are NAD 40dependent, and biovar 2 strains, which are NAD 41 independent; however, an integration of biovars 1 and 42

34

^{0378-1135/\$ –} see front matter © 2005 Published by Elsevier B.V. doi:10.1016/j.vetmic.2005.12.014

2 in a single biovar has been proposed (Nielsen et al., 43 1997). To date, 15 serotypes of A. pleuropneumoniae 44 have been reported (Blackall et al., 2002). Although 45 all serotypes are potentially pathogenic, they vary in 46 virulence and their prevalence is related to the 47 geographic region (Sebunya and Saunders, 1983). In 48 Spain, the most prevalent serotypes are 2, 4 and 7, 49 whereas serotypes 1, 3, 5, 6 and 8-12 have been 50 scarcely isolated (Gutiérrez et al., 1995). 51

Although vaccination and control programmes 52 have been described, antibiotic therapy continues to 53 be necessary for the control of pleuropneumonia 54 outbreaks. Correct use of antimicrobial agents for 55 treatment of infections with A. pleuropneumoniae 56 requires knowledge of the susceptibility of the 57 infecting strain to antimicrobial agents, because 58 differences in the resistance patterns have been 59 observed between different countries, serotypes and 60 over-time (Vaillancourt et al., 1988; Kawahara et al., 61 1989; Asawa et al., 1995; Chang et al., 2002b; 62 Yoshimura et al., 2002). Thus, the purposes of the 63 present work were to determine the antimicrobial 64 susceptibility of a large collection of A. pleuropneu-65 moniae strains isolated in Spain during 1997-2004 66 67 and to compare it with that obtained approximately a decade ago (Gutiérrez et al., 1993). 68

2. Materials and methods

2.1. Strains

69

70

81

71 A total of 229 A. pleuropneumoniae isolates, which were recovered from 1997 to 2004 from the lungs of 72 diseased pigs from herds located in central and 73 74 northwest Spain, were included in this study. The 75 bacteria were isolated on chocolate agar supplemented with PolyVitex (Biomérieux, France) and biochemi-76 cally identified according to standard procedures 77 (Kilian and Biberstein, 1985). The isolates were 78 serotyped by indirect haemagglutination as previously 79 described (Mittal et al., 1983). 80

2.2. Antimicrobial susceptibilities

The antimicrobial susceptibilities of the isolates were determined by a microdilution method using commercially prepared, dehydrated 96-well microtitre MIC panels (VAV5 and CMP1ASPV, Sensititre; 85 Trek Diagnostic Systems Inc., England). The anti-86 microbial agents used and their respective dilution 87 ranges were as follows: penicillin (PEN), 0.12-64 µg/ 88 ml; amoxicillin (AMOX), 0.06-32 µg/ml; cepha-89 lothin (CEP), 0.5-32 µg/ml; tetracycline (TET), 90 0.25-128 µg/ml; streptomycin (STR), 1-128 µg/ 91 ml; gentamicin (GEN), 0.06-8 µg/ml; erythromycin 92 (ERY), 0.03-4 µg/ml; trimethoprim (TMP), 1-93 64 µg/ml; nalidixic acid (NAL), 1-16 µg/ml; sulfi-94 soxazole (FIS), 32-512 µg/ml; florfenicol (FFN), 95 0.12–128 µg/ml. 96

84

Performance and evaluation of the MIC determina-97 tions followed the recommendations of the NCCLS 98 (2004). The MIC was considered to correspond to the 99 first dilution at which no bacterial strain growth was 100 detectable. Ranges of susceptibility were recorded 101 along with the MIC that inhibited 50% (MIC₅₀) and 102 90% (MIC₉₀) of the isolates. The breakpoints used for 103 CEP, TET, GEN, FIS and FFN were those recom-104 mended by the NCCLS (2004). For the remaining 105 antimicrobials, the distribution of strains over the MIC 106 range was considered. The following control strains 107 were included: Escherichia coli ATCC 25922 and A. 108 pleuropneumoniae ATCC 27090. 109

3. Results and discussion

110 Serotypes 2 (41.0%) and 4 (40.2%) of A. 111 pleuropneumoniae were the most prevalent, followed 112 by serotypes 6 (6.6%) and 7 (5.7%). Serotypes 1, 5, 8 113 and 11 were isolated in proportions lower than 3%. 114 The results of the susceptibility testing of the 229 115 clinical isolates as distribution of the MICs values, 116 MIC₅₀, MIC₉₀, and the percentage of resistant strains 117 (when breakpoint is available) are shown in Table 1. 118 The expected MICs values (NCCLS, 2004) for the 119 control strains were observed (Escherichia coli ATCC 120 25922: TET, 0.5 µg/ml; GEN, 0.5 µg/ml; CEP, 4 µg/ 121 ml; FIS, <32 µg/ml; FFN, 2 µg/ml; A. pleuropneu-122 moniae ATCC 27090: PEN, 0.12 µg/ml; TET, 0.5 µg/ 123 ml; GEN, 8 µg/ml; FFN, 0.25 µg/ml). 124

The two penicillins tested were not interpreted125because of the absence of either proposed breakpoints;126nevertheless, these antimicrobials showed multimodal127distributions indicating a supposed resistance mechan-128ism. In addition, penicillin and amoxicillin had MICs129

42

2

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	129		Jce		l											lin; le;
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	130 131		istan													nicill xazo
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Res				4	%		2				9	_	, per lfiso
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			%			I	0	73	I	5	I	I	I	16	C	PEN 3, su
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-06 06		4	4	2	4	9	×	4	-	4	2	0.5	ins:] ; FIS
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			MIC		9	Q		0	25		\wedge	VI		~51		iatic acid
1 1															5	brev ixic
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			AIC ₅		1	0.5	0.5	32	32	8	4		2	4	0.2	. Ab alid
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			~									VI		Ŭ		used L, n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				512										S		ion i NA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														ŝ		ntrat orim
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				512										3		oncel
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															-	of cc rime
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				256					2					10		dlue - AP, t
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4														m va t; TN
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-20(128	22			$\overline{}$	$\overline{}$			10		39	\wedge	imuı ycin
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7997		4	\wedge	30		57	14			Λ		38		max irom
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ing]		é	œ			-				-				(>): erytł
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		duri		32	3	3	$\overline{\nabla}$	53	150				2	<39		ed; (RY, .
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ated		.,			_	x	ŝ	_			^			n, E
$\begin{array}{c ccccc} 1.11 & 1.1$	152	isol		16				4	т.	0	_		-			ratic mici
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ains			5	-	4	6	-	Λ	4	-	-			enta
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ıl str						1		153	4					f cor N, g
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		inica		~												ue of GE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ie cl					×	0		55	$^{\wedge}$		39			ı valı /cin;
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	158	onia		4							17					num tomy
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		шпә			30	\mathfrak{c}	15	9			2	-	80			trept
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		nqon		2									1			R, s
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		nəla			129	10	16	23	$\overline{\vee}$			216	$\overline{\lor}$		22	e; (< ;; ST
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		l snl		1								V				ilabl
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		pacil	g/m	2	27	154	184	6							32	ava
$\begin{array}{c ccccc} & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 \\$		tinol	f (µ	0.			\vee									/hen , teti
X × amoxicillin; CEP, cephalothin; X, amoxicillin; CEP, cephalothin; CEP, cephalothi		: Aci	IC o	.25	5	28		$\overline{\nabla}$							06	IET
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		f the	ЧW	0				v								istan in; '
X × amoxicillin; CEP, ceph		its o	wit	0.12	\sim						-				<85	r res aloth
X × amoxicillin; CEP, co	169	agen	ates	~												it for eph:
121 121 121 160 121 11 121 12 121	170	ial a	isol	0.0		\vee				\vee						poin JP, c
1/5 nicrobial No 122 11 antimi 12 123 No 0.0 0.0 124 1 1 123 Na 0.0 104 Na 0.0	171	crob	. of													reak ı; CF
122 X amoxic flor 11 ar 122 X Amoxic florfenico		timi	ž	0.0							V					ate b Sillir I.
100 X amin 100 Line 1		1 an	ial													ndica 10xic nico
		or 1	crob													es in , am orfe
	176	Table 1 MICs fi	timi		\mathbf{z}	AMOX	Ь	F	Я	z	Y	Ð	Ţ		*Z	Lin 10X V: fl
120 Antim Antim Antim 2011 120 AMO 120 CEP AMO AMO AMO AMO AMO FIN* FIN*	177	Tat MI	An		ΡE	AN	CE	ΤE	ST	GE	ER	Ę	ΝA	FIS	FF.	AN FFI

129

of 64 µg/ml against 90% of the isolates tested, being these values considerably lower among the A. pleuropneumoniae strains tested in Spain a decade earlier, with MICs₉₀ of 4.8 and 1 μ g/ml for penicillin and amoxicillin, respectively (Gutiérrez et al., 1993). However, a high degree of activity has been recorded for penicillins in previous reports (Gilbride and Rosendal, 1984; Yoshimura et al., 2002). For cephalothin, which can be used to test all firstgeneration cephalosporins (NCCLS, 2004), only one isolate of A. pleuropneumoniae had a MIC outside the breakpoint; therefore, the frequency of susceptibility would be 99.6%. However, tailing is present for this antimicrobial, thus indicating a possible development of a certain degree of resistance. Chang et al. (2002a) found a MIC₉₀ value of 1 μ g/ml for cephalothin, just half of that reported in our study. In summary, although the first-generation cephalosporins are widely used in pig practice, the results obtained for cephalothin suggest that they could be still used as routine therapeutic agents for the treatment of swine pleuropneumonia in Spain.

According to NCCLS (2004), tetracycline is the class representative for susceptibility to different tetracyclines. A high rate of resistance to this antimicrobial was found, with 73.8% of the A. pleuropneumoniae isolates being resistant. In a previous study carried out using 83 strains isolated in the United States, Canada and Denmark (Salmon et al., 1995), the MIC₅₀ and MIC₉₀ values obtained for tetracycline (8 and 32 µg/ml, respectively) were quite lower than those in our investigation. It is noticeable that the resistance observed for tetracycline in Spain has raised from the 26.3% (with a MIC₅₀ of 1 μ g/ml) observed a decade ago (Gutiérrez et al., 1993) to the 73.8% (with a MIC₅₀ of 32 μ g/ml) obtained 10 years after (Table 1). The high resistance proportion to tetracyclines reported in the present work could be related with the wide use of this antimicrobial agent at sub-therapeutic doses in swine practice during decades. In addition, tet(B), tet(H), tet(L) and tet(O) genes associated with plasmids have been found in 46 of the resistant isolates of A. pleuropneumoniae tested in this study (Blanco et al., in press).

The 229 A. pleuropneumoniae isolates seem to form a monomodal population of susceptibility to streptomycin, although 24 isolates showed MICs of 256 μ g/ml. The MIC₅₀ and MIC₉₀ reported in this

177

4

C.B. Gutiérrez-Martín et al. / Veterinary Microbiology xxx (2006) xxx-xxx

study were higher than those observed for the isolates 178 recovered during 1987-1988 (Gutiérrez et al., 1993). 179 Similarly, the distribution of MICs of gentamicin and 180 erythromycin is clearly unimodal, suggesting that no 181 acquired resistance is present among A. pleuropneu-182 183 moniae isolates. However, using the NCCLS recommendations (2004), a total of 21 isolates (9.2%) had 184 MICs higher than the breakpoint proposed for 185 gentamicin. According to this, the acquired resistance 186 to gentamicin would have increased in Spain during 187 the last decade from the 0% reported for the strains 188 isolated during 1987-1988 (Gutiérrez et al., 1993). No 189 resistant isolates and a MIC₉₀ as low as 2 µg/ml have 190 been previously reported for this aminoglycoside in 191 other countries (Chang et al., 2002a; Yoshimura et al., 192 2002). Similar MIC₅₀ and MIC₉₀ values to those in our 193 study for erythromycin have been previously found in 194 other American and European countries (Salmon 195 et al., 1995); however, the MIC₅₀ value (4 μ g/ml) for 196 this macrolide has increased compared to the 1 µg/ml 197 reported for the A. pleuropneumoniae strains collected 198 during 1987-1988 (Gutiérrez et al., 1993). 199

Globally, the isolates belonging to serotype 4 200 exhibited MICs higher for streptomycin, gentamicin 201 202 and erythromycin than those of serotype 2. In a similar way, a substantially lower amount of streptomycin-203 resistant A. pleuropneumoniae strains belonging to 204 serotype 2 compared to those of serotype 1 has been 205 isolated in Japan (Asawa et al., 1995), and a 206 considerably lower resistance against other antimi-207 crobial groups (tetracyclines and chloramphenicol) 208 was also found in Japan among isolates of serotype 2 209 when compared with other serotypes (Yoshimura 210 et al., 2002). 211

Trimethoprim and nalidixic acid were not inter-212 213 preted because no breakpoints are available; nevertheless, these antimicrobials seem to show bimodal 214 distributions, thus suggesting the development of 215 acquired resistance in some A. pleuropneumoniae 216 isolates. Sulfisoxazole should be used to test for 217 susceptibility to different sulfonamides (NCCLS, 218 2004). The distribution of MIC of this antimicrobial 219 is also bimodal, with 38 isolates (16.6%) exhibited 220 MICs > 512, the breakpoint given for this compound. 221 Finally, resistance to florfenicol was not found 222 (unimodal distribution), and the MIC_{50} and MIC_{90} 223 values were the lowest of those obtained for the 11 224 225 antimicrobial agents tested. Other investigations have

also encountered no resistant isolates to florfenicol 226 (Yoshimura et al., 2002; Shin et al., 2005). Besides, the 227 ranges of susceptibility showed by this derivative of 228 thiamphenicol in previous reports (0.2-1.56 µg/ml; 229 Ueda and Suenaga (1995) or $\leq 0.12-1.0 \ \mu g/ml$; Shin 230 et al. (2005)) were closely similar than that obtained in 231 the present study. Because its high activity, florfenicol 232 becomes a valuable alternative to traditional anti-233 microbials in the prevention and treatment of porcine 234 pleuropneumonia. 235

225

Antimicrobial susceptibility profiles were con-236 structed using taking into account cephalothin, 237 tetracycline, gentamicin and sulfisoxazole (Table 2). 238 A total of eight distinct resistance patterns were 239 obtained, and the profile of resistance to tetracyclines 240 exclusively was the most frequently isolated (in 73.7%) 241 of the resistant strains), followed by the pattern of 242 resistance to tetracyclines and sulphonamides (in 243 13.1% of the resistant strains). Thirty-seven isolates 244 (21.1%) were resistant to at least two antimicrobials, 245 and only one isolate (0.6%) was resistant to the four 246 antimicrobials simultaneously. Quite different multi-247 resistance profiles have been previously reported for 248 60 A. pleuropneumoniae strains isolated in Taiwan 249 between 1985 and 1993, which were tested using an 250 agar disk diffusion method (Chang et al., 2002b). 251

In conclusion, this study demonstrates an increase 252 in resistance for tetracyclines and gentamicin of the 253 porcine A. pleuropneumoniae isolates collected during 254 1997–2004 in Spain compared to those isolated during 255 1987-1988. This fact, along with the bimodal or 256 multimodal distribution of strains over the MIC range 257 observed for penicillins, trimethoprim, sulfisoxazole 258 and nalidixic acid, suggests the need for a continuous 259

Table 2

Antimicrobial resistance profiles of the Actinobacillus pleuropneumoniae clinical strains isolated during 1997–2004

No. of isolates	No. of antimicrobial agents	Resistance to
129	1	TET
5	1	GEN
4	1	FIS
6	2	TET-GEN
23	2	TET-FIS
2	2	GEN-FIS
5	3	TET-GEN-FIS
1	4	TET-GEN-CEP-FIS

Abbreviations are as defined in the legend of Table 1.

C.B. Gutiérrez-Martín et al. / Veterinary Microbiology xxx (2006) xxx-xxx

5

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

surveillance of the susceptibility pattern of the clinical
isolates of this veterinary pathogen. However,
cephalothin and especially florfenicol remain as
useful for treatment of swine with pleuropneumonia.

References

264

- Asawa, T., Kobayashi, H., Mitani, K., Ito, N., Morozumi, T., 1995.
 Serotypes and antimicrobial susceptibility of *Actinobacillus pleuropneumoniae* isolated from piglets with pleuropneumonia.
 J. Vet. Med. Sci. 57, 757–759.
- Blackall, P.J., Klaasen, H.L.B.M., Van den Bosch, H., Kuhnert, P., Frey, J., 2002. Proposal of a new serovar of *Actinobacillus pleuropneumoniae*: serovar 15. Vet. Microbiol. 84, 47–52.
- Blanco, M., Gutiérrez-Martín, C.B., Rodríguez-Ferri, E.F., Roberts, M.C., Navas, J., in press. Distribution of tetracycline resistance genes in Spanish *Actinobacillus pleuropneumoniae* isolates. Antimicrob. Agents Chemother.
- Chang, C.F., Chang, L.C., Chang, Y.F., Chen, M., Chiang, T.S.,
 Cola. Antimicrobial susceptibility of *Actinobacillus pleuropneumoniae, Escherichia coli*, and *Salmonella cholerasuis* recovered from Taiwanese swine. J. Vet. Diagn. Invest. 14, 153–157.
- Chang, C.F., Yeh, T.M., Chou, C.C., Chang, Y.F., Chiang, T.S.,
 202b. Antimicrobial susceptibility and plasmid analysis of *Actinobacillus pleuropneumoniae* isolated in Taiwan. Vet.
 Microbiol. 84, 169–177.
- Gilbride, K.A., Rosendal, S., 1984. Antimicrobial susceptibility of 51 strains of *Haemophilus pleuropneumoniae*. Can. J. Comp. Med. 48, 47–50.
- Gutiérrez, C.B., Píriz, S., Vadillo, S., Rodríguez Ferri, E.F., 1993. In vitro susceptibility of *Actinobacillus pleuropneumoniae* strains to 42 antimicrobial agents. Am. J. Vet. Res. 54, 546–550.
- Gutiérrez, C.B., Rodríguez Barbosa, J.I., Tascón, R.I., Costa, Ll., Riera, P., Rodríguez Ferri, E.F., 1995. Serological characterisation and antimicrobial susceptibility of *Actinobacillus pleuropneumoniae* strains isolated from pigs in Spain. Vet. Rec. 137, 62– 64.
- Kawahara, K., Asano, H., Nakai, T., kume, K., Danbara, H., 1989.
 Antibiotic susceptibility of serotypes 2 and 5 strains of *Actino*-

bacillus (Haemophilus) pleuropneumoniae isolated from 1974 to 1986. Jpn. J. Vet. Sci. 51, 359–363.

- Kilian, M., Biberstein, E.L., 1985. Genus II: *Haemophilus*. In: Krieg, N.R., Holt, J.G. (Eds.), Bergey's Manual of Systematic Bacteriology, 9th ed., vol.1. Williams and Wilkins, Baltimore, pp. 558–569.
- Mittal, K.R., Higgins, R., Larivière, S., 1983. Determination of antigenic specificity and relationship among *Haemophilus pleuropneumoniae* serotypes by an indirect haemagglutination. J. Clin. Microbiol. 17, 787–790.
- National Committee for Clinical Laboratory Standards, 2004. Performance standards for antimicrobial disk and dilution susceptibility test for bacteria isolated from animals: informational supplement, NCCLS document M31-A2, Wayne, Pennsylvania, USA.
- Nielsen, R., Andersen, L.O., Plambeck, T., Nielsen, J.P., Krarup, L.T., Jorsal, S.E., 1997. Serological characterization of *Actinobacillus pleuropneumoniae* biotype 2 strains isolated from pigs in two Danish herds. Vet. Microbiol. 54, 35–46.
- Salmon, S.A., Watts, J.L., Case, C.A., Hoffman, L.J., Wegener, H.C., Yancey Jr., R.J., 1995. Comparison of MICs of ceftiofur and other antimicrobial agents against bacterial pathogens of swine from the United States, Canada, and Denmark. J. Clin. Microbiol. 33, 2435–2444.
- Sebunya, T.N., Saunders, J.R., 1983. Haemophilus pleuropneumoniae infection in swine: a review. J. Am. Vet. Med. Assoc. 182, 1331–1337.
- Shin, S.J., Kang, S.G., Nabin, R., Kang, M.L., Yoo, H.S., 2005. Evaluation of the antimicrobial activity of florfenicol against bacteria isolated from bovine and porcine respiratory disease. Vet. Microbiol. 106, 73–77.
- Ueda, Y., Suenaga, I., 1995. In vitro antibacterial activity of florfenicol against Actinobacillus pleuropneumoniae. J. Vet. Med. Sci. 57, 363–364.
- Vaillancourt, J.P., Higgins, R., Martineau, G.P., Mittal, K.R., Larivière, S., 1988. Changes in the susceptibility of *Actinobacillus pleuropneumoniae* to antimicrobial agents in Québec (1981– 1986). J. Am. Vet. Med. Assoc. 193, 470–473.
- Yoshimura, H., Takagi, M., Ishimura, I., Endoh, Y.S., 2002. Comparative in vitro activity of 16 antimicrobial agents against *Actinobacillus pleuropneumoniae*. Vet. Res. Commun. 26, 11–19.