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Ecosystems adapted to low nitrogen (N) conditions such as Calluna-heathlands are especially sensitive to en-
hanced atmospheric N deposition that affects many aspects of ecosystem functioning like nutrient cycling,
soil properties and plant-microbial-enzyme relationships. We investigated the effects of five levels of exper-
imentally-simulated N deposition rates (i.e., N fertilization treatments: 0, 10, 20 and 50 kg N ha ' yr ! for
3 years, and 56 kg N'ha ' yr ! for 10 years) on: plant, litter, microbial biomass and soil nutrient contents,
soil extracellular enzymatic activities, and plant root ericoid mycorrhizal colonization. The study was con-
ducted in marginal montane Calluna-heathlands at different developmental stages resulting from management
(young/building-phase and mature-phase). Our findings revealed that many soil properties did not show a sta-
tistically significant response to the experimental addition of N, including: total N, organic carbon (C), C:N
ratio, extractable N-NOj; , available phosphorus (P), urease and p-glucosidase enzyme activities, and micro-
bial biomass C and N. Our results also evidenced a considerable positive impact of chronic (10-year) high-N
loading on soil extractable N-NH,", acid phosphatase enzyme activity, Calluna root mycorrhizal colonization
by ericoid fungi, Calluna shoot N and P contents, and litter N content and N:P ratio. The age of heathland
vegetation influenced the effects of N addition on ericoid mycorrhizal colonization, resulting in higher colo-
nized roots in young heathlands at the control, low and medium N-input rates; and in mature ones at the high
and chronically high N rates. Also, young heathlands exhibited greater soil extractable N-NO; , available P,
microbial biomass N, Calluna shoot N and P contents, and litter N content, compared to mature ones. Our
results highlighted that accounting for the N-input load and duration, as well as the developmental stage of
the vegetation, is important for assessing the effects of added N, particularly at the heathlands' southern dis-
tribution limit.
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1. Introduction 2015), altering the biogeochemical cycles of N, carbon (C) and phos-
phorus (P) (Erisman et al., 2011).
Ecosystems adapted to low levels of nutrient availability, such as

heathlands dominated by the dwarf shrub Calluna vulgaris (L.) Hull

The increase in human-induced atmospheric reactive nitrogen (N)
in the last century has resulted in a dramatically increase in N de-

position rates (Calvo-Fernandez et al., 2017), which are expected to
rise in future decades at a global scale (Galloway et al., 2004), with
slight differences between developing regions and industrialized ones
(Vet et al., 2014). Airborne N loading has been identified as one
of the most important drivers of biodiversity loss at a global scale
(Sala et al., 2000), which in turn is expected to have negative con-
sequences for multiple ecosystem functions. There exists compelling
evidence of N-driven damage to ecosystems even at low deposition
rates (Bahring et al., 2017; Phoenix et al., 2012). Moreover, chronic
N loading has severe impacts on many ecosystem functions when
the critical N threshold is exceeded (Gao et al., 2014). These harm-
ful effects are caused by ecosystem eutrophication and soil acidifica-
tion processes (Bobbink et al., 2010; Stevens et al., 2011; Zhu et al.,
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(henceforth referred to as Calluna), are particularly sensitive to air-
borne N deposition (Cuesta et al., 2008; Fagundez, 2013; Jones and
Power, 2012; Meyer-Griinefeldt et al., 2016; Southon et al., 2012).
Both field-scale surveys and N-manipulation experiments testing the
effects of a variety of N-loading rates over different temporal scales
have evidenced substantial N-driven changes in the composition, di-
versity and functioning of nutrient-poor Calluna-heathlands (e.g.,
Calvo et al., 2005, 2007; Friedrich et al., 2011; Power et al., 2006;
Southon et al., 2013), threatening their persistence across Europe
(Fagundez, 2013). Moreover, several studies have evaluated the cu-
mulative effects of N in heathland ecosystems (Johnson et al., 1998;
Phoenix et al., 2012; Southon et al., 2012; among others), since
chronic N loading is expected to aggravate the impact of N even at low
input rates (Phoenix et al., 2012; Power et al., 2000).

Increased N inputs alter a multitude of heathland characteristics
such as soil and litter properties (e.g., nutrient availability, enzyme
activities or microbial biomass) or plant traits [e.g., growth, flower-
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ing, tissue and litter chemistry or plant susceptibility to biotic (e.g.,
pathogen or pests) and abiotic (e.g., frost or drought) stressors]
(Bahring et al., 2017; Jones and Power, 2012; Marcos et al., 2003;
Meyer-Griinefeldt et al., 2016; Southon et al., 2013; Taboada et al.,
2016). Elevated N inputs stimulate N mineralization rates (Phoenix et
al., 2012), resulting in increased soil extractable N-NH," and N-NO;~
(Boot et al., 2016; Song et al., 2017; Southon et al., 2013). This en-
hanced soil N availability may cause either an increase (Du et al.,
2014; Haugwitz et al., 2011) or decrease (Ajwa et al., 1999; Boot et
al., 2016) in the nutrient contents of the soil microbial biomass, al-
tering the cycles of soil C and N (Contosta et al., 2015; Ramirez et
al., 2012; Zhu et al., 2015), and the ericoid mycorrhizal (ERM) fun-
gal community associated with Cal/luna in nutrient-poor environments
(Caporn et al., 1995; Yesmin et al., 1996). Since soil microorganisms
are considered the primary sources of soil enzymes, and these are in-
volved in nutrient metabolism and decomposition processes (Fatemi et
al., 2016; Ramirez et al., 2012; Sinsabaugh and Follstad, 2012; Song et
al., 2017; Zhu et al., 2015), an increase in N inputs is expected to alter
soil enzymatic activities such as acid phosphatase (P cycle), urease (N
cycle) and B-glucosidase (C cycle) (Ajwa et al., 1999; Jian et al., 2016;
Ochoa-Hueso et al., 2011, 2014). These variations very likely affect
the storage, turnover and uptake of soil nutrients (Cenini et al., 2016;
Jones and Power, 2012). As a result, excess N accumulation in heath-
land ecosystems promotes enhanced rates of nutrient uptake by Cal-
luna plants and subsequent increases in foliar tissue N and P contents
(Calvo et al., 2007; Jones and Power, 2012; Pilkington et al., 2005b;
Rowe et al., 2008; von Oheimb et al., 2010), as well as increases in
litter N and P contents (Pilkington et al., 2005b).

Age-related differences in Calluna nutrient uptake and growth
rate are expected to influence the impacts of N deposition on heath-
lands (Jones and Power, 2015; Meyer-Griinefeldt et al., 2015), but
till now only a limited number of studies have assessed these effects
(i.e., Britton et al., 2008; Jones and Power, 2015). European heath-
lands have traditionally been managed to create pastures for breed-
ing livestock and their nutrient poor status has been preserved through
practices as mowing, sod cutting and prescribed burning (Fagundez,
2013; Hardtle et al., 2006, 2009), resulting in the periodic rejuvenation
of heathland vegetation (Gimingham, 1972; Henning et al., 2017). In
recent decades, however, land use abandonment has led to heathland
management cessation and to Calluna plants reaching the mature or
degenerate phase of development (sensu Gimingham, 1972; Calvo et
al., 2007; Henning et al., 2017). As time progresses since the last man-
agement (e.g., prescribed burning, mowing, sod-cutting, and grazing),
ageing heathland ecosystems accumulate N in soils and in the vegeta-
tion biomass (Hérdtle et al., 2009; Jones and Power, 2015). Therefore,
specific measures to compensate for atmospheric N deposition are re-
quired to remove the excess of N stored in the ecosystem, and, thus
to keep a low-N status (Calvo et al., 2005; Hérdtle et al., 2006, 2009;
Marcos et al., 2009).

In contrast to north-western (e.g., Phoenix et al., 2012; Southon et
al., 2012) and central European (e.g., Bahring et al., 2017; de Vries
et al., 2009; Friedrich et al., 2011) Calluna-heathlands, to date, only
one study has been developed on the time-scale and age-related ef-
fects of enhanced N deposition in montane Calluna-heathlands lo-
cated at the southern-most limit of their distribution range (Cantabrian
Mountains, NW Spain) (i.e., plant-herbivore-predator relationships:
Taboada et al., 2016). This is despite these marginal southern Cal-
luna-heathlands having been found to respond differently to global
change drivers (such as N deposition) as compared to central Euro-
pean ones (Meyer-Griinefeldt et al., 2016). In this study, we evaluated
the effects of different levels of experimentally simulated N deposi-

tion on the functioning of marginal montane Ca/luna-heathlands, me-
diated by the age of heathland vegetation resulting from management
activities (prescribed burning), with particular attention being paid to
the cumulative impact of N loading throughout time. Specifically, we
assessed the effects of five levels of N fertilization rates (0, 10, 20 and
50 kg Nha 'yr ! for3 years, and 56 kg N ha ! yr ! for 10 years) on:
(1) soil chemical properties, (2) soil extracellular enzymatic activities,
(3) soil microbial biomass C and N, (4) plant mycorrhizal coloniza-
tion, (5) plant nutrient uptake and (6) litter chemistry. To our knowl-
edge, this is the first study that evaluates the overall impact of cumu-
lative N loading on plant-soil-microbial-enzyme relationships in both
young and mature developmental stages of European heathlands.

We hypothesize that an increase in N loading will result in: (1)
a subsequent increase in plant-litter-soil N and P contents due to
higher nutrient accumulation and immobilization, as well as an in-
crease in plant and litter N:P ratios (Britton et al., 2008; Southon et al.,
2013; von Oheimb et al., 2010); (2) faster rates of extracellular enzy-
matic activities to supply higher plant and microbial nutrient demands
(Ochoa-Hueso et al., 2011, 2014); (3) a rise in soil microbial biomass
C and N (Haugwitz et al., 2011; Power et al., 2006), and (4) variations
in the extent of root mycorrhizal colonization related to plant nutrient
demands (Caporn et al., 1995; Rowe et al., 2008). We also hypothesize
that chronic (10-year) N inputs will have a greater impact compared to
short-term (3-year) N loading (Phoenix et al., 2012). Furthermore, we
expect that higher plant and soil microbial biomass in mature heath-
lands relative to young ones will have comparatively greater nutrient
demands resulting from N fertilization (due to nutrient stoichiometry)
(Wendling et al., 2016), which, in turn, should be mirrored by lower
soil nutrient contents (Ajwa et al., 1999).

2. Material and methods
2.1. Study area

The study area is located on the southern slope of the Cantabrian
mountain range (NW Spain). We selected three representative and ho-
mogeneous Calluna-heathland sites situated at least 3 km apart: Ri-
opinos I (1660 m a.s.l., 43°02'N, 5°24'W, 24 ha) is a discontinuous
northern-exposed heathland on a steep slope; Riopinos II (1560 m
a.s.l,, 43°02'N, 5°26'W, 18 ha) is a wind-exposed heathland in a
north-facing area with a low slope; San Isidro (1620 m a.s.l., 43°03'N,
5°21'W, 35 ha) is a flat and continuous heathland facing north and ex-
posed to winds. The climate is Eurosiberian with a mean annual tem-
perature of 5.5 °C. Mean annual precipitation is 1645 mm, unevenly
distributed throughout the year, with a brief drought period during the
summer months (Calvo-Fernandez et al., 2017). Precipitation occurs
mainly in the form of snow in late-autumn, winter and early-spring,
with a snow melt period from April until the end of May. Bulk
inorganic N deposition from 2011 to 2014 was 4.6 kgNha 'yr !
(Calvo-Fernandez et al., 2017), and total N deposition ranges between
7.5 and 15kgNha ! yro " according to the EMEP and CHIMERE
models for Spain (Garcia-Gomez et al., 2014). Therefore, total N de-
position in the study area is either lower than or within the low-
est critical load value estimated to threaten the persistence of Eu-
ropean dry Calluna-heathlands (i.e., 10-20 kg N ha” ! yro !. Bobbink
et al., 2010; Hall et al., 2015). The study sites have Umbrisol soil
(European Commission, 2005), characterized by sandy texture, high
acidity (pH =3.9+0.14; deionized water), and low fertility. Soil
depth ranges from 30 to 50 cm (on sandstone and lutite) with the
following horizons: O;¢ (0-2 cm), (0%
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(2-5cm), A (5-20 cm), B (2040 cm) or A/C (20-35 c¢cm), and C
(from 30 to 50 cm). Therefore, soil conditions differ from the Pod-
zol soils that are typical of many north-western European heathlands
(Marcos et al., 2003). The soil of young heathland stands is covered
by a shallow litter layer (< 1 cm depth) distributed in discontinuous
patches, while a continuous and homogeneous litter layer (2-3 cm)
characterizes the mature ones. The study sites are dominated by Cal-
luna (> 75% cover; 20 cm height in young stands and 50 cm in mature
stands), with Erica tetralix L. and Vaccinium myrtillus L. as the main
accompanying species (Calvo et al., 2005). Lichens [Cladonia Hill ex
Browne and Cetraria islandica (L.) Ach.] cover ca. 15% and different
bryophyte species ca. 10%. The bud burst of Calluna plants happens
in June, and the vegetation growing season period is from June to Oc-
tober.

2.2. Experimental design

In each study site, we selected two heathland areas of different
ages: (1) young stands rejuvenated by prescribed fire in 2005, i.e.,
8 years old at the beginning of the experiment, and (2) mature stands
showing the first signs of degeneration after 3040 years of land use
abandonment (i.e., building- and mature-phase; Gimingham, 1972).
We established a total of 90 2 m x 2 m plots and performed a manipu-
lative experiment consisting of five different N fertilization treatments
in addition to background atmospheric N deposition (i.e., 3 replicated
plots per N treatment, age class, and site): 0 kg N ha ' yr ! (NO; con-
trol), 10 kg N ha ! yr71 (N10; low N load), 20 kg N ha ! yr71 (N20;
medium load), and 50 kg N'ha™ ' yr ! (N50; high load) of solid gran-
ules of ammonium nitrate (Fertiberia S.A.; 27% NH,NO; purity)
monthly added by hand to the soil surface in June—November from
2013 to 2015; and 56 kg N ha ! yro ! (N56; chronic high N load)
added monthly in May—October from 2005 to 2015 equivalent to the
highest predicted N input by 2050 for southern Europe (Galloway et
al., 2004) [i.e., corresponding to ca. two times the maximum total N
deposition levels in the study area at the beginning of the experiment:
Rivero Fernandez et al., 1996; and to ca. four times the current maxi-
mum total N deposition levels in the study area: Garcia-Gomez et al.,
2014]. Solid granules release ammonium and nitrate slowly over the
soil surface, and have been used in previous studies on heathlands re-
sponses to N fertilization (e.g., Cuesta et al., 2008; Marcos et al., 2003,
2009; Taboada et al., 2016). The young and mature experimental plots
were randomly assigned to the N treatments at each study site.

During the experiment, infestations of Calluna plants by the lar-
vae of the heather beetle, Lochmaea suturalis (Thomson, 1866), oc-
curred in June 2008 and August 2015 at one of the three heathland
sites (Riopinos II) (personal observations), but only ca. 0.5% of the
heathland area was infested (see Taboada et al., 2016 for further in-
formation). In the 2008 outbreak event, only the chronic high N treat-
ment (N56) mature plots were severely defoliated, but the consumed
plants were not killed and regenerated the next growing season fol-
lowing the beetle's attack. In the 2015 outbreak event, both mature and
young N56 plots were marginally affected by the beetle's defoliation.
After the beetle's infestation, however, the defoliated plants at the N56
mature plots were debilitated and suffered from subsequent physical
damage caused by livestock trampling. We did not observe further se-
vere damage to the vegetation due to other environmental stress fac-
tors like frost or drought.

2.3. Sampling methods

We collected three soil samples (topsoil, 0-5 cm below the litter
layer) in each 2 m x 2 m plot in September 2014 and 2015 using a

soil auger, which were combined to obtain one soil sample per plot
and year. Fresh soil samples were brought to the laboratory in air-tight
plastic bags, and immediately sieved (2 mm @) and divided in two
subsamples. The first subsample was air-dried and stored in a polyeth-
ylene bag for total N, organic C, and available P analyses. We also cal-
culated the soil C:N ratio. The second subsample was stored at — 18 °C
in a polyethylene bag for extractable N-NH," and N-NO; ", enzymatic
activities, and microbial biomass C and N analyses. The thawing pro-
cedure was done at 4 °C in a refrigerator.

We randomly selected 5—10 Calluna plants in each plot to obtain
a sufficient quantity of fine roots per plot to determine the extent of
root ericoid mycorrhizal colonization in August 2015. Fine roots were
manually isolated using a 400 x optical microscope (M20-42149,
Wild Heerbrugg, Switzerland), and subsequently stored at — 18 °C un-
til analysis.

To determine Calluna plant and litter N and P contents and cal-
culate N:P ratios, we collected ten young Calluna apical shoots and
three 5 cm x 5 cm litter layer (i.e., dead plant leaves fell to the ground)
samples from each 2 m x 2 m plot in July 2014 and 2015, which were
combined to obtain one shoot or litter sample per plot and year. The
shoots and litter samples were dried at 40 °C for 48 h, pulverized (Pul-
verisette 14, Fritsch, Oberstein, Germany) and sieved (200 um) before
nutrient analyses.

2.4. Analytical methods

Soil total N was determined by a Kjeldhal procedure (Bremner and
Mulvaney, 1982), with four reagent blanks used for each digestion
batch (eight soil samples). Organic C was determined using wet ox-
idation with potassium dichromate (Ministerio de Agricultura, Pesca
y Alimentacion, 1986), and available P following the Bray-Kurtz
method (Kalra and Maynard, 1991). Two reagent blanks were used
for each batch of organic C determination, and one reagent blank was
used for each calibration line of available P. The N-NH," and N-NO;
were extracted with 2 M KCI (ratio 1:10 soil-extractant) according to
Keeney and Nelson (1982), and measured by steam distillation with a
micro-Kjeldhal automatic analyzer using the Bremner (1965) method.
Four reagent blanks were used for each batch of steam distillation (ten
soil samples).

Soil acid phosphatase and B-glucosidase activities were determined
colorimetrically as the amount of p-nitrophenol (p-NP) produced after
incubation of 0.5 and 1 g of soil (37 °C, 1 h) with p-nitrophenyl-phos-
phate and p-nitrophenyl-B-D-glucopyranoside substrates, respectively
(Tabatabai, 1982; Tabatabai and Bremner, 1969). The p-NP formed
was determined in a spectrophotometer at 400 nm (UV-1700 Phar-
maSpec, Shimadzu, Kyoto, Japan). Urease activity was determined
following Kandeler and Gerber (1988) as the amount of N-NH," re-
leased from 1 g of soil after incubation (37 °C, 2 h) with urea sub-
strate. The N-NH,," released was measured colorimetrically at 690 nm.
One sample blank for each soil sample was used in the determination
of the acid phosphatase and urease activities. Two replicated measures
and two sample blanks for each soil sample were used for the -glu-
cosidase determination. Besides, one reagent blank was used to build
up each calibration line for colorimetric analyses. For -glucosidase
activity, one calibration line was built up for each soil sample using
p-NP standard solutions incubated together with the soil.

Soil microbial biomass C and N were determined by the Fumiga-
tion-Extraction method (Vance et al., 1987). Estimation of soil mi-
crobial biomass N was performed by titration of total extracted N ac-
cording to Brookes et al. (1985), using a Ky factor of 0.45. Estima-
tion of soil microbial biomass C was performed by wet digestion ac-



4 Science of the Total Environment xxx (2017) xxx-Xxx

cording to Vance et al. (1987), using a Ky factor of 0.38. Four and
two reagent blanks were used for each analysis batch of soil microbial
biomass N (eight soil samples) and C (ten soil samples), respectively.

The amount of ericoid mycorrhizal colonization in Calluna roots
was quantified in 0.5 g of the finest roots. The method consisted of
a first step of staining roots with a solution of ink-vinegar (5%) ac-
cording to Vierheilig et al. (1998), using Sheaffer black ink. The sec-
ond step was the measurement of the percentage of roots colonized by
ericoid mycorrhizae using the intersection method by McGonigle et
al. (1990), with a 400 x optical microscope (M20-42149, Wild Heer-
brugg, Switzerland).

Calluna shoot and litter N contents were determined by the Kjel-
dahl digestion method (BUCHI Digestion Unit K-435, Flawil,
Switzerland) coupled to a tritator (Metrohm 719 S tritino, Herisau,
Switzerland). Calluna shoot and litter P contents were determined by
digestion with HNO; (65%) and heating at 550 °C, and measured with
ICP-OES (Optima 2000 DV, Perkin Elmer). Four reagent blanks were
used for each digestion batch of shoot and litter N contents (eight
shoot/litter samples), and one reagent blank was used for each calibra-
tion line in the colorimetric determination of shoot and litter P con-
tents.

2.5. Data analyses

We fitted linear mixed models (LMMs) with a repeated measures
design to test the effects of N fertilization on soil properties (nutrient
contents, enzymatic activities, and microbial biomass), Calluna plants
and litter (nutrient contents), mediated by time and the age of heath-
land vegetation. The response variables in the models were: (1) soil
total N, (2) soil organic C, (3) soil C:N ratio, (4) soil available P, (5)
soil extractable N-NH,", (6) soil extractable N-NO;~, (7) acid phos-
phatase activity, (8) urease activity, (9) pB-glucosidase activity, (10)
soil microbial biomass C, (11) soil microbial biomass N, (12) Calluna
shoot N content, (13) Calluna shoot P content, (14) Calluna shoot N:P
ratio, (15) litter N content, (16) litter P content, and (17) litter N:P
ratio. We modelled the response variables assuming a Gaussian er-
ror distribution, using the identity link function. The predictor vari-
ables (fixed factors) were age of Calluna plants (young and mature),
the N treatment (NO, N10, N20, N50, and N56), and their interaction.
The interaction term was retained in the models only when signifi-
cant. Statistical significance was considered when p < 0.05; and sig-
nificance levels of the difference between each N fertilization treat-
ment (N10, N20, N50, and N56) and the control treatment (NO)

obtained directly from the model summary outputs are indicated on
the figures. The identity of the heathland sites and the sampling years
were included in the models as random factors. The normality and ho-
mogeneity of the model residuals were checked using diagnostic plots.
We obtained predicted values of the response variables from the mod-
els for each heathland age and N treatment, without taking the uncer-
tainty of the random effects parameters into account, and computed
95% confidence intervals based on a normal approximation.

We also evaluated the effects of N fertilization on root mycorrhizal
colonization by performing a generalized linear model (GLM) with
the percentage of Calluna roots colonized by ericoid mycorrhizae as
the response variable, and the age of Calluna plants (young and ma-
ture), the N treatment (NO, N10, N20, N50, and N56), and their inter-
action as the predictor variables. The interaction term was retained in
the model only if significant. Statistical significance was considered
when p < 0.05; and significance levels of the difference between each
N fertilization treatment (N10, N20, N50, and N56) and the control
treatment (NO) obtained directly from the model summary outputs are
indicated on the figure. We modelled the response variable following
a quasi-Poisson error distribution to account for overdispersion, using
the log link function. We obtained model predicted values of the per-
centage of roots colonized by ericoid mycorrhizae for each heathland
age and N treatment.

All data analyses were carried out with R software, version 3.3.1
(R Core Team, 2016) using the ‘stats’, ‘lme4’ (Bates et al., 2015) and
‘ImerTest’” (Kuznetsova et al., 2016) packages.

3. Results
3.1. Soil nutrient contents

Soil extractable N-NH," content significantly increased in re-
sponse to the addition of N, but only in the N56 treatment (Fig. 1;
Table 1). However, there were no significant differences for soil ex-
tractable N-NO,~ (Fig. 1; Table 1). Soil N-NH,"  content was ca.
10—-15-fold higher than N-NO; in each N treatment. Besides, signif-
icantly higher N-NO; contents were observed in young heathlands
than in mature ones. No changes were detected for soil available P
after the addition of N, while significantly higher available P values
were recorded in young heathlands, compared to mature ones (Fig. 1;
Table 1). No significant differences were found for soil total N, or-
ganic C, or C:N ratio with regard to the N treatments and heathland
ages (Table 1).
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Fig. 1. Model predicted values (mean + 95% confidence intervals) of soil nutrient content variables in relation to stand age (young vs. mature) and the five N treatments (NO, N10,
N20, N50, and N56): extractable N-NH," (ug N g ' dw soil), extractable N-NO, (ug N g ' dw soil), and available P (ug P g | dw soil). Significance levels of the difference between
each N fertilization treatment (N10, N20, N50, and N56) and the control treatment (NO) are indicated by *** (0.001 > p), ** (0.01 > p > 0.001), * (0.05 > p > 0.01), and ns (p > 0.05).
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Table 1

LMM results [‘anova()’ outputs] for the effects of heathland age (young vs mature) and
N treatment (NO, N10, N20, N50, and N56) on soil nutrient contents, soil enzymatic
activities and soil microbial biomass nutrient contents. The interaction term (age x N
treatment) was retained in the models only when significant. Standard deviations (SD)
and variance components (%) of the random effects (identity of the heathland sites and
the sampling years) are given. Df = degrees of freedom. Significant p-values are in bold
face.

Response
variable Fixed effects Random effects
Predictor F
variable Df value pvalue Variable SD Variance
Soil nutrient contents
Total N Age 1 002 0887 Site 0.103 34.90
N 4 201 0.095 Year 0.035 11.97
treatment
Residual  0.157 53.13
Organic C Age I 003 0855 Site 0.307 9.65
N 4 156 0.186 Year 0.237 7.45
treatment
Residual  2.633 82.90
C:N ratio Age 1 155 0215 Site 5.741 55.70
N 4 058 0677 Year 0.000 0.00
treatment
Residual  4.566 44.30
Extractable — Age 1 297 0.087 Site 3.017 11.22
N-NH,"
N 4 1046 <0.001 Year 7.823 29.10
treatment
Residual  16.047 59.68
Extractable  Age 1 417  0.043 Site 85x10°% 0.00
N-NO;
N 4 153 0.196 Year 0.000 0.00
treatment
Residual  2.737 100.00
Available P Age 1 508 0.026 Site 2.102 34.23
N 4 064 0.636 Year 0.946 15.40
treatment
Residual ~ 3.094 50.37
Soil enzymatic activities
Acid Age 1 298 0.086 Site 0.387 6.26
phosphatase
N 4 385 0.005 Year 1.454 23.54
treatment
Residual  4.335 70.20
Urease Age 1 059 0444 Site 0.653 12.41
N 4 159 0178 Year 0.946 17.99
treatment
Residual  3.661 69.60
B- Age 1 086 0354 Site 0.281 6.96
glucosidase
N 4 073 0.572 Year 1.116 27.59
treatment
Residual ~ 2.646 65.45

Soil microbial biomass nutrient contents

Microbial Age 1 3.5 0.078 Site 319.700 24.38
biomass C
N 4 175 0.141 Year 279.500 21.31
treatment
Residual  712.200 54.31
Microbial Age 1 961 0.002 Site 19.650 16.80
biomass N
N 4 129 0275 Year 30.070 25.71
treatment
Residual  67.24 57.49

3.2. Enzymatic activities

Acid phosphatase enzyme activity significantly increased in re-
sponse to N addition, particularly in the N56 treatment, and to a
lesser extent in the N10 treatment (Fig. 2; Table 1). However, there

were no significant differences in acid phosphatase activity related to
heathland age. We found significant differences in urease enzyme ac-
tivity after the addition of N in the N10 treatment (Fig. 2; Table 1); but
no significant differences in relation to heathland age. f-Glucosidase
enzyme activity did not show significant changes in relation to N ad-
dition and heathland age (Fig. 2; Table 1).

3.3. Soil microbial biomass

Soil microbial biomass C and N did not show any significant
changes in response to the addition of N (Fig. 3; Table 1). Microbial
biomass N content was, however, significantly higher in young heath-
lands than in mature ones.

3.4. Calluna root mycorrhizal colonization

The percentage of Calluna roots colonized by ericoid mycorrhizae
was significantly higher in the N56 treatment (Fig. 4; Table 2). More-
over, the responses of mycorrhizal colonization to the N treatments
were age-related, shown by the significant ‘age x N treatment’ inter-
action, with a higher percentage of colonized roots in young heath-
lands for the control (NO), N10 and N20 treatments, and in mature
ones for the N50 and N56 treatments.

3.5. Calluna shoot and litter nutrient contents

Both Calluna shoot N and P contents significantly increased as a
result of N fertilization, particularly under the N56 treatment (Fig. 5;
Table 3). Also, young Calluna plants had significantly higher shoot N
and P contents than mature ones.

Litter N content significantly increased in the N50 and N56 treat-
ments (Fig. 5; Table 3). Besides, higher litter N content was found in
young heathlands than in mature ones. A significant ‘age X N treat-
ment’ interaction was found for litter P content (Fig. 5; Table 3), with
higher values in young heathlands for the N20, N50 and N56 treat-
ments, and in mature ones for the control treatment (NO).

Shoot and litter N:P ratios significantly increased after N addition,
and achieved maximum values in the N50 and N56 treatments, respec-
tively, for both heathland ages (Fig. 5; Table 3).

4. Discussion
4.1. Time- and dose-related effects of N fertilization

Several previous field-scale surveys and N-fertilization experi-
ments carried out in north-western European heathlands provided
strong evidence of the impact of N deposition on soil nutrients, indi-
cated by an increase in extractable N-NH," and N-NO;~ under high-N
inputs (e.g., Phoenix et al., 2012; Southon et al., 2013). Similar re-
sults were also reported from other systems such as subalpine forests
(Boot et al., 2016), permafrost peatlands (Song et al., 2017), and semi-
arid Mediterranean shrublands (Ochoa-Hueso et al., 2013, 2014). In
Cantabrian marginal montane heathlands, we only observed an in-
crease in soil extractable N-NH," in the chronic high N treatment
(N56; 10 years), but no changes in soil extractable N-NO; . These
results suggest that in these montane heathlands a shift in soil ex-
tractable N is only to be expected under high N loading. This coin-
cides with findings from upland and lowland heaths, in which signif-
icant responses of soil N-NO, and N-NH," were mainly observed at
the highest N deposition rates (up to 120 kg N ha ! yr '; Phoenix et
al., 2012). Moreover, soil extractable N-NH," contents were about 10
to 15-fold higher than N-NO; in all the montane heathland stands,
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and particularly in the chronic high N treatment (N56), as was also
reported by Boot et al. (2016) in a subalpine forest ecosystem under
long-term (17-year) N loading. It is very likely that the unique envi-
ronmental conditions [low soil pH values (3.9), low winter tempera-
tures and summer droughts] of the heathlands studied had inhibited
nitrification [net nitrification rates around 0.25-1.5 g N m 2 month ™
(unpublished data)] (Stevens et al., 2011), resulting in a notable accu-
mulation of soil extractable N-NH4+ (Nielsen et al., 2009; Stevens et
al., 2011). On the other hand, soil organic C, total N, and available P
were not affected by N fertilization, probably due to the slow rate of
change in the C and N pools in response to increased N availability
(Ochoa-Hueso et al., 2013, 2014). Therefore, it might take > 10 years
of N fertilization to alter the soil C and N pools in montane Cal-
luna-heathlands due to the short period of microbial physiological ac-
tivity, since chronic high N loads might result in the production of
N-rich litter that would be very slowly decomposed by soil microbes
and incorporated into the topsoil stock of C (de Vries et al., 2009) and
N (Pilkington et al., 2005b).

The observed N-driven changes in soil nutrient contents may also
be related to the alteration in the functioning of soil microorgan-
isms and the resulting soil extracellular enzyme activities, determined
by the levels of metabolic nutrient demands (Jian et al., 2016;
Ochoa-Hueso et al., 2011; Sinsabaugh and Follstad, 2012; Song et
al., 2017). We reported a significant rise in the activity of the acid
phosphatase enzyme in response to N fertilization, especially in the
chronic high N treatment (N56). Johnson et al. (1998) and Pilkington
et al. (2005a) also found that the greatest soil acid phosphatase ac-
tivity corresponded to their highest long-term N-addition treatment
(120 kg Nha 'yr ') in upland heathlands; whereas a N deposition
load of only 10 kg N ha ! yr7l was sufficient to increase the acid
phosphatase activity in a low-alpine heathland (Papanikolaou et al.,
2010). The observed increase in soil acid phosphatase activity in
our studied montane heathlands could be explained by changes in
soil nutrients (i.e., higher N availability), resulting in P deficiency
for plants and soil microbes in low available P status of heathland
soils (Ochoa-Hueso et al., 2014; Phoenix et al., 2003; Pilkington
et al., 2005a). This nutritional imbalance could be compensated for
by the microbial
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Table 2

GLM results [‘anova()’ output] for the effects of heathland age (young, mature) and N
treatment (NO, N10, N20, N50, and N56) on Calluna mycorrhizal colonization by eri-
coid fungi. Df = degrees of freedom. Significant p-values are in bold face.

Predictor Residual

Response variable variable Df Deviance deviance p value

Mpycorrhizal colonization

Calluna roots colonized by NULL 284.55

ericoid mycorrhizae
Age 1 518 279.37 0.156
N treatment 4  76.57 202.80 <0.001
Age:N 4 3224 170.57 0.014
treatment

and plant excretion of phosphatase enzymes required for the miner-
alization of organic P (Lopez-Poma and Bautista, 2014; Pilkington et
al., 2005a; Rowe et al., 2008); since phosphatase activity can be mod-
ulated through enzyme excretion or activity inhibition depending on
soil P availability (Johnson et al., 1999; Lopez-Poma and Bautista,
2014; Phoenix et al., 2003).

Soil urease activity, however, did not change in response to N
fertilization, as high soil inorganic N availability inhibited this en-
zymatic activity through a reduced synthesis and release of urease
enzyme by soil microbes (Ajwa et al., 1999; Fatemi et al., 2016;
Sinsabaugh and Follstad, 2012; Song et al., 2017). Likewise, we did
not find a significant response of B-glucosidase enzyme activity to
N fertilization, similarly to the findings from low-alpine heathlands
(Papanikolaou et al., 2010), forests (Boot et al., 2016; Fatemi et al.,
2016), and peatlands (Song et al., 2017). This lack of response is
most likely the result of (1) the unaltered soil organic C contents,
suggesting that the activity of this enzyme is substrate-dependent
(Cenini et al., 2016; Lopez-Poma and Bautista, 2014), and (2) of
the fact that soil microbial communities, which predominantly syn-
thetize B-glucosidase enzyme, are not limited by soil C availabil-
ity (Sinsabaugh and Follstad, 2012). Indeed, we found no significant
changes in soil microbial biomass C and N in response to increased N

availability, in agreement with other studies from temperate (Nielsen
et al., 2009) and arctic (< 10 years of N inputs; Rinnan et al., 2007)
heathlands; but different from previous studies in which both or ei-
ther soil microbial biomass N or C increased (e.g., upland and lowland
heathlands: Johnson et al., 1998; Power et al., 2006; temperate forests:
Du et al., 2014) or decreased (e.g., peatlands: Song et al., 2017;
forests: Boot et al., 2016). Our results support the fact that there is a re-
duced microbial acquisition and immobilization of nutrients that main-
tains the low soil fertility status of montane heathlands (Nielsen et al.,
2009). Furthermore, the distinctive climatic conditions of our montane
study area, characterized by low temperatures, prolonged snow cover
until late-spring, and a brief summer drought (Calvo-Fernandez et al.,
2017), could have also influenced the low rates of soil microbial nutri-
ent acquisition (Calvo-Fernandez et al., 2015; Hagedorn et al., 2010).
Moreover, previous studies indicated that longer-term (> 10-year) N
inputs may be required for producing significant shifts in the nutrient
content of the soil microbial biomass in heathlands due to the slow or-
ganic matter decomposition rates (Contosta et al., 2015; Rinnan et al.,
2007).

As we hypothesized, N addition increased Calluna tissue N and P
contents, especially in the chronic high N treatment (N56), and Cal-
luna N:P ratio, particularly in the high (N50) and chronic high (N56)
N treatments. This is in agreement with previous N-fertilization ex-
periments and field-scale surveys performed in north-western Euro-
pean heathlands (Jones and Power, 2012; Pilkington et al., 2005b;
Southon et al., 2012). According to the N:P threshold values pro-
posed by Giisewell (2004) in terrestrial plant communities (i.e., N:P
ratio < 10 for N-limited and > 20 for P-limited systems), our results
indicated that montane Calluna heathlands subjected to long-term N
fertilization may not be limited by either N or P (see Britton et al.,
2008; Friedrich et al., 2011; von Oheimb et al., 2010). The reported
increase in Calluna tissue N and P contents may be related to the ob-
served increases in litter N and P contents (Jones and Power, 2012),
likely due to the inputs of the N and P enriched shoots to the litter
layer (Pilkington et al., 2005b). However, the increase in Calluna tis-
sue and litter P contents did not alter soil available P content, since
all newly-mineralised soil P may have been immediately taken up by
the plants or incorporated into the soil microbial biomass to satisfy
their enhanced P demands in response to the addition of N (Friedrich
etal., 2011; Johnson et al., 1998, 1999; Jones and Power, 2015; Rowe
et al., 2008); or even immobilized by iron and aluminium (hydr)ox-
ides in acid soils (Kooijman et al., 1998). Particularly, the enhanced
P demand of Calluna plants in the chronic high N treatment (N56) in
low available P status of heathland soils was probably satisfied by: (1)
the observed increase in the activity of soil acid phosphatase enzyme
that is necessary for the mineralization of soil organic P (Lopez-Poma
and Bautista, 2014; Pilkington et al., 2005a; Rowe et al., 2008); and
by (2) the observed increase in the degree of Calluna root mycorrhizal
colonization by ericoid fungi that might enhance plant nutrient uptake
from the widely extended hyphae network (Diaz et al., 2006; Jones
and Power, 2012; Rowe et al., 2008), including the nutrient uptake
of organic forms (Johnson et al., 2005). Besides, ericoid mycorrhizal
fungi are able to produce and release acid phosphatase enzyme to pro-
vide inorganic P (Cairney and Burke, 1998). By contrast, other heath-
land studies showed that increasing N loadings tended to decrease the
ericoid mycorrhizal colonization in Calluna roots due to the little ben-
efit of mycorrhizal fungi in non-limited nutrient conditions (Yesmin et
al., 1996). Moreover, a decrease in root mycorrhizal colonization with
increasing N inputs was also observed by Camenzind et al. (2016) in
an N-fertilization experiment in montane forests, pointing out that the
response of mycorrhizal fungi to N loading depends on the soil fertil-
ity status previous to fertilization.
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Fig. 5. Model predicted values (mean + 95% confidence intervals) of Calluna shoot and litter nutrient contents in relation to stand age and the N treatments: N (%), P (%), and N:P
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4.2. Age-related effects of N fertilization

As expected, greater above-ground biomass in mature heathlands
required higher N and P amounts to increase the relative nutrient con-
tents of Calluna plants, and this effect was amplified by N fertiliza-
tion. As a result, lower soil nutrient availability, mainly extractable
N-NO; and available P, was found in mature stands as compared to
young ones. Furthermore, higher N demand by mature Ca/luna plants
may have induced a lower N content in the soil microbial biomass as
Calluna plants are better competitors than microbes for soil nutrients
(Harrison et al., 2008). Similarly, higher P demand by mature Calluna
plants may have induced a lower litter P content in the medium (N20),
high (N50) and chronic high (N56) N treatments compared to young
ones, likely due to P resorption from senescing plant biomass to phys-
iologically-active shoots (Aerts and Chapin, 2000).

Mycorrhizal colonization of Calluna roots varied not only with
plant age (Read and Pérez-Moreno, 2003), but also with the amount
of experimental N-loading. Young Calluna plants in the control (NO),
low (N10) and medium (N20) N treatments had significantly higher
percentages of roots colonized by ericoid mycorrhizal fungi than ma-
ture plants (see Johansson, 1994), possibly to facilitate nutrient mobi-
lization (Diaz et al., 2006; Read and Pérez-Moreno, 2003). However,
mature Calluna plants subjected to the high (N50) and chronic high
(N56) N treatments showed significantly greater mycorrhizal root col-
onization, probably in response to their higher P demands (Diaz et

al., 2006; Johnson et al., 1999). Besides, higher aboveground bio-
mass of mature stands could transfer greater amounts of photosyn-
thesized-carbohydrates to ericoid mycorrhizal fungi for extending the
mycelial network and increasing the access to soil nutrients (Johnson
et al., 2005).

Finally, young Calluna plants had significantly higher shoot N
and P and litter N contents than mature ones across all N treatments,
very likely indicating that (1) young plants may acquire high amounts
of nutrients to support their greater and faster annual growth rates
(Gimingham, 1972; Jones and Power, 2015), while (2) mature plants
with lower annual growth rates may store the acquired nutrients more
evenly in their higher above- and below-ground plant biomass.

4.3. Implications for ecosystem sustainability

Our findings demonstrated that many components of the soil-mi-
crobial-enzyme system of marginal montane heathlands did not re-
spond to the experimental addition of N, even after long-term
(10-year) high N loading (56 kg N ha ' yr ' plus background N de-
position). This might suggest that montane heathland ecosystems may
either be quite resistant and adapt well to enhanced N availability
(Calvo et al., 2005; Marcos et al., 2003) or require longer time peri-
ods of N inputs before the deleterious effects of N loading on their
biogeochemical properties become evident. It seems rather likely that
the limited biotic activity and the slow nutrient cycling associated
to the particular climatic conditions of montane heathlands may be
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Table 3

LMM results [‘anova()’ outputs] for the effects of heathland age (young vs mature) and
N treatment (NO, N10, N20, N50, and N56) on Calluna shoot and litter nutrient con-
tents. The interaction term (age * N treatment) was retained in the models only when
significant. Standard deviations (SD) and variance components (%) of the random ef-
fects (identity of the heathland sites and the sampling years) are given. Df = degrees of
freedom. Significant p-values are in bold face.

Response
variable Fixed effects Random effects
Predictor F
variable Df value pvalue Variable SD Variance
Calluna shoot nutrient contents
N content Age 1 2235 <0.001 Site 0.023  13.96
N treatment 4 5897 <0.001 Year 0.041 24.56
Residual  0.102 61.48
P content Age 1 11.86 <0.001 Site 0.011 39.98
N treatment 4  8.42 <0.001 Year 0.004 14.62
Residual  0.013  45.40
N:P ratio Age 1 251 0.115 Site 2.033 4053
N treatment 4  6.28 <0.001 Year 0.582 11.61

Residual  2.400 47.86
Litter nutrient contents

N content Age 1 21.50 <0.001 Site 0.084 24.55
N treatment 4 39.12 <0.001 Year 0.104 30.43

Residual 0.154 45.03

P content Age 1 596 0.016 Site 0.010 33.54
N treatment 4  3.18 0.015 Year 0.008 25.56

Age:N 4 375 0.006 Residual  0.013  40.90

treatment

N:P ratio Age 1 0.01 0914 Site 3.002 30.60
N treatment 4  4.01 0.004 Year 1.460 14.88

Residual 5.348 54.52

causative factors for this lack of response to the added N (Hagedorn
et al., 2010). Furthermore, the apparent ability of montane Calluna
plants to withstand disturbance factors (i.e., insect defoliation, drought
and frost; see Section 2.2 ‘Experimental design’), suggests that these
marginal heathlands may be quite resilient to N loading. Calvo et al.
(2007) also found that the vegetation of Cantabrian montane heath-
lands is resilient to disturbances like N loading and intense manage-
ment practices, recovering the pre-disturbed vegetation structure and
composition. However, further long-term research is needed to fully
understand the effects of chronic N deposition and its interactions
with other episodic biotic and abiotic stressors (like insect pest out-
breaks; Taboada et al., 2016) and global environmental change factors
(Meyer-Griinefeldt et al., 2016) on the functioning of montane heath-
lands.

5. Conclusions

The results found in our study constitute a novelty in the field of
heathland ecology in the context of accelerating global environmen-
tal change. This is the first assessment of the impact of cumulative
N loading on the plant-soil-microbial-enzyme system of heathlands at
their southern distribution limit, in relation to the life-history stage of
the dominant dwarf shrub. Our results demonstrated for the first time
that many biogeochemical properties of marginal montane heathlands
(including soil organic C and total N, extractable N-NO; and avail-
able P; microbial biomass nutrient contents; and urease and B-glu-
cosidase enzyme activities) do not respond to the enhanced availabil-
ity of N. However, N fertilization leads to increased soil extractable
N-NH4+, enhanced Calluna tissue N and P contents, increased litter N
content, and enhanced shoot and litter N:P ratios; these effects being
amplified under chronic (10-year) high N inputs (56 kg Nha ' yr !
plus background N deposition). N enrichment further results in a

greater P demand by Calluna plants, which is supplied by (1) an in-
crease in acid phosphatase enzyme activity and by (2) higher percent-
ages of root mycorrhizal colonization by ericoid fungi.

Furthermore, our study highlights the relevance of taking into ac-
count the age of vegetation when investigating the responses of the
plant-soil-microbial-enzyme system of European heathlands to cumu-
lative N loading. Calluna stands in the mature phase of development
have lower soil extractable N-NO; and available P, and lower plant
tissue N and P contents and litter N content than young ones, owing
to higher nutrient demands and uptake rates by mature Ca/luna plants
with more above-ground biomass. These greater nutrient demands of
mature Calluna plants possibly lead to (1) lower N content in the soil
microbial biomass and (2) greater root mycorrhizal colonization by
ericoid fungi under high N availability.
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