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a  b  s  t  r  a  c  t

The  European  Landscape  Convention  encourages  the  inventory  and  characterization  of  landscapes  for
environmental  management  and  planning  actions.  Among  the range  of  data  sources  available  for  land-
scape  classification,  remote  sensing  has substantial  applicability,  although  difficulties  might  arise  when
available  data  are  not  at the  spatial  resolution  of operational  interest.  We  evaluated  the  applicability  of
two  remote  sensing  products  informing  on land  cover  (the categorical  CORINE  map  at 30  m resolution
and  the continuous  NDVI  spectral  index at 1 km resolution)  in landscape  classification  across  a  range
of  spatial  resolutions  (30 m,  90 m,  180  m,  1 km),  using  the  Cantabrian  Mountains  (NW  Spain)  as  study
case.  Separate  landscape  classifications  (using  topography,  urban  influence  and  land  cover  as  inputs)
were accomplished,  one  per  each  land  cover  dataset  and  spatial  resolution.  Classification  accuracy  was
estimated  through  confusion  matrixes  and  uncertainty  in  terms  of both  membership  probability  and
confusion  indices.  Regarding  landscape  classifications  based  on  CORINE,  both  typology  and  number  of
landscape  classes  varied  across  spatial  resolutions.  Classification  accuracy  increased  from  30  m  (the  orig-
inal resolution  of CORINE)  to  90m,  decreasing  towards  coarser  resolutions.  Uncertainty  followed  the
opposite  pattern.  In  the case of landscape  classifications  based  on NDVI,  the  identified  landscape  pat-
terns  were  geographically  structured  and  showed  little  sensitivity  to changes  across  spatial  resolutions.
Only  the  change  from  1 km (the  original  resolution  of  NDVI)  to 180  m improved  classification  accuracy.
The  value  of confusion  indices  increased  with  resolution.  We  highlight  the need  for  greater  effort  in
selecting  data  sources  at the  suitable  spatial  resolution,  matching  regional  peculiarities  and  minimizing
error  and  uncertainty.

© 2016  Published  by  Elsevier  B.V.

1. Introduction

Different policies have been developed in Europe aiming to
regulate landscape conservation, such as the Pan-European Biolog-
ical and Landscape Diversity Strategy (Council of Europe, 1996),
the Action Plan for European Landscapes (ECNC, 1997) and the
European Landscape Convention (Council of Europe, 2000). Specif-
ically, the European Landscape Convention encourages Contracting
Parties to identify and classify their landscapes for protection, man-
agement and planning. In this way, a wide range of initiatives has
been implemented at continental, national and regional scales in
Europe, attempting to accomplish this recommendation. Exam-
ples are the European Landscape Map  (LANMAP2) (Mücher et al.,
2010), the Spanish Landscape Atlas (Mata Olmo and Sanz Herráiz,

∗ Corresponding author.
E-mail addresses: pgarcl@unileon.es, paula.gllmas@gmail.com

(P. García-Llamas).

2003) and the German Typology of Landscapes (Gharadjedaghi
et al., 2004). However, despite efforts, the European Landscape
Character Initiative (ELCAI) (Wascher, 2005) highlighted discrep-
ancies in these landscape classifications in terms of methodology,
data sources, spatial resolution and nomenclature (Mücher et al.,
2010), which make them incompatible and largely incomparable
(Van Eetvelde and Antrop, 2008). Thus, the development of con-
sistent methodologies for landscape classification, able to identify
with realism, basic spatial units for use in environmental applica-
tions at a large scale, is necessary to fulfil policy and operational
requirements (Blasi et al., 2000). Q3

Numerical landscape classifications allocate patches of territory
with similar characteristics (e.g., geology, topography, hydrology,
land cover, socio-economy) into homogeneous landscape units.
Among all landscape components, land cover is probably the most
relevant, as it represents the interface between natural conditions
and human influences, both across space and time. There is a wide
range of data sources that can be used to describe land cover in envi-
ronmental applications (Tomaselli et al., 2013), mainly consisting
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Fig. 1. Study area: The Cantabrian Mountains (NW Spain). Information on biogeographic regions was obtained from the Spanish Ministry of Agriculture Food and Environment
(http://www.magrama.gob.es/).

of categorical land cover maps derived from remote sensing data,
as the International Geosphere-Biosphere Programme (Belward,
1996), the FAO land cover classification system (Di Gregorio and
Jansen, 1998, 2004) or the CORINE Land Cover Programme (Bossard
et al., 2000). Currently, most of these data can be found freely avail-
able, which can be useful for landscape managers, mainly when
founding is limited (Nagendra et al., 2013). However, the match-
ing between the spatial resolution of these products, with that at
which landscape is intended to be characterized it is not always
achievable (Garrigues et al., 2006; Shao and Wu,  2008). A lack of
appropriate information can result in a gap between both, desired
and hard-headed spatial resolution at which patterns and process
can be represented (McCabe and Wood, 2006), generating spatial
discrepancies between reality and analysis resolution.

Within the European context, CORINE is probably the data
source most used to generate integrative landscape classifications
in combination with other thematic data (Mücher et al., 2003, 2006,
2010; Van Eetvelde and Antrop, 2008; Cullotta and Barbera, 2011).
However, despite its wide application, CORINE is a classification
product derived from Landsat TM imagery that shows important
problems of uncertainty (Regan et al., 2002), which can be prop-
agated in subsequent analyses (Shao and Wu,  2008). Therefore,
it should be carefully evaluated prior use to guaranty its appli-
cability in management (Foody and Atkinson, 2002; Rae et al.,
2007; Kennedy et al., 2009; Hou et al., 2013). This issue become
especially relevant in mountain systems, where topographic and
microclimatic patterns (Oke and Thompson, 2015) make ecological

conditions to change substantially over relatively short distances,
providing a wide range of environments and hence, a great diver-
sity of habitats and species (Becker and Bugmann, 2001). Because of Q4
this environmental heterogeneity, classifying land cover in moun-
tain areas is especially challenging due to the existence of mixed
pixels that can mislead the final classifications (Álvarez-Martínez
et al., 2010). Considering these constraints inherent to categorical
maps, a good alternative could be the use of continuous vari-
ables as the spectral indices derived from remote sensing imagery
(Suárez-Seoane et al., 2002; Morán-Ordóñez et al., 2012; Álvarez-
Martínez et al., 2015; Roces-Díaz et al., 2015). The spectral index
most commonly used in environmental research is the Normalized
Vegetation Index (NDVI) (Rouse et al., 1973; Tucker, 1979). This
index has been related to functional attributes of ecosystems like
aboveground net primary production (Paruelo et al., 2001), veg-
etation functional characteristics such as phenology or primary
productivity (Gamon et al., 2013) and vegetation structure such
as aboveground biomass (Zhu and Liu, 2014). Many authors have
applied this index to produce categorical land cover maps which
are then used in subsequent analysis (Muniaty and Ratshibvumo,
2010; Tchuenté et al., 2011; Pervez et al., 2014). Nevertheless, we
found no studies using this product as a direct input in integrative
landscape classifications. The reason could be that NDVI provides
an indication of the “greenness” of vegetation but does not inform
directly on land cover, which may  hamper the interpretation of final
maps (Wang and Tenhunen, 2004).
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Fig. 2. On the left (a.1–d.1), landscape patterns achieved from classifications based on topography, urban influence and land cover (CORINE) and on the right (a.2–d.2) the
associated Confusion Index maps (CI) at various spatial resolutions: (a) 30 m,  (b) 90 m,  (c) 180 m and (d) 1 km.  See Table 2 and Supplementary material S4–S8 for explanation
and  statistical characterization of landscape classes.

This study aims to explore the applicability of two  of the most
readily available open remote sensing products accounting for land
cover (the CORINE land cover classification from Landsat at 30 m
resolution and the spectral index NDVI from NOAA-AVHRR at a
1 km)  for integrative landscape classification across spatial reso-
lutions. In particular, we explore: (i) how classification typology
and landscape pattern change across spatial resolution; (ii) how
the error and uncertainty associated with data source, spatial reso-
lution and landscape classification process could influence results
in a complex mountain system.

2. Material and methods

2.1. Study area

The study area lies in the Cantabrian Mountains (northwestQ5
Spain) located at the transition between Eurosiberian and Mediter-
ranean biogeographical regions (Rivas-Martínez, 1987) (Fig. 1). This
is an area of 31,494 km2 with altitudes ranging from sea level to
2650 m.a.s.l. Average annual rainfall varies from 700 to 2400 mm
and mean annual temperature from 4 ◦C to 22 ◦C. Landscape pat-
tern is heterogeneous and is driven by climatic and topographic
conditions, as well as human activities. Land cover types vary from
crop fields (in lowlands) to natural vegetation (in mid-highlands),
including heathlands scrublands and deciduous forests dominated
by Fagus sylvatica, Betula pubescens,  Quercus petraea and Quer-

cus robur on northern slopes and Quercus pyrenaica and Quercus
rotundifolia on southern slopes. In addition, plantations of Pinus
pinaster, Pinus radiata and Eucalyptus globulus can be found in the
study area, covering medium-to-low slopes previously occupied by
shrubs and heathers. The Cantabrian Mountains have been widely
recognized as a hot spot of biodiversity hosting a wide variety of
ecosystems habitats and endemic species (Worboys et al., 2010;
Álvarez-Martínez et al., 2011; Morán-Ordóñez et al., 2011).

2.2. Input environmental variables: topography, urban influence
and land cover

We derived a set of environmental variables informing on topog-
raphy, urban influence and land cover at four spatial resolutions
(30 m,  90 m,  180 m and 1 km)  (Table 1). Pixel sizes of 30 m and 1 km
correspond to the original resolution of the remote sensing data
accounting for land cover, while 90 m and 180 m are intermediate
resolutions chosen according to data availability on topography and
urban influence.

Topographic variables consisted on elevation solar radiation and
slope. They were calculated separately from four Digital Elevation
Models (DEM) proximal to the above-mentioned spatial resolutions
and obtained from the Spanish Geographic Institute (www.ign.
es), and the U.S. Geological Survey (www.usgs.gov). Urban influ-
ence was  estimated as the Euclidian distance to urban settlements,
independently for the target spatial resolutions, using data from
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Table  1
Variables used for landscape classification. Variables accounting for topography and urban influence were calculated independently at 30 m,  90 m,  180 m and 1 km of spatialQ9
resolution from different data sources, while those accounting for land cover (CORINE and NDVI) were derived at each target spatial resolution by pixel aggregation or pixel
resampling from the original data source.

Family Code Description Original data set

Topography DEM Elevation (in meters) Digital Elevation Models (DEM) at
25 m,  90 m,200 m and 1 km of
spatial resolution

SLO Slope (in percentage)
SOLR Solar radiation (×106 W/h)

Urban influence AC Urban influence across the territory measured as Euclidian
distance to settlements (in meters)

Vector layers at 1:25,000,
1:100,000, 1:200,000 and
1:500,000.

Land  cover (CORINE) INFRA Human infrastructures (%) CORINE Land Cover 2006 at 30 m
spatial resolutionMIN  Mineral extraction sites (%)

HERC Herbaceous crop lands (%)
WOOC Woody crop land coverage (%)
PAS Pasturelands (%)
FOR Forest coverage (%)
TWOOD Transitional woodland-shrublands (%)
SCRUB Mosaic of sclerophyllous-herbaceous vegetation (%)
SPAR Sparsely vegetated areas (%)
BARE Bare areas (%)
WET  Wetlands (%)
WAT  Water (%)

Land cover (NDVI) NDVI Annual average NDVI index (no units ranging from −1 to
+1)

NDVI from NOAA-AVHRR at
1  km of spatial resolution for
years 1983, 1985, 1990, 1993
and 1996

the Spanish Geographic Institute (www.ign.es). Land cover vari-
ables were generated from two datasets: (i) the CORINE categorical
map  for the year 2006 at 30 m of spatial resolution; and (ii) a
mean annual NDVI spectral index at 1 km,  derived from a temporal
monthly series for years 1983, 1985, 1990, 1993, 1996 and 1999.
The CORINE Land Cover classification (http://www.eea.europa.eu/
publications/COR0-landcover) comprises 44 land cover classes at
the most detailed of the three available levels (Bossard et al., 2000).
But, in the study area, only 38 out of the 44 classes were present.
These classes were reclassified into 12 main categories with the
purpose of simplifying the original dataset (see S1). With the aim of
improving map  reliability, the resulting product was merged with
an extra dataset of rivers and infrastructures (roads, railways and
settlements) downloaded from the Spanish Geographic Institute
site (www.ign.es), at 1:200,000 spatial resolution. To account for
the accuracy of this new CORINE map, we carried out a visual val-
idation based on coetaneous orthophotographs (years 2006–2009,
at 1:5000–1:10,000 spatial resolution) and field surveys (Bossard
et al., 2000; Vogiatzakis et al., 2006; Kienast et al., 2009) on a dataset
of 320 sampling points. We  followed a stratified random sampling
design by municipality and land cover class, being, therefore, the
sampling size proportional to the extent of the municipalities and
land cover classes. Accumulative adjustment curves were created
to identify a representative number of points. The overall accuracy
of the new CORINE was 82.5%, ranging across land cover classes
from 66.67 to 100% (S1). The map  was resampled at the four tar-
get spatial resolutions by using the majority rule, which is one of
the most common approaches to aggregate categorical data (Wu,
2004). The 12 classes of the new CORINE were subsequently turned
into independent continuous variables by calculating the propor-
tion covered by class at each pixel of 30 m,  90 m,  180 m and 1 km.
NDVI original data were captured by an Advanced Very High Reso-
lution Radiometer (AVHRR) on board the NOAA satellite, received
by the Natural Environment Research Council Satellite Receiving
Station at Dundee (UK) and processed by the Remote Sensing Group
at the Plymouth Marine Laboratory (UK). See Suárez-Seoane et al.
(2002) and Osborne et al. (2007) for technical details on these data.
The original NDVI dataset had a pixel size of 1 km and was resam-

pled to the above-mentioned spatial resolutions using a nearest
algorithm.

Prior to landscape classification analysis we  standardized all
continuous environmental variables (Table 1) to set them to the
same range, by applying the Eq. (1)

Z = (X  − oldmin) × (newmax − newmin)
(oldmax − oldmin)

+ newmin (1)

where Z is the output raster with new data ranges, X is the input
raster, oldmin is the minimum value of the input raster, oldmax
is the maximum value of the input raster, newmin is the desired
minimum value for the output raster and newmax is the desired
maximum value for the output raster.

2.3. Landscape classification across spatial resolutions: accuracy
and uncertainty

We  accomplished eight landscape classification analyses for the
Cantabrian Mountains based on topography, urban influence and
land cover (Table 1). We  carried out an independent analysis for
each land cover dataset (CORINE and NDVI) and spatial resolution
(30 m, 90 m,  180 m and 1 km). First, we ran a Principal Components
Analysis (PCA) over the standardized variables. We  then clustered
similar pixels into comprehensive landscape classes, by applying
an unsupervised classification with the maximum likelihood algo-
rithm on the PCA components (Schowengerdt, 1983; Conese and
Maselli, 1992). A similar methodological approach to classify land-
scape has been used by other authors such as Owen et al. (2006),
Morán-Ordóñez et al. (2011) and Gan et al. (2012).

The error of each landscape classification was  measured in terms
of accuracy, which was quantified by using thematic information
related to topography, urban influence and land cover and ortho-
photographs (years 2006–2009, scale 1:5000–1:10,000), (Bossard
et al., 2000; Vogiatzakis et al., 2006; Kienast et al., 2009). Each
landscape map  was evaluated using independent datasets of 300
points each, that were collected across the study area by applying
a random sampling design stratified by class. This sampling size
guaranteed an adequate representativeness of all landscape classes
and was defined according to accumulative adjustment curves (S2),
which allowed for identifying the appropriated number of valida-
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Fig. 3. On the left (a.1–d.1), landscape patterns achieved from classifications based on topography, urban influence and land cover (NDVI) and on the right (a.2–d.2) the
associated Confusion Index maps (CI) at various spatial resolutions: (a) 30 m, (b) 90 m,  (c) 180 m and (d) 1 km. See Table 3 and Supplementary material S4, S9 and S10 for
explanation and statistical characterization of landscape classes.

tion points for each landscape classification. We  avoided the use of
a unique testing dataset for validating all landscape classifications
because any selection of points would be biased towards a partic-
ular spatial resolution and/or original data source. We  created a
confusion matrix for each classification obtaining the overall per-
centage of points correctly allocated to landscape classes and the
user’s and producer’s accuracy per class.

The maximum likelihood rule allocates pixels to classes accord-
ing to their maximum membership probability. However, a pixel
may  have a certain degree of similarity to more than one class and
therefore, almost equal probability of membership to all of them.
In these cases, pixel allocation can be erroneous (Lewis et al., 2000).
This problem is considered a main source of uncertainty in classi-
fication processes (Foody, 2000; Owen et al., 2006). To assess the
uncertainty derived from erroneous allocations for each pixel in
each class, we applied the methodology of Álvarez-Martínez et al.
(2010), which is based on fuzzy membership to all landscape clas-
sifications. We  distinguished between two aspects of classification
uncertainty: (i) the uncertainty of pixel allocation to a particular
class (probability of membership); and (ii) the confusion associated
with the classification of a pixel among classes accepting that one
pixel can belong to more than one class (expressed by the Confu-
sion Index). Membership is a measure of the similarity between the
characteristics of a particular pixel and the representative vector of
a class (Bollinger and Mladenoff, 2005). It was estimated by cal-
culating the Euclidian distance between each pixel value and the
characteristic vector of the class. A large Euclidian distance indi-
cates large differences between the pixel attributes and the typical
case of the target class. In this case, membership probability will

be low and uncertainty high. Membership values were then used
to create a Confusion Index (CI)  map. We  calculated the differ-
ence between the highest membership probability to a class and
the second-largest membership probability for the same pixel to
another class. When a class dominates, differences between the
highest and the second highest class membership probability is
large. In this situation, CI tends towards “1” and there is little confu-
sion in class allocation. Otherwise, when membership is similar to
more than one class, confusion among classes is high and CI tends
towards “0”.

All analyses were done in ArcGIS 10.2 (Esri. 2014).

3. Results

3.1. Landscape patterns and classification typologies

Landscape patterns derived from landscape classifications based
on CORINE, as a proxy of land cover, showed a weak geographic
structure (Fig. 2, cases a.1–d.1). The number of landscape classes
decreased when pixel size became coarser: eleven classes at 30 m,
ten at 90 m and 180 m and five at a 1 km spatial resolution. The
typology of the classes also varied among these spatial resolutions.

When using NDVI as land cover data source in landscape classi-
fication, the resulting landscape mosaic was strongly structured
across a gradient North to South, being this geographic pattern
consistent across spatial resolutions (Fig. 3, cases a.1–d.1, S3). Clas-
sifications led to the identification of 11 classes at 30 m,  90 m and
180 m and 7 at 1 km pixel size. Thus, classification typology showed
little sensitivity to changes across spatial resolutions.
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Table  2
Description of landscape classes obtained from a set of variables accounting for topography, urban influence and land cover (CORINE). See Supplementary material S4–S8 for
further explanations.

Class Description

30 m resolution
1 Forests covering coastal and middle-mountain areas under 1000 m.a.s.l.
2  Forests covering central mountains and piedmont areas at altitudes above 1000 m.a.s.l.
3  Transitional to woodlands with relatively low urban influence covering mainly Atlantic and Sub-Atlantic mountains, in areas

with mid-low altitudes (600 m.a.s.l.)
4  Transitional woodlands from central and southern areas of the Cantabrian Mountains, with altitudes from1500 to 900 m.a.s.l.
5  Pastures in mid-low (under 800 m.a.s.l.) Atlantic mountains and coastal areas
6  Pastures covering bottom valleys and hillsides of central Cantabrian Mountains, with altitudes ranging from 1500 to

1000  m.a.s.l.
7  Shrub-herbaceous associations lying at altitudes between 1200–500 m.a.s.l.
8  Croplands from depressions and coastal areas at low altitude close to settlements
9  Croplands (non-irrigated arable lands) from paramos and countrysides under 1000 m.a.s.l., being the closest class to

settlements
10  Water surfaces and artificial surfaces in areas of wide altitudinal ranges
11  Rocks and areas with little or no vegetation covering wide altitudinal ranges

90  m resolution
1 Forests covering coastal and middle-mountain areas mainly from Atlantic and Sub-Atlantic mountains, under 850 m.a.s.l. and

relatively close to settlements
2  Forests covering central mountains and piedmont areas with low urban influence at altitudes above 900 m.a.s.l., with low

urban influence
3  Transitional to woodland areas across a wide altitudinal range
4  Shrub-herbaceous associations lying at altitudes between 1200–500 m.a.s.l.
5  Pastures in mid-low Atlantic mountains and coastal areas under 600 m.a.s.l.
6  Pastures covering bottom valleys and hillsides of central Cantabrian Mountains with altitudes ranging from 1400 to 700 m.a.s.l.
7  Croplands from coastal areas depressions paramos and country sides under 1000 m.a.s.l.
8  Rocks and areas with little or no vegetation covering a wide altitudinal range
9  Water surfaces covering a wide altitudinal range
10  Settlements roads railways or mines at very low altitude

180 m resolution
1 Areas with little vegetation and forests, covering coastal and middle-mountain areas mainly from Atlantic and Sub-Atlantic

mountains, situated at a wide altitude range
2  Forests covering high central mountains and piedmont areas with relative urban influence, at altitudes above 1000 m.a.s.l.
3  Forests covering depressions paramos and countrysides in altitudes under 1000 m.a.s.l.
4  Transitional to woodland areas at wide altitudinal ranges and relative high urban influence
5  Shrub-herbaceous associations lying at altitudes between 1200–500 m.a.s.l.
6  Pastures covering areas with wide altitudinal and solar radiation range at middle to slight slope
7  Croplands from coastal areas depressions paramos and country sides under 1000 m.a.s.l.
8  Rocks and areas with no vegetation covering a wide altitudinal range
9  Water surfaces covering a wide altitudinal range
10  Settlements roads railways or mines at very low altitude

1  km resolution
1 Forests lying at wide altitude range
2  Transitional woodland and shrub areas with fairly urban influence at wide altitudinal ranges
3  Pastures covering areas with relative urban influence and wide altitudinal
4  Croplands from coastal areas depressions paramos and countryside along with water surfaces under 1000 m.a.s.l.
5  Rocks areas with no vegetation and artificial surfaces covering a wide altitudinal range

See Tables 2 and 3 and Supplementary material S4–S10 for a
detailed characterization of landscape classes.

3.2. Landscape classification accuracy

Landscape classifications based in CORINE land cover data
reached an overall accuracy higher than 80% at all spatial resolu-
tions, with user’s and producer’s accuracy per class higher than 50%
and 68%, respectively (Table 4). When the spatial resolution of anal-
ysis decreased from 30 m (the original pixel size of CORINE) to 90 m,
classification accuracy improved. However, when the spatial reso-
lution was coarser than 90m, classification accuracy diminished.

Landscape classifications based on NDVI grasped an overall
accuracy higher than 79% at all spatial resolutions, with user’s and
producer’s accuracy per class higher than 57% and 65% respec-
tively (Table 5). When the spatial resolution of analysis increased
from 1 km (the original pixel size of NDVI) to 180m, classification
accuracy improved. Nevertheless, when the spatial resolution was
higher than this, classification accuracy decreased.
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In none of the cases, classification accuracy was maximal at the
original spatial resolution of NDVI and CORINE land cover datasets
(i.e., 30 m and 1 km pixel size respectively) (Fig. 4).
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Table  3
Description of landscape classes obtained from a set of variables accounting for topography, urban influence and land cover (NDVI). See supplementary material S4, S9 and
S10  for further explanations.

Class Description

30 m 90 m and 180 m resolution
1 Sea inlets, coastal plains and sub-coastal valleys, located at the lowest altitude dominated by a mosaic of crops and pastures

with  a high presence of natural vegetation
2  Hillsides under a.s.l. with a northern exposure and mid-high slope from Atlantic and Sub-Atlantic mountains, covered by a

mosaic of scrubs and forests mixed with pastures in coastal areas
3  Hillsides under 650 m.a.s.l., with a southern exposure and mid-high slope from Atlantic and Sub-Atlantic mountains, covering

by  a mosaic of scrubs and forests mixed with pastures in coastal areas
4  Complex cultivation patterns (crops and pasture mosaic) with high presence of natural vegetation in areas, with moderate

slope at low altitude
5 Woody and scrub vegetation with rock formations covering northern faces of the upper part of Atlantic mountains
6  Woody and scrub vegetation with rock formations covering southern faces of the upper part of Atlantic mountains
7  Hillsides in the central area of the Cantabrian Mountains above 1400 m.a.s.l., with northern exposure and dominated by rock

formations with moors and high mountain forests
8  Hillsides and mid-hillsides under 1400 m.a.s.l. and valleys above 1300 m.a.s.l. in the central area of the Cantabrian Mountains,

with  sun-facing exposure and dominated by broadleaf forest mixed with pastures and heathlands
9  Peaks and mountainsides above 1400 m.a.s.l. with southern western and eastern exposures in the central areas of the

Cantabrian Mountains and dominated by rock formations pastures moors heathlands and forests
10  Valley bottoms from high central areas of the Cantabrian Mountains extending to piedmont areas, dominated by pastures in

the  valley bottoms and mosaics of forests scrubs and crops in piedmont areas
11  Paramos, countryside and depressions at low altitude, with moderate to high solar radiation rates and dominated by intensive

crops

1  km resolution
1  Sea inlets, coastal plains and sub-coastal valleys, located at the lowest altitude and dominated by a mosaic of crops and

pastures with a high presence of natural vegetation.
2 Coastal hills under 800m, with moderate solar radiation and slope dominated by pastures with natural vegetation areas
3  Depressions mainly covered by complex cultivation patterns in areas with an average altitude of 600 m. 600 m.a.s.l., slight

slope  and moderate to high solar radiation rates
4  Middle mountain areas under 1400 m.a.s.l. with moderate solar radiation and slope rates, dominated by forests scrub and

transitional woodland formations
5  High central mountains with an average altitude around 1400 m.a.s.l. with moderate slope, high solar radiation rates and

dominated by forests, scrubs and bare and semi-bared areas
6  Valley bottoms from high central areas of the Cantabrian Mountains extending to piedmont areas and Sub-Atlantic

mountains, with gentle slope and dominated by pastures in valley bottoms and forest formations accompanied by scrubs and
mosaic of crops fields in piedmont areas

7  Paramos, countryside and depressions with moderate to high solar radiation rates and dominated by crops

3.3. Landscape classification uncertainty

Regarding CORINE-based landscape classifications, member-
ship probability was dependent on the spatial resolution, as
Euclidean distances between pixel attributes and the characteristic
vector of the class decreased when pixel size increased from 30 m to
90m. However, they consistently increased when pixel size became
coarser than 90 m (Table 4). The higher differences in Euclidean
distances among classes were detected at 30 m resolution. Addi-
tionally, the confusion associated with the classification of a pixel
among classes was also dependent on the spatial resolution of anal-
ysis (Fig. 2; cases a.2–d.2). Classes were represented with lower
confusion at 1 km and 90 m pixel size. In contrast, the highest con-
fusion was found at the original (30 m)  and intermediate (180 m)
spatial resolutions.

Considering NDVI-based classifications, membership probabil-
ity almost did not vary across spatial resolutions (Table 5). There
were no clear differences in Euclidean distances among classes at
any spatial resolution. The use of NDVI in landscape classification
produced high confusion among classes (CI values closer to 0) (Fig.
3; cases a.2–d.2). We  did not find consistent differences in CI values
among 30 m,  90 m and 180 m spatial resolutions, with CI increasing
only at 1 km grain size.

4. Discussion

We  have demonstrated the value of two of the most readily
available remote sensing products accounting for land cover (the
CORINE land cover map  from Landsat TM at a 30 m pixel size and
the spectral index NDVI from NOAA-AVHRR at a 1 km)  in land-

scape classification at different spatial resolutions. The consistency
of classifications across spatial resolutions is a key concern for
landscape managers, because information achieved at a particu-
lar level should be reproducible ideally at other decision-making
levels (Rocchini and Ricotta, 2007). Nevertheless, although this
consistency might be desirable, caution is urged, as landscape is
hierarchically structured and most ecological processes and pat-
terns are scale-dependent (Schröder and Seppelt, 2006). Thus,
ecological patterns and processes should be evaluated only when
the spatial resolution of available data matches the target phe-
nomenon; otherwise, we  could miss it (Jelinski and Wu,  1996).
Information that can be relevant at low hierarchical levels might
become irrelevant over a given threshold of aggregation or vice
versa (Karl and Maurer, 2010). In this sense, our multi-spatial reso-
lution approach showed how the perception of landscape patterns
can be affected by using input data collected at a spatial resolution
different to that of the landscape classification analyses.

When using CORINE 30 m as an input in landscape classification
analysis, the number and typology of classes differed across spa-
tial resolutions. From a practical perspective, this fact is relevant
as it could limit the implementation of this approach for manage-
ment purposes (Rocchini and Ricotta, 2007). It is well known that
thematic resolution (number and typology of classes) of landscape
maps may  constrain results of further landscape analyses (Suárez-
Seoane and Baudry, 2002; Gimona et al., 2009), leading to different
ecological findings. Nevertheless, the use of CORINE in landscape
classification was  advantageous, since landscape classes were eas-
ily characterized and interpreted, as CORINE account directly for
land cover. Regarding the error and uncertainty of CORINE-based
classifications, we  found the original data to be a main source
of error for further classification process, being the generaliza-
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Table  4
User’s, producer’s and overall accuracy of landscape classification based on topography, urban influence and CORINE (as a proxy of land cover) at different spatial resolutions.
The  table also shows the probability of membership (i.e., the Euclidian distance from pixel values to the characteristic vector of each class; mean ± SD).

Code User’s accuracy (%) Producer’s accuracy (%) Euclidean distance

30 m 1 93.33 88.89 3.46 ± 3.28
2  85.29 78.38 5.93 ± 5.63
3  83.33 68.97 2.93 ± 3.01
4  86.49 96.97 2.82 ± 4.23
5  100.00 91.18 2.95 ± 3.09
6  94.12 94.12 2.82 ± 2.52
7  96.15 100.00 2.66 ± 2.52
8  89.47 85.00 2.62 ± 2.04
9  85.00 89.47 2.69 ± 4.08
10  50.00 100.00 3.87 ± 1.71
11  93.33 100.00 3.46 ± 3.28
Overall 88.33 3.21 ± 0.98

90  m 1 93.33 93.33 2.90 ± 2.37
2  96.08 92.45 2.86 ± 2.41
3  95.23 100.00 3.01 ± 2.22
4  86.67 89.66 3.06 ± 2.16
5  100.00 100.00 2.86 ± 2.21
6  100.00 100.00 3.14 ± 2.27
7  100.00 100.00 2.74 ± 1.87
8  100.00 100.00 3.20 ± 1.95
9  100.00 75.00 3.15 ± 2.01
10  100.00 100.00 3.32 ± 1.73
Overall 97.33 3.02 ± 0.18

180  m 1 83.64 82.14 3.15 ± 1.75
2  93.75 90.91 2.98 ± 2.84
3  53.33 72.73 2.38 ± 1.84
4  88.89 98.46 3.23 ± 2.23
5  100.00 93.75 3.32 ± 2.08
6  92.31 83.72 3.04 ± 2.09
7  100.00 100.00 2.94 ± 1.89
8  100.00 83.33 3.26 ± 1.88
9  75.00 75.00 3.43 ± 1.42
10  100.00 80.00 3.68 ± 1.69
Overall 86.66 3.14 ± 0.35

1  km 1 95.52 75.29 3.47 ± 2.21
2  75.32 74.36 3.30 ± 2.07
3  92.86 78.00 3.56 ± 2.58
4  84.44 88.37 3.42 ± 2.63
5  59.42 93.18 3.56 ± 2.18
Overall 80.00 3.46 ± 0.11

tion and simplification of reality into a limited set of classes (Hou
et al., 2013), as well as the existence of spectral interferences,
mixed pixels, system errors or conceptual mistakes (Bossard et al.,
2000) the possible causes behind this error. Addressing specifically
landscape classification process, transferring information from one
resolution to other generally involves generalization and loss of
accuracy and reliability (Hou et al., 2013). Nevertheless, accord-
ing to some authors (Ju et al., 2005; Dronova et al., 2012), this
transfer of information not always imply a loss of accuracy. In
heterogeneous landscapes, such as mountain systems, high local
variability might lead to high landscape complexity on the ground
and noise in the remote sensing, making class allocation processes
difficult and partially erroneous (Kennedy et al., 2009; Rocchini
et al., 2013; Nagendra et al., 2013). Therefore, coarsening the spa-
tial resolution of data (from 30 m to 90 m)  could help to reduce the
perception of this local variability, improving then the accuracy of
classification (Ju et al., 2005). Nevertheless, with further coarsening
(beyond 90m), boundaries between patches could be poorly rep-
resented due to a loss of resolution and distortion in land cover
information (Shao and Wu,  2008), causing a new error. The loss
of the capacity to detect local variability could be also suggested
as an explanation of the overall increase of membership proba-
bility (and consequent decrease of uncertainty) associated to data
coarsening. In this sense, beyond 90 m spatial resolution, the exis-
tence of some classes constituted by rather disparate landscape
features resulted in large differences between some pixels and the

characteristic vector of the class, increasing uncertainty. Addition-
ally, our study suggested that the use of discrete maps, such as
CORINE, in landscape classification might reduce partially confu-
sion, allowing to depict landscape classes with high certainty. It is
reasonable to expect that a reduction of mutually-exclusive classes
would decrease confusion among classes (i.e., CI values close to
1) (Strand, 2011). Consistent with this statement, the reduction of
classes shearing very similar landscape attributes (classes 8 and 9
were reduced to class 7) when spatial resolution changed from 30 m
to 90 m could explain the decrease in confusion. On the contrary,
at 180 m resolution, the definition of rather similar classes (like
classes 2 and 3) implied an increase in confusion. The reduction
in the number of classes at 1 km resolution was probably related
to the decrease in CI, due to the lower probability of definition
of classes with some degree of overlap. The dependence of CI on
spatial resolution could be related to the modifiable areal unit prob-
lem (MAUP), since changes in spatial resolution provided different
landscape spatial configuration (Wong, 2009).

Accounting for NDVI-based landscape classifications, we  found
that the number and typology of landscape classes was only sen-
sitive to change from coarse (1 km)  to middle and high spatial
resolution (180 m, 90 m and 30 m).  This lack in classification con-
sistency from 1 km to the more detailed resolutions could be
explained by the role of input variables used in combination with
NDVI, especially topography, which is of key relevance to describe
landscape in mountain systems. The more detailed information on
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topography and urban influence included in landscape classifica-
tions at middle and high spatial resolution, as a consequence of
the real change of resolution, let depict regional peculiarities that
could not be addressed at 1 km (Hou et al., 2013). Consequently,
the number of classes represented increased. The consistency of
NDVI-based landscape classifications across middle and high spa-
tial resolution suggested the adequacy of using spectral indexes,
in combination with other variables, in landscape classification
processes from a practical point of view. However, the use of
NDVI could hamper the description and interpretation of land-
scape classes, since it informs on biophysical parameters related
to vegetation activity, not accounting for land cover directly (Wang
and Tenhunen, 2004). Furthermore, some additional considerations
should be taken in account concerning the error and uncertainty
associated to this data source (Hou et al., 2013). Atmospheric influ-
ences and aerosols tend to decrease NDVI values (Carlson and
Ripley, 1997) and fluctuations in soil brightness might also lead
to large variations in NDVI signal among images (Liu and Huete,
1995). NDVI signal is sensitive to canopy background and could be
saturated at high leaf area index (LAI) values (Pettorelli et al., 2005).
Looking at the error of NDVI-based landscape classifications, we
found that landscape maps developed at 1 km (the original res-
olution of NDVI) showed less accuracy than those developed at
intermediate resolutions. Maps at the coarsest pixel size might
result overly non-specific to be useful (Ju et al., 2005) affecting,
therefore, the correct characterization of spatial details of the land-
scape, due to the vagueness of information (Hou et al., 2013). The
decrease in classification accuracy from 90 m to 30 m was suggested
to be associated with local landscape complexity and variability,
making class allocation processes difficult and partially erroneous
(Kennedy et al., 2009; Rocchini et al., 2013; Nagendra et al., 2013).
Addressing membership probability, the poor influence of spatial
resolution change on results might suggest that NDVI index facil-
itates the definition of homogeneous classes providing accurate
pixel allocation, with independence of spatial resolution. Addi-
tionally, the increase in confusion among classes at higher spatial
resolution than the original one could be associated with both,
the increase in the number of classes and the inherent properties
of NDVI as a continuous variable. Assumptions for classification
methods include that classes are crisp and mutually exclusive, set-
ting boundaries in sites where classes slightly differ (Foody, 2002;
Bollinger and Mladenoff, 2005). This might be a problem when
working with continuous data in heterogeneous mountain systems,
where classes can be inter-grade and co-exist spatially (Foody,
2002; Morán-Ordóñez et al., 2012), resulting in high confusion in
regards to which class a pixel should belong (Álvarez-Martínez
et al., 2010). This problem would be reduced in more homogeneous
systems, where classes are very different and with clear dominance
of one of them across space (Bollinger and Mladenoff, 2005).

5. Conclusions

Remote sensing products informing on land cover, such as
the CORINE Land Cover map  at 30 m or the NDVI spectral index
from NOAA at 1 km,  are valuable tools that, used in combination
with other thematic information, allow for producing landscape
classifications useful for practical applications. The multi-spatial
resolution approach here developed provided a relevant frame-
work for landscape managers, particularly when funding is limited
and data source at an appropriated spatial resolution are not avail-
able. Efforts should be made to select data at suitable resolutions,
matching regional peculiarities and minimizing error and uncer-
tainty in results.

Table 5
User’s, producer’s and overall accuracy of landscape classifications based on topog-
raphy, urban influence and NDVI (as a proxy of land cover) at different spatial
resolutions. The table also shows the probability of membership (i.e., the Euclidian
distance from pixel values to the characteristic vector of each class; mean ± SD).

Code User’s accuracy (%) Producer’s
accu-
racy
(%)

Euclidean
dis-
tance

30 m 1 96.43 65.85 2.02 ± 0.66
2  57.14 100.00 2.14 ± 0.67
3  64.00 88.89 2.19 ± 0.54
4  87.50 63.64 2.10 ± 0.59
5  81.25 86.67 2.13 ± 0.84
6  64.29 90.00 2.14 ± 0.52
7  88.89 100.00 2.11 ± 0.82
8  88.00 88.00 2.05 ± 0.64
9  100.00 94.74 2.38 ± 0.61
10  83.78 65.96 2.01 ± 0.75
11  74.51 90.48 2.02 ± 0.92
Overall 79.67 2.12 ± 0.10

90 m 1 100.00 68.57 2.20 ± 0.58
2  72.22 100.00 2.09 ± 0.78
3  73.33 100.00 2.12 ± 0.69
4  85.19 92.00 2.15 ± 0.61
5  83.33 100.00 2.03 ± 0.90
6  82.22 94.87 2.14 ± 0.63
7  100.00 88.24 2.07 ± 0.96
8  100.00 95.45 2.14 ± 0.66
9  100.00 100.00 2.12 ± 0.73
10  96.97 71.11 2.14 ± 0.64
11 87.50 97.67 2.03 ± 0.94
Overall 88.66 2.11 ± 0.05

180 m 1  100.00 84.00 2.08 ± 0.82
2  83.33 90.91 2.13 ± 0.67
3  77.78 82.35 2.06 ± 0.87
4  92.16 87.04 2.15 ± 0.63
5  100.00 93.75 2.09 ± 0.80
6  93.75 97.83 2.11 ± 0.76
7  91.67 100.00 2.07 ± 0.84
8  100.00 95.45 2.13 ± 0.68
9  100.00 100.00 2.07 ± 0.81
10  100.00 83.33 2.14 ± 0.67
11 77.78 97.22 2.03 ± 0.93
Overall 91.33 2.10 ± 0.03

1  km 1 83.33 83.33 1.96 ± 1.21
2  72.73 84.21 2.08 ± 0.86
3  87.50 75.68 1.88 ± 1.13
4  86.84 80.49 2.03 ± 0.78
5  91.43 91.43 2.15 ± 0.76
6  85.53 86.67 1.99 ± 1.00
7  93.33 95.45 1.76 ± 1.28
Overall 85.67 1.98 ± 0.13
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jag.2016.03.010.
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Morán-Ordóñez, A., Bugter, R., Suárez-Seoane, S., de Luis, E., Calvo, L., 2013.
Temporal changes in socio-ecological systems and their impact on ecosystem
services at different governance scales: a case study of heathlands. Ecosystems
16  (5), 765–782.

Muniaty, C., Ratshibvumo, T., 2010. Differentiating geological fertility derived
vegetation zones in Kruger National Park, South Africa, using Landsat and
MODIS imagery. J. Nat. Conserv. 18, 169–179.

Nagendra, H., Lucas, R., Pradinho-Honrado, J., Jongman, H.G., Tarantino, C., Adamo,
M.,  Mairot, P., 2013. Remote sensing for conservation monitoring: assessing
protected areas, habitat extent, habitat condition, species diversity and threats.
Ecol. Indic. 33, 45–59.

Oke, A.O., Thompson, K.A., 2015. Distribution models for mountain plant species:
the value of elevation. Ecol. Model 301, 72–77.

Osborne, P.E., Suárez-Seoane, S., Alonso, J.C., 2007. Behavioural mechanisms that
undermine species envelope models: the causes of patchiness in the
distribution of great bustards Otis tarda in Spain. Ecography 30, 819–829.

Owen, S.M., MacKenzie, A.R., Bunce, R.G.H., Steward, H.E., Donovan, R.G., Stark, G.,
Hewitt, C.N., 2006. Urban land classification and its uncertainties using
principal component and cluster analyses: a case of study for the UK West
midlands. Landsc. Urban Plan 78, 311–321.

Paruelo, J.M., Jobbágy, E.G., Sala, O.E., 2001. Current distribution of ecosystem
functional types in temperate South America. Ecosystems 4, 683–698.

Pervez, M.S., Budde, M.,  Rowland, J., 2014. Mapping irrigated areas in Afghanistan
over the past decade using MODIS NDVI. Remote Sens. Environ. 149, 155–165.

Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.M., Tucker, C.J., Stenseth, N.C., 2005.
Using the satellite-derived NDVI to assess ecological responses to
environmental change. Trends Ecol. Evol. 20, 503–510.

Rae, C., Rothley, C., Dragicevic, S., 2007. Implications of error and uncertainty for an
environmental planning scenario: a sensitivity analysis of GIS-based variables
in  a reserve design exercise. Landsc. Urban Plan 79, 210–217.

Regan, H.M., Colyvan, M.,  Burgman, M.A., 2002. A taxonomy and treatment of
uncertainty for ecology and conservation biology. Ecol. Appl. 12 (2), 618–628.

Rivas-Martínez, S., 1987. Memoria del mapa de series de vegetaciín de Espaóa.
ministerio de agricultura. In: Pesca y Alimentación. ICONA Serie Tñcnica.
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