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Abstract: We aimed to analyze the relationship between fire regime attributes and the post-fire 

greenness recovery of fire-prone pine ecosystems over the short (2-year) and medium (5-year) term 

after a large wildfire, using both a single and a combined fire regime attribute approach. We 

characterized the spatial (fire size), temporal (number of fires, fire recurrence, and return interval), 

and magnitude (burn severity of the last fire) fire regime attributes throughout a 40-year period 

with a long-time series of Landsat imagery and ancillary data. The burn severity of the last fire was 

measured by the dNBR (difference of the Normalized Burn Ratio) spectral index, and classified 

according to the ground reference values of the CBI (Composite Burn Index). Post-fire greenness 

recovery was obtained through the difference of the NDVI (Normalized Difference Vegetation 

Index) between pre- and post-fire Landsat scenes. The relationship between fire regime attributes 

(single attributes: fire recurrence, fire return interval, and burn severity; combined attributes: fire 

recurrence-burn severity and fire return interval-burn severity) and post-fire greenness recovery 

was evaluated using linear models. The results indicated that all the single and combined attributes 

significantly affected greenness recovery. The single attribute approach showed that high 

recurrence, short return interval and low severity situations had the highest vegetation greenness 

recovery. The combined attribute approach allowed us to identify a wider variety of post-fire 

greenness recovery situations than the single attribute one. Over the short term, high recurrence as 

well as short return interval scenarios showed the best post-fire greenness recovery independently 

of burn severity, while over the medium term, high recurrence combined with low severity was the 

most recovered scenario. This novel combined attribute approach (temporal plus magnitude) could 

be of great value to forest managers in the development of post-fire restoration strategies to promote 

vegetation recovery in fire-prone pine ecosystems in the Mediterranean Basin under complex fire 

regime scenarios. 

Keywords: Pinus pinaster; number of fires; fire size; fire recurrence; fire return interval; burn 

severity; dNDVI 
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1. Introduction 

Forest fires are the predominant disturbance in many regions of the world [1,2]. This is the case 

in the Mediterranean Basin, where fire has a significant effect on the functioning and structure of 

ecosystems [3,4]. In this area, forests most affected by fire are the fire-prone pine ecosystems [5], 

whose species have developed different fire-adaptive strategies to facilitate post-fire survival or 

reproduction [6–8]. 

The role of fire in fire-prone pine ecosystems can be characterized by describing the fire regime 

[6]. The term fire regime integrates spatial, temporal, and magnitude attributes [9–11]. Among the 

spatial attributes, fire size can hinder the regeneration of vegetation, especially in those ecosystems 

whose regeneration is not completely dependent on endogenous processes, and therefore depends 

on seed dispersal from nearby unburned areas [2]. Temporal attributes include fire recurrence and 

fire return interval, which are important driving factors of the structure and composition of 

Mediterranean ecosystems [12–14], as well as of their post-fire regeneration capacity. Fire recurrence, 

is considered as the number of fires that occurred in a given period [8]. High fire recurrences can 

reduce the ability of some species to recover, especially obligate seeders [2,15], such as the endemic 

pine species of the Mediterranean Basin [6,7], whereas other species, including resprouter shrubs, can 

be promoted by recurrent fires [3,16]. On the contrary, the fire return interval is defined as the time 

lapse between fires [10]. In most fire-prone Mediterranean ecosystems, auto-succession is expected 

when fire return intervals are longer than the period required by plants for regeneration or 

maturation [8]. Therefore, the fire return interval can be a determinant parameter in the recovery of 

ecosystems that need long periods to achieve maturity. This is the case of many pine ecosystems in 

the Mediterranean Basin, whose dominant tree species need up to 15 years to achieve maturity or to 

produce a large seed bank ensuring post-fire recruitment [7,17,18]. The magnitude attributes include 

burn severity [10], considered as the loss of or change in ecosystem biomass [19], and linked to the 

ecosystem response after disturbances [14,18,20]. Burn severity is a frequently used metric because it 

can be quantified after fire [21]. Therefore, the knowledge of the spatial patterns of fire regime 

attributes in large wildfires can contribute to understanding the ecosystem structure [10] and post-

fire dynamics [20,22,23]. Consequently, this information is of great interest for managers to promote 

ecosystem resiliency [24], and to design adequate post-fire restoration strategies. 

In the Mediterranean Basin, land use changes that occurred during the last decades have 

resulted in increases of fuel continuity, which are facilitating the occurrence of a high number of large 

wildfires (>500 ha) [4,25]. As a consequence, burned areas are increasingly larger and highly 

heterogeneous, making it difficult to study the spatial patterns of fire regime attributes through field 

work, and therefore remote sensing methods are essential [3]. The starting point to define the spatial 

and temporal attributes of a fire regime, such as fire size, fire recurrence, and fire-return interval, is 

the mapping of fire scars [10,24]. The moderate-resolution sensors on board Landsat satellites have 

been largely employed for fire scar mapping [26–28]. Landsat missions have the advantage of 

providing multispectral imagery for a long historical period (since 1972) [29]. An easy and reliable 

way to discriminate burned areas using Landsat imagery is through a visual analysis of subsequent 

Landsat scenes [28,30,31]. In addition, Landsat imagery is the most used source of information to map 

burn severity [19] through the standard spectral index dNBR (difference of the Normalized Burn 

Ratio) [32]. The dNBR uses pre- and post-fire information provided by the Near Infrared, which is 

sensitive to changes in canopy density and the cellular structure of plant leaves, and the information 

provided by the Short Wave Infrared, which is primarily related to moisture content [33]. Although 

the performance of dNBR has been validated repeatedly in the literature [33–35], it is convenient to 

calibrate its thresholds in each specific fire to generate meaningful categorical maps [36,37]. The 

validation and thresholds calibration of dNBR is traditionally done through the CBI (Composite Burn 

Index) [36], a field index that integrates several burn severity metrics visually estimated of five 

vertical strata. 

To date, there are many studies determining the influence of a single fire regime attribute on 

post-fire recovery (e.g., [38,39]), but we did not find studies accomplishing a full approach integrating 

the spatial, temporal, and magnitude fire regime attributes using remote sensing methods. This 
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integrated approach is of great interest in fire-prone ecosystems, because some fire regime attributes 

can interact among them and produce synergistic effects on ecosystems [40,41]. For instance, field 

studies have suggested that high severities might hinder post-fire recovery, especially in forest 

systems adapted to recurrent, low severity fires [41,42]. Conversely, other authors have suggested 

that the most harmful fires could be those with a long-return interval affecting forests prone to high 

severity fires [23]. The expected influence of the joint effect of temporal (fire recurrence and fire return 

interval) and magnitude (burn severity) fire regime attributes on post-fire vegetation recovery 

suggests the need to merge these parameters in more realistic combined fire regime attribute 

categories. Using this novel combined attribute approach could therefore be very useful in studies on 

post-fire recovery capacity under different real-world fire regime scenarios, allowing the 

identification of critical burned areas where regeneration could be endangered and require post-fire 

management actions. 

Beyond the fire regime characterization, Landsat imagery can be used to assess post-fire 

vegetation recovery [8,43,44], which is defined as the ecological process aimed at reverting to pre-fire 

status [23]. Remote sensing methods to quantify post-fire regeneration include the analysis of 

vegetation greenness through spectral indices. In this case, the Normalized Difference Vegetation 

Index (NDVI), proposed by Rouse [45], has become accepted as the standard index [23,27,38,39,46]. 

The NDVI index is highly sensitive to canopy cover and photosynthetic activity by combining Near 

Infrared reflectance and the Red reflectance [46]. Thus, on the landscape scale, the NDVI is a 

reasonable proxy for green biomass, providing an overall idea of the vegetation greenness recovery 

independently of the plant species [47]. 

The aim of this study is to analyze how vegetation greenness responded to fire regime attributes 

in pine ecosystems in an area where wildfires are very frequent, both over the short (2 years) and 

medium (5 years) term after the most recent large wildfire, using a remote sensing approach. 

Specifically, we intend to (I) characterize the spatial, temporal, and magnitude fire regime attributes 

affecting the fire-prone pine ecosystems in the study area over a 40-year period, (II) determine the 

post-fire recovery of vegetation greenness in pine ecosystems, and (III) analyze the relationship 

between the characterized fire regime attributes and greenness recovery over the short and medium 

term after fire, using both a single and a combined fire regime attribute approach. We expected that, 

relative to the single attribute analysis, the novel combined attribute approach would enable the 

identification of the most favorable situations for vegetation greenness recovery under complex fire 

regime scenarios. 

2. Material and Methods 

2.1. Study Area 

The study was conducted within the perimeter of the large wildfire that occurred on 19 August 

2012 in Sierra del Teleno (León Province, NW Iberian Peninsula) (Figure 1), a mountain range largely 

affected by wildfires [48]. 

The wildfire scar is an area of 119 km2, 103 km2 of which were formerly occupied by Pinus pinaster 

Ait. ecosystems (Figure 1). The P. pinaster population of Sierra del Teleno is adapted to a severe crown 

fire regime, bearing a high percentage of serotinous cones [7]. However, due to increased fire 

recurrence in recent decades [48], P. pinaster forests are turning into successional shrublands 

dominated by Pterospartum tridentatum (L.) Willk., Halimium lasianthum (Lam.) Spach and Erica 

australis L. [22], as in many areas in the Western Mediterranean Basin [14]. The orography is 

heterogeneous, ranging from 836 to 1493 m.a.s.l. Soils are acidic (4.86 ± 0.14; mean ± standard error 

pH), developed over siliceous lithologies such as quartzite, conglomerate, sandstone, and slate [49]. 

The study area is on the limit of the Mediterranean region, whose climate is classified as temperate 

with dry and temperate summers [50], and characterized by a mean annual precipitation of between 

600 and 800 mm and a mean annual temperature of 8–11 °C [51]. 
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Figure 1. Location of the study area. The perimeter of the large wildfire that occurred in 2012, the 

natural occurrence of Pinus pinaster, and post-fire management actions applied after the large fire of 

2012 are indicated. 

2.2. Methodology 

2.2.1. Landsat Database 

In order to characterize (a) the spatial (average fire size), temporal (number of fires, fire 

recurrence, and fire return interval), and magnitude (burn severity) attributes of the fire regime, and 

(b) the post-fire recovery of vegetation greenness 2 (short term) and 5 (medium term) years after the 

2012 large wildfire, we built a database composed of 80 Landsat images, covering the period 1975–

2017 (Figure 2). The scenes before 1978 were used as a reference to identify the wildfires that occurred 

between 1978 and 1980. When available, at least one annual image of the study area without clouds 

was included in the database, with preference for those taken in late summer. The database 

encompassed images from the Landsat 2 (MSS sensor), Landsat 4 (TM sensor), Landsat 5 (TM sensor), 

Landsat 7 (ETM + sensor), and Landsat 8 (OLI sensor) satellites. The images for 1975–1990 and 1999–

2017 were obtained from the Earth Explorer server of the U.S. Geological Survey 

(https://earthexplorer.usgs.gov), whereas those for 1991–1998 were acquired from the European 

Space Agency (https://earth.esa.int). 

 

Figure 2. Methodology flowchart. 
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2.2.2. Fire Regime Characterization 

Fire scars from the wildfires that occurred between 1978 and 2017 were identified by visual 

analysis of consecutive Landsat false color composites (Figure 2). We displayed the false color 

composite RGB 564 for the images obtained by the MSS sensor, RGB 541 for the TM and ETM + 

sensors, and RGB 652 for the OLI sensor. Orthophotography from 1980 taken by the National Institute 

for Agrarian Reform and Development flight (1977–1983) was used as ancillary data to identify fire 

scars during a period with low availability of Landsat images, as well as to support the MSS imagery, 

which has a lower spatial resolution (60 m). The perimeters of every wildfire were manually digitized 

using a scale of 1:5000 in ArcMAP 10.6 [52]. The minimum mapping unit used for hand drawing was 

0.01 km2, as this is the limit between an incipient fire and a wildfire according to the Spanish 

Administration classification [53], and because it surpasses the minimum identifiable fire size using 

imagery from TM sensors and later [54]. In order to ensure that the digitized scars were the 

consequence of wildfires, and not the result of other potential land uses (e.g., ploughing, cutting, 

clearcutting, etc.), we linked every digitized perimeter to an official wildfire report (1978–2017) 

provided by the Nature Protection Section of the Regional Administration, which included 

information on the fire date, location, extent, and burned vegetation for the entire study period, and 

also fire perimeters after 2007. All wildfires recorded by the official reports were matched with the 

fire perimeters mapped by the authors. The validated map of the fire scars from 1978 to 2017 was the 

source of information to determine the following: (i) the total number and average size of the 

wildfires in each decade (1978–1987, 1988–1997, 1998–2007, and 2008–2017), (ii) wildfire recurrence 

during the study period by classifying the study area into low (1 fire), moderate (2 fires), and high (≥ 

3 fires) recurrence, and (iii) the fire return interval as the number of years between the 2012 large 

wildfire and the preceding fire, by classifying the study area into short (years ≤ 15), intermediate (15 

< years ≤ 30) and long (years > 30) return intervals. 

In order to characterize the burn severity of the 2012 large wildfire that occurred in 19 August, 

we calculated the dNBR spectral index [32] from the Landsat 7 ETM+ scenes of 20 September 2011 

(pre-fire situation) and 6 September 2012 (post-fire). The Landsat 7 ETM+ scenes obtained are a 

Digital Numbers (DN) product geometrically rectified and radiometrically corrected (Landsat L1T 

processing level). The scenes were subset and optical bands were pre-processed (Figure 2). Pre-

processing included a conversion of DN to radiance values. Then, radiance images were 

atmospherically corrected by using the Fast Line-of-sight Atmospheric Analysis (FLAASH) module. 

To select the appropriate atmosphere model and input parameters in FLAASH, we used the MODIS 

water vapor product (MOD05), meteorological data (NOAA), and mean elevation values according 

to [33]. A Delaunay interpolation was applied to fill the gaps of the Scan Line Corrector (SLC) [55]. 

Corrected bands were used to calculate the dNBR index according to the following formulas: 

NBR = (ρ4 − ρ7)/(ρ4 + ρ7) (1) 

dNBR = (1000 (NBRpre − NBRpost)) − offset (2) 

where “ρ” is the reflectance of each specific corrected band and “offset” is the average index value in 

unchanged areas outside the fire perimeter, to account for differences in phenology between Landsat 

scenes [32]. For the offset calculation, we selected P. pinaster ecosystems unburned for the last 40 

years, and less than 1.5 km from the fire scar, in which we randomly sampled 78 pixels (1% of the 

area that met these specifications). 

The performance of the burn severity spectral index (dNBR) was field-validated with the ground 

reference CBI by performing linear regression models and examining the statistical significance and 

coefficient of determination (R2) of the relationship. To determine burn severity in the field we 

randomly established 54, 30 m × 30 m plots in the P. pinaster ecosystem within the first three months 

after the 2012 large wildfire. The positions of all field plots were GPS recorded. In each field plot we 

calculated burn severity following a CBI-based protocol described in [33], in which several variables 

of five vertical strata are rated, obtaining a final ground burn severity value ranging from 0 

(unburned) to 3 (high severity). Following [56], we established two burn severity categories: low-
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moderate (hereafter low severity) (CBI ≤ 2.25) and high (CBI > 2.25), and used the linear models to 

calibrate the dNBR thresholds according to the CBI values obtained in the field. 

We then combined the temporal (fire recurrence and fire return interval) and magnitude (burn 

severity of the 2012 large wildfire) fire regime attributes and spatially analyzed the extent of each of 

the following combinations: (i) fire recurrence (3 classes) and burn severity (2 classes), and (ii) fire 

return interval (3 classes) and burn severity (2 classes). 

2.2.3. Post-Fire Greenness Characterization 

The post-fire recovery of vegetation greenness after the 2012 large wildfire was evaluated as the 

difference of the Normalized Difference Vegetation Index (dNDVI) [38,57] 2 (short term) and 5 

(medium term) years after the fire (Figure 2). We selected the Landsat 7 ETM+ scenes from 20 

September 2011 (pre-fire situation), 27 August 2014 (short term) and 20 September 2017 (medium 

term). Optical bands were subset and pre-processed equally as for dNBR calculation. Corrected 

bands were used to calculate the dNDVI index according to the following formulas: 

NDVI = (ρ4 − ρ3)/(ρ4 + ρ3) (3) 

dNDVI = (NDVIpre − NDVIpost) − offset (4) 

where “ρ” is the reflectance of each specific band, and “offset” is the average index value in 

unchanged areas outside the fire perimeter to account for differences in phenology between Landsat 

scenes [32]. For the offset calculation, we selected P. pinaster ecosystems unburned for the last 40 

years, and less than 1.5 km from the fire scar, in which we randomly sampled 78 pixels (1% of the 

area that met these specifications). dNDVI values ≤ 0 indicate the full recovery of vegetation 

greenness. 

2.2.4. Sampling 

The categories of fire regime attributes and values of post-fire greenness recovery were extracted 

using a random sampling design with a minimum distance between sample points of 60 m (two 

Landsat 7 ETM+ pixels). We distributed 932 sample points within the 2012 fire scar, in the area 

formerly dominated by P. pinaster ecosystems where no post-fire management actions were 

accomplished (Figure 1), excluding paths and the Landsat SLC failure zones. The same procedure 

was repeated in unburned areas adjacent (< 1.5 km) to the fire perimeter (i.e., unburned P. pinaster 

ecosystems for at least 40 years), distributing 78 sample points. The number of sampling points 

corresponds to 1% of Landsat pixels of the burned and unburned areas with the specified 

characteristics [58]. 

2.3. Data Analysis 

In order to analyze the effects of the single and combined fire regime attributes (fire recurrence, 

fire return interval, burn severity, fire recurrence-burn severity, and fire return interval-burn severity; 

categorical explanatory variables) on vegetation greenness (dNDVI 2 and 5 years after the fire; 

continuous response variables), we performed linear models (LMs) on which we conducted an 

Analysis of Variance (ANOVA) with pairwise multiple comparison of means (Tukey HSD). The 

goodness of fit of the models was assessed by visual analysis of homoscedasticity and normality of 

the residuals. Global spatial autocorrelation in the model residuals was checked using Moran’s index 

(I), indicating that it had no effect on the study results (Moran’s I < |0.1|) [59]. 

All data analyses were carried out with R software, version 3.4.0 [60], using the “spdep” package [61]. 

3. Results 

3.1. Fire Regime Attributes 

We identified a total of 28 wildfires (size ≥ 0.01 km2) between 1978 and 2017 combining Landsat 

imagery and ancillary data (Figure 3). There were no fires subsequent to the 2012 large wildfire. In 
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the last two decades (1998–2007 and 2008–2017), there was a decrease in the number of fires, and an 

increase in fire extent, reaching an average fire size of 29.74 km2 during 2008–2017 (Figure 4). 

 

Figure 3. Fire perimeters and year of wildfire occurrence from 1978 to 2017. 

 

Figure 4. Average (±standard error) size of wildfires by decade from 1978 to 2017 within the study 

area (the fire scar of the 2012 large wildfire). Numbers above bars indicate the total number of 

wildfires in each period. 

The majority of the study area (70.95 km2) has not experienced any other fire prior to the large 

wildfire that occurred in 2012, and therefore was classified in the low fire recurrence category (1 

wildfire from 1978 to 2017) (Figure 5a) and long fire return interval (>30 years) (Figure 5b). 

The correlation between the values of the spectral burn severity index (dNBR) and the ground 

burn severity index (CBI) was statistically significant (p < 0.05), with a high coefficient of 

determination (R2 = 0.88). For the most part (61.02 km2), the burn severity of the 2012 large wildfire 

was high (Figure 5c). 
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Figure 5. Spatial patterns of fire recurrence (total number of wildfires from 1978 to 2017) (a), fire return 

interval (number of years between the 2012 large wildfire and the preceding fire) (b), and burn 

severity of the 2012 large wildfire, measured by the difference of the Normalized Burn Ratio (dNBR) 

and classified according to the ground reference values of the Composite Burn Index (CBI) (c). The 

results of the linear regression between dNBR and CBI values for the 2012 large wildfire are also 

indicated. 

The combined fire regime attribute approach differentiated six fire recurrence-burn severity 

scenarios, with the low recurrence-low severity (38.38 km2) and low recurrence-high severity (32.57 
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km2) scenarios being the most extensive (Figure 6a). Correspondingly, there were six fire return 

interval-burn severity scenarios, with a spatial dominance of the areas with a long time-period 

between the 2012 large wildfire and the preceding fire, independently of burn severity (Figure 6b). 

 

Figure 6. Combined fire regime attribute approach identifying the spatial patterns of the different fire 

recurrence-burn severity (a) and fire return interval-burn severity (b) scenarios. See Figure 5 for 

further information. 

3.2. Post-Fire Greenness Recovery 

The vegetation greenness over the short term (2 years after the 2012 large wildfire) was not 

recovered in any fire regime scenario (i.e., all dNDVI values > 0) (Figure 7a). On average, the short-

term dNDVI value of the fire scar was 0.59 ± 0.11 (mean ± standard deviation), indicating low 

vegetation recovery 2 years after fire. 

However, the post-fire recovery of vegetation greenness over the medium term (5 years after the 

2012 large wildfire) was greater than over the short term (0.10 ± 0.08). It was found that 10.25% of the 

burned surface attained the greenness values of the pre-fire situation (dNDVI ≤ 0.00) (Figure 7b) 

nonetheless, the remaining 89.75% of the surface had lower greenness values than the pre-fire 

situation (dNDVI > 0). 

 

Figure 7. Spatial patterns of post-fire recovery of vegetation greenness over the short term (2 years) 

(a) and medium term (5 years) (b) after the 2012 large wildfire. 
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3.3. Effects of Fire Regime Attributes on Post-Fire Greenness Recovery 

Every single and combined fire regime attribute had a statistically significant effect (p < 0.001) 

on the recovery of vegetation greenness (dNDVI), both over the short and medium term after the 

2012 large wildfire (Table 1). The combined fire regime attributes always showed higher R2 values 

than the single ones, indicating a higher explanatory capacity. In general, greenness recovery was 

greater (i.e., lower dNDVI values) over the medium than short term for the single and combined fire 

regime attributes (Figures 8 and 9). 

Table 1. Results of the linear models [‘anova()’ outputs] showing the effects of the single and 

combined fire regime attributes (fire recurrence, fire return interval, burn severity, fire recurrence-

burn severity and fire return interval-burn severity) on post-fire greenness recovery over the short 

[dNDVI (2011–2014)] and medium [dNDVI (2011–2017)] term after the 2012 fire. dNDVI = difference 

of the Normalized Difference Vegetation Index. Df = degrees of freedom. Significant p-values are in 

bold face. 

Response Variable Predictor variable Df R2 F-value p-value 

dNDVI (2011–2014) Fire recurrence 3 0.348 177.522 <0.001 

 Fire return interval 3 0.352 180.058 <0.001 

 Burn severity 2 0.338 254.305 <0.001 

 Fire recurrence-burn severity 6 0.380 101.405 <0.001 

 Fire return interval-burn severity 6 0.394 107.361 <0.001 

dNDVI (2011–2017) Fire recurrence 3 0.193 79.529 <0.001 

 Fire return interval 3 0.142 55.070 <0.001 

 Burn severity 2 0.272 186.045 <0.001 

 Fire recurrence-burn severity 6 0.313 75.279 <0.001 

 Fire return interval-burn severity 6 0.287 66.604 <0.001 

The recovery of vegetation greenness was significantly greater in the high fire recurrence 

scenario both over the short (Figure 8a) and medium (Figure 8b) term. Nevertheless, during the study 

period, none of the fire recurrence categories was completely recovered. 

Correspondingly, the short fire-return interval scenario had significantly higher vegetation 

greenness recovery over the short term (Figure 8c). This difference among fire-return interval 

categories was attenuated over the medium term, as both the short and long fire-return situations 

had similar values for greenness recovery (Figure 8d). However, none of the fire return interval 

categories attained the dNDVI values of the unburned situation. 

The burn severity of the 2012 large wildfire showed an inverse relationship with the recovery of 

vegetation greenness over the short (Figure 8e) and medium (Figure 8f) term after fire (i.e., the low 

burn severity category had the greatest greenness recovery). Even so, the dNDVI values of both low 

and high burn severity classes were significantly higher than those of the unburned situation. 

Generally, the combination of temporal (fire recurrence and fire return interval) and magnitude 

(burn severity) fire regime attributes resulted in wider ranges of greenness recovery values (Figure 

9) than those obtained with single fire regime attributes (Figure 8). Also, the differences in greenness 

recovery between low and high burn severity categories over the short term were lessened when 

combined with either the high fire recurrence or short fire return interval (Figure 9a,c). Consequently, 

there were no statistically significant differences (p ≥ 0.05) in greenness recovery between (1) high 

recurrence-low severity and high recurrence-high severity combinations (Figure 9a), and (2) short 

return interval-low severity and short return interval-high severity combinations (Figure 9c) 2 years 

after fire. 

Focusing on fire recurrence-burn severity, the highest recovery of the vegetation greenness was 

attained at the high recurrence scenarios (high recurrence-low severity and high recurrence-high 

severity) over the short term (Figure 9a), and at the high recurrence-low severity scenario over the 

medium term (Figure 9b), which reached the closest dNDVI value to the unburned situation among 

all the analyzed single and combined fire regime scenarios (Figures 8 and 9). 
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Figure 8. Mean (±standard error) vegetation greenness values measured by the difference of the 

Normalized Difference Vegetation Index (dNDVI) over the short (2 years) and medium (5 years) term 

after the 2012 large wildfire for the different scenarios of fire recurrence (total number of wildfires 

from 1978 to 2017) (a,b), fire return interval (number of years between the 2012 large wildfire and the 

preceding fire) (c,d), and burn severity of the 2012 large wildfire as the difference of the Normalized 

Burn Ratio (dNBR) (e,f). Different letters above the error bars (a, b, c, d) denote statistically significant 

differences between mean values (p < 0.05). 
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Figure 9. Mean (± standard error) vegetation greenness values measured by the difference of the 

Normalized Difference Vegetation Index (dNDVI) over the short (2 years) and medium (5 years) term 

after the 2012 large wildfire for the different scenarios identified by the combined fire attribute 

approach: fire recurrence-burn severity (a,b), and fire return interval-burn severity (c,d). Lr, Mr, and 

Hr indicate low, moderate and high fire recurrence, respectively. Ls and Hs indicate low and high 

burn severity, respectively. St, It, and Lt indicate short, intermediate and long fire return interval. 

Different letters above the error bars (a, b, c, d, e) denote statistically significant differences between 

mean values (p < 0.05). See Figure 8 for further information. 

Similarly, on analysis of the fire return interval-burn severity, the greatest greenness recovery 

corresponded to the short fire-return interval scenarios (short interval-low severity and short 

interval-high severity) over the short term (Figure 9c), and to the three low severity combinations 

(short interval-low severity, intermediate interval-low severity, and long interval-low severity) over 

the medium term (Figure 9d). 

4. Discussion 

In this work, we have shown the utility of remote sensing tools to analyze fire regime attributes 

and their effects on vegetation greenness recovery after large wildfires. Landsat imagery and 

ancillary data were used to identify the 28 wildfires that occurred in a 40-year period (1978–2017) in 

Sierra del Teleno within the perimeter of the 2012 large fire, resulting in a spatially heterogeneous 

fire history and a wide range of post-fire greenness recovery. Our results demonstrated that all the 
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fire regime attributes that were spatially characterized, whether they followed a single (fire 

recurrence, fire return interval, burn severity) or combined approach (fire recurrence-burn severity 

and fire return interval-burn severity), were significantly related to the post-fire recovery of 

vegetation greenness. However, the combination of fire recurrence or fire return interval with burn 

severity was able to identify a larger variety of scenarios of post-fire greenness recovery than the 

single approach, the combined attributes being the best predictors of post-fire recovery of vegetation 

greenness. 

The fire scars analysis allowed us to identify the temporal evolution of fire size and number 

throughout the four studied decades in our specific study site. The results, which have to be 

interpreted considering the limited extent of the studied area and period, indicated a decrease in the 

number of fires and an increase in the extent of the burned area during the studied period. This is an 

opposite trend to that reported for Southern European countries and for Spain, where, in general, the 

average fire size has decreased and the number of fires has increased since the 1980s [62]. However, 

other authors have found different trends in particular regions within the Iberian Peninsula. For 

instance, Pausas [63] indicated an unclear trend for the size of the area burned in the Eastern Iberian 

Peninsula between 1968 and 2000, which was closely related to summer rainfall. The patterns of the 

increasing average size of fires in our study area could be explained by the contribution of the large 

wildfires that occurred in 1998 and 2012, which burned 31% and 100% of the study area, respectively. 

Furthermore, the fuel depletion caused by these two large fires could prevent subsequent wildfires 

during the following years, as fire occurrence in Mediterranean ecosystems is fuel-limited [64]. The 

occurrence of such large wildfires is increasing in some regions in the world [11,65] and is relatively 

recent in Spain [4,25], the study area being a good example. 

The fire recurrences found in this study were consistent with those in other fire-prone pine 

forests within the Iberian Peninsula [8,66] for a 25-year period or longer. Fire recurrence affected post-

fire greenness recovery over the short and medium term post-fire, the high recurrence scenario being 

the most recovered. Recovery in the different fire recurrence scenarios can be explained by the 

vegetation composition in the pre-fire situation, because post-fire regeneration in P. pinaster 

ecosystems is via auto-succession [14,67]. In this sense, the areas classified as high recurrence were 

occupied mainly by shrubs and herbaceous species (4.53% pines, 36.89% shrubs, 38.13% grasses) [68], 

which are promoted by high recurrences and additionally, are rapidly recovered after fire [22,67,69]. 

Conversely, the low recurrence areas were predominantly covered by pines (57.53% pines, 13.25% 

shrubs, 19.16% grasses) [68], which require more time than shrubs to completely recover [70]. 

The fire return intervals in the study area ranged from < 15 years to > 30 years, being within the 

typical intervals reported for Mediterranean ecosystems (varying from 10 to up to more than 120 

years) [1]. The areas burned in a short-return interval were more rapidly recovered than those burned 

in an intermediate and long interval, probably due to the dominance of shrubs (6.72% pines, 38.80% 

shrubs, 32.11% grasses) [68]. In this sense, it is expected that shrubs such as those present in our study 

area (Ericaceae and Cistaceae) increase their dominance in short fire interval scenarios, optimal at fire 

intervals of 5 and 10 years, respectively [71]. Conversely, Mediterranean fire-prone pine forests have 

their optimum conditions at fire return intervals over 40 years, and only disappear when intervals 

are shorter than 5 years [71]. 

The burn severity obtained through the dNBR spectral index indicated that the large wildfire of 

2012 was predominantly severe, with the low severity class confined to valleys, areas close to paths, 

and limits of the fire scar as previous studies pointed out [56,72]. P. pinaster forest ecosystems are 

frequently subjected to high severity fires, because they are highly flammable and prone to crown 

fires [14,25,69]. The relationships between burn severity and post-fire greenness recovery indicated 

that this fire regime attribute was a crucial factor over the short (2 years) and medium (5 years) term 

after the fire [39,44,73]. In low burn severity areas, greenness recovery was higher, because some 

pines (between 0 and 80%) remained alive [33], and additionally, their canopy seed bank guaranteed 

seed dispersal over the medium term after fire [69]. The understory shrub community is also less 

affected in low severity scenarios, with a general survival rate of up to 80% [36]. Conversely, in 

severely burned areas, pine and shrub mortality involves a significant canopy change [33,36]. This 
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results in considerable changes in vegetation greenness after the fire. However, over that span of time 

(2–5 years), the ecosystem has shown a large recovery in both low and high severities, as other 

researchers have found [44]. This could be related to the high pine seedling establishment that follows 

crown fires in Mediterranean fire-prone forests such as those dominated by P. pinaster [4,69], and to 

the high resiliency of the present understory community, which can be completely recovered in 9 

years even after severe disturbances [74]. 

The combined approach merging fire temporal (fire recurrence and fire return interval) and 

magnitude (burn severity) attributes represented a large variety of scenarios, being more 

representative than the other analyzed products of the high spatial heterogeneity, which is typical 

after large wildfires [11]. Among the identified scenarios, the two burn severity classes were well 

represented in the three fire recurrence and fire return interval scenarios. This result suggests that 

under the Mediterranean climatic conditions of the study site, even the high recurrence (3 or 4 fires 

in 40 years) and short fire interval (<15 years) scenarios had fuel loads enough to originate high burn 

severity scenarios [2]. Moreover, the combined fire regime attributes were the best predictors of post-

fire greenness recovery, and they differentiate more extreme situations than the single approach over 

the short and medium term after the fire, apparently due to the cumulative effect of the fire temporal 

and magnitude fire regime attributes. Thus, the fire recurrence-burn severity and fire return interval-

burn severity classification showed the most affected scenarios and the closest scenarios to the 

unburned situation. 

Our study shows the possibility of carrying out integral assessments of fire regime attributes 

(spatial, temporal and magnitude) using remote sensing methods, and indicates a high predictive 

capacity of fire regime attributes (temporal, magnitude and combined) for post-fire greenness 

recovery after large wildfires in fire-prone pine ecosystems. This information can help managers to 

predict the post-fire greenness recovery capacity of fire-prone P. pinaster forests according to their 

specific fire regime, and therefore could be used to adopt the appropriate management strategies 

aimed at reverting to the pre-fire status in each scenario [5]. 

In order to generalize our results, we encourage conducting future studies analyzing the 

relationship between fire regime attributes and post-fire greenness recovery in other wildfires and in 

different regions. Studies in other types of ecosystems are also recommendable, because the resilience 

of the communities can vary considerably [75]. We also highlight the importance of differentiating 

the structure and composition of the vegetation [23] for a better understanding of greenness recovery 

after different fire regime scenarios in fire-prone pine forests in the Mediterranean Basin. 

5. Conclusions 

The spatial, temporal and magnitude attributes of a fire regime are important driving factors in 

the post-fire recovery of Mediterranean pine ecosystems, especially in areas subjected to increasingly 

more extensive recurrent fires [14,18,76]. Under the growing complexity of wildfire regimes, our 

findings demonstrated that integrating temporal (fire recurrence and return interval) and magnitude 

(burn severity) attributes using remote sensing methods allows for a more realistic identification of 

the most favorable scenarios for vegetation greenness recovery after fire, relative to the typical single 

fire regime attribute analysis of most research. This novel combined attribute approach evidenced 

that high fire recurrence and short fire return interval combinations with any category of burn 

severity (low or high) attained the greatest recovery of vegetation greenness over the short term (2 

years after the most recent large (> 500 ha) fire). Whereas the high fire recurrence-low burn severity 

situation, and the low severity combinations with any category of fire return interval (short, 

intermediate or long) were the most propitious scenarios for greenness recovery over the medium 

term (5 years after fire). Moreover, the results of the spatial analysis of the different combined 

scenarios using remote sensing methods highlighted the outstanding heterogeneity in the post-fire 

greenness recovery of pine ecosystems subjected to an intricate reality of fire regimes with varying 

attributes over vast burned areas. This information will be highly valuable to forest managers facing 

the consequences of even more acute fire regimes, as it will aid the implementation of effective 

restoration actions in extensively burned areas when the main restoration goal is the full recovery of 
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vegetation greenness. Nonetheless, we encourage future remote sensing studies aimed at a better 

understanding of the impact of combined fire regime attributes on post-fire greenness recovery in 

fire-prone pine ecosystems that further integrate the spatial variation of pre-fire vegetation [23]. 
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