
C Secure Coding Standards Performance:
CMU SEI CERT vs MISRA

Juan F. García, Miguel V. Carriegos Jesús Balsa, Fernando Sánchez, Mario Fernández,
Alejandro Fernández, Cristian Cadenas,

Javier Rodríguez, Vladislav Lebedev
RIASC, Universidad de León Universidad de León

León, Spain
{jbalsc00, fsanco00, mfernr19, afernc27, ccades00,

jrodrv01, vlebed00}@estudiantes.unileon.es

León, Spain
{juan-felipe, miguel.carriegos}@unileon.es

Abstract- We present a prospective study for performance
comparison between programs written in C language and the
same programs reviewed and modified to be compliant with
CMU SEI CERT C Secure Coding Standard and with MISRA
C, the most relevant Secure Coding Standards in existence
nowadays. Our initial results show that, as expected, any of the
Secure Coding Standards is susceptible to have a negative impact
on performance, increasing program running time. We have also
found that MISRA C Standard may be less likely to affect code
performance than SEI CERT C Standard is, and that it may
produce a more optimal code than SEI CERT Standard does;
however, further research is needed for proper confirmation of
these results.

Index Terms- Secure Coding Standard, CMU CERT, SEI
CERT, MISRA, performance

Tipo de contribución: Investigación en desarrollo

I. INTRODUCTION

In this research we present a performance review and
comparison of the two most relevant C language Secure
Coding Standards: Carnegie Mellon University Software
Engineering Institute CERT C Secure Coding Standard (CMU
SEI CERT C, SC-C from now on) and Motor Industry
Software Reliability Association C (MISRA C, M-C).

We have chosen C language since, even nowadays, it is
the most relevant high level programming language for the
Engineering Community: according to IEEE, C and C++
languages occupy the 1 and 4 rank in the Top Ten
Programming Languages for 2016 [1]. They are also the only
high level programming languages useful for low level and
embedded programming. If web programming is not
considered, their edge would even be greater.

On the one hand, C/C++ power comes especially from
their low level functions and dynamic memory control, which
makes both capable of unmatched performance results among
high level languages. On the other hand, both are prone to
errors and security vulnerabilities for this very same reasons.

Secure Coding Standards allow us to minimize these
errors and security flaws at the early stages of the software
development process [2] [3].

However, the secure software we obtain should come with
a performance penalty: since the code we generate while
following these standard is usually more complex (or at least
lengthier than the non-secure one, given the increased number

of security checks to include) it is likely to be slower.
SC-C and M-C rival with each other for being the de facto

C Secure Coding Standard. While both of them try to reduce
similar security errors and flaws to prevent vulnerabilities,
they differ in their rules and procedures.

In this research we try to find and dynamically measure
the performance penalty which should be inherent to make the
C code standard-compliant, concluding, if possible, which of
them allows for a faster code.

The rest of the paper is organized as follows: section II
briefly presents both Secure Coding Standards; section III
explains the methodology followed to measure performance;
section IV contains a summary of our initial results and
section V presents our conclusions and envisions future work.

II. (SECURE) CODING STANDARDS

A Secure Coding Standard is a set of guidelines for
developing securing code, guarding it against the accidental
introduction of bugs and vulnerabilities. Since it usually cover
the whole coding spectrum (types, operators, memory usage,
preprocessor, error handling, etc.), thus contributing to an
overall increase of the code quality, they are sometimes
referred to as just Coding Standards.

These standards can be language agnostic or specific,
being the Secure Coding Standards for C (and C++) language
some of the most developed, and accepted. Among C (Secure)
Coding Standard, SC-C and M-C are the most relevant.

SC-C standard consists of rules and recommendations,
collectively referred to as guidelines, for C (secure)
development [4]. Rules provide normative requirements for C
code, whereas recommendations are meant to provide
guidance that, when followed, should improve the safety,
reliability, and security of software systems.

CMU is the world’s leading trusted authority dedicated to
security and resilience of computer systems, and an asset in
the field of cybersecurity [5]

M-C encompasses guidelines for C language which aim to
facilitate code safety, security, portability and reliability [6].
Although initially aimed for embedded systems, it has evolved
and is nowadays widely accepted in automotive, aerospace,
telecom, medical devices, defense, among others.

III. METHODOLOGY

First, we choose a set of problems to be solved in C

JNIC 2017 Trabajos en Desarrollo

168

language. These problems are solved and validated without
considering any Secure Coding Standard, measuring their
running time (see III.A for details),.

Then, the original and already validated C programs are
reviewed and corrected to make them compliant with each
Standard, SC-C and M-C (one at a time). The resulting
programs are validated and their running time is measured
once again (see III.B for details).

Finally, we perform a statistical study to conclude if there
exists any different between the performance of the original
and the two standard-compliant versions, and another study to
check for differences between both standards (see III.C).

A. (Non-standard compliant) code performance
The problems to solve were randomly chosen among the

ones presented in the different editions of the ACM-ICPC
Word Finals, an annual multi-tiered competitive programming
competition among the universities of the world [7].

These problems were browsed using the UVa Online
Judge (UOJ) web, an online tool from Universidad de
Valladolid which gathers these and others problems, as well
as allowing the user to submit their solutions to them [8].

UOJ is helpful for us since it automatically validates the
solution (it compiles and runs tests on the programs).

UOJ also measures programs execution time; however, we
rather measured running time internally using gettimeofday()
function, which returns monotonic time with μs granularity.

B. Standard-compliant code performance
After validating the code, we make it standard compliant

using PRQA, a static analysis tool widely accepted in
industrial code development. The tool is recognized as world
leader in defect prevention, promoting safe coding practices
and proactively ensuring the highest quality code for safety-
critical and mission-critical systems [9].

PRQA comes with a variety of plugins for static analysis,
including one specific for each of the two standards we are
evaluating. The tool allows for code analysis, highlighting the
source lines of code which have to be modified in order to be
compliant with a given Secure Coding Standard.

Once the code is ready, it is validated and its performance
is measured using UVa Online Judge once again.

C. Statistical study
We have performed a non-parametric test (one-tailed

Mann-Whitney U test, significance level 0.10) to obtain the
initial results.

We have first compared original code with SC-C code,
and original code with M-C code. Then, we have compared
M-C code with SC-C code.

Our hypothesis were: H0: The difference of location
between the samples is equal to 0; H1: The difference of
location between the samples is lower than 0 (the former code
running time is lower, that is, the program is faster).

IV. EXPERIMENTAL TESTBED AND RESULTS
The following six ACM-ICPC problems were chosen and

resolved: 136, 200, 494, 1056, 10035, and 10082 [8].
Code was written in ANSI C 5.3.0 and each test was

repeated (each program was run and its running time was
measured) a total of ten times for each version
(regular/original, SC-C, and M-C). Later, Mann-Whitney U

tests were performed (Table Tab. I summaries the results).

Our prospective study suggests that both standards
sometimes affect program performance and, when they do,
they do it in a negative way (they make it slower). This
happens more frequently with SC-C (3 out of 6 times) than
with M-C (1 out of 6).

When comparing SC-C and M-S, the latter is found to be
more optimal than the former 1 (almost 2, see program #136)
out of 6 times, with no difference for the other cases.

V. CONCLUSIONS AND FUTURE WORK
This research is a work in progress.
We have obtained some initial results showing that secure

coding standards sometimes make the secured code slower
(which is expected since they usually increase the number of
source lines of code), and some results hinting that M-C may
allow for faster code than SC-C in some cases.

However, choosing programs not complex enough (with
too little lines of code to which only a reduced set of rules
apply) may be somehow affecting these results.

In the near future, we will carefully select programs which
source code is complex enough to be affected by as many
standards rules as possible.

Also, smaller but topic-specific code fragments will be
used, that is, code fragments which are functional and cover a
given chapter or category of the standards (array usage,
integer operations, string manipulation, and so on).

 ACKNOWLEDGEMENT

This research was partially supported by INCIBE (The
Spanish National Cybersecurity Institute).

 REFERENCES
[1] “The 2016 Top Programming Languages - IEEE Spectrum”,

http://spectrum.ieee.org/computing/software/the-2016-top-
programming-languages [accessed: 2017/03/10]

[2] Graff, Mark, and Kenneth R. Van Wyk. “Secure coding: principles and
practices”. O'Reilly Media, Inc., 2003.

[3] Seacord, Robert C. “Secure Coding in C and C++”. Pearson Education,
2005.

[4] CMU SEI Cert Secure Coding Standard,
https://www.securecoding.cert.org/confluence/display/c/SEI+CERT+C+
Coding+Standard [accessed: 2017/03/10]

[5] CMU SEI Cert, http://www.cert.org/ [accessed: 2017/03/10]
[6] MISRA C, https://www.misra-

c.com/Activities/MISRAC/tabid/160/Default.aspx[accessed:2017/03/10]
[7] The ACM-ICPC International Collegiate Programming Contest

https://icpc.baylor.edu [accessed: 2017/03/10]
[8] UVa Online Judge https://uva.onlinejudge.org [accessed: 2017/03/10]
[9] PRQA, http://www.programmingresearch.com [accessed: 2017/03/10]

Table I
COMPARISON OF TWO SAMPLES (MANN-WHITNEY U TEST,

ALPHA 0.10); RISK % TO REJECT THE NULL HYPOTHESIS
H0 WHILE IT IS TRUE IS GIVEN BETWEEN BRACKETS

Program
ref code in

UOJ

Original
faster than

SC-C

Original
faster than

M-C

M-C faster
than SC-C

SC-C
faster than

M-C
136 No (54.52) No (82.77) No (11.32) No (90.07)
494 No (51.51) No (23.63) No (57.50) No (45.48)

10035 Yes (3.78) No (31.13) No (71.49) No (96.69)
1056 Yes (0.01) No (13.65) Yes (0.01) No (100.00)
10082 Yes (4.45) Yes (0.23) No (50.00) No (53.26)

200 No (54.51) No (54.51) No (66.12) No (36.69)

JNIC 2017 Trabajos en Desarrollo

169

View publication statsView publication stats

https://www.researchgate.net/publication/320517762

