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Abstract 19 

In this work, we developed a RS-based methodology aimed at improving the assessment 20 

of inter-annual land cover dynamics in heterogeneous and resilient landscapes. This is 21 

the case of the Spanish Natural Park of Sierra de Ancares, where human interference 22 

during the last century has resulted in the destruction and fragmentation of the original 23 

land cover. A supervised classification with a maximum likelihood algorithm was 24 

followed by an uncertainty assessment by using fuzzy classifications and confusion 25 

indices (CI). This allowed us to show how much of the study area contains a substantial 26 

amount of error, distinguishing data that might be useful to measure land change from 27 

data that are not particularly useful, and therefore to detect true changes not skewed by 28 

the effects of uncertainty. Even if patterns of change were always coherent among 29 

images, they were more realistic after reducing uncertainty, although the number of 30 

available pixels (i.e. unmasked by the method) decreased substantially. Using these 31 

data, we modelled land cover dynamics by using a program specifically created to 32 

determine the frequency of disturbances (mainly fire events), or recurrence, and the 33 

vegetation recovery time during the study period. The model outputs showed correlated 34 

landscape patterns at a broad scale and provide useful results to explore land cover 35 

change from pattern to process. 36 

 37 

Keywords: Land cover change; Remote sensing; Uncertainty; Fuzzy classification; 38 

Confusion Index; Recurrence; Vegetation recovery 39 

40 
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1. Introduction 41 

 42 

 Land cover mosaics are highly dynamic at varying spatio-temporal scales as a 43 

result of the contrasting effects of both anthropogenic and natural disturbances and 44 

vegetation recovery processes (Burgi et al. 2004; Lambin et al. 2001). In human-45 

dominated landscapes, disturbances such as fire (Lozano et al. 2008; Lloret et al. 2002), 46 

deforestation or overgrazing (Duveiller et al. 2008; Rees et al. 2003), in addition to land 47 

abandonment (Benayas et al. 2007; MacDonald et al. 2000), drive the dynamics of land 48 

cover patterns and the associated processes. Therefore, during recent decades, an 49 

increasing number of spatially-explicit methodologies have been developed to provide a 50 

better knowledge of past-to-present land cover changes at a regional scale (Stoorvogel 51 

and Antle 2001; Verburg et al. 2002). Many of these methods are based on remote 52 

sensing (RS) techniques (Roder et al. 2008; Treitz and Rogan, 2004), since they provide 53 

regional data at different temporal scales with low collection effort. However, although 54 

RS has in some cases been presented as an easy tool for deriving land cover inventories, 55 

the images require the application of complex and laborious procedures, including pre-56 

processing (for geometric, radiometric, atmospheric and topographic corrections) and 57 

classification tasks. The correct implementation of all these steps plays an important 58 

role in the reliability of the final characterizations (Fuller et al. 2003).  59 

The most commonly used land cover classifier is maximum likelihood (Maxlike) 60 

(Conese and Maselli, 1992; Martin et al. 1998; Shalaby and Tateishi 2007), which 61 

produces a hard classification based on simple statistical principles. This technique has 62 

shown satisfactory results in various applications, improving on other procedures 63 

(Carvalho et al. 2004; Rogan et al. 2002), and it has been widely used because of its 64 

easy implementation. However, classifications derived from Maxlike often still result in 65 
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an approximate error of 20% (Liu et al. 2007; Treitz and Rogan 2004). This level of 66 

misclassification may be acceptable if the study is carried out on a single image, but it 67 

may seriously affect land cover change studies based on multiple images (Pontius et al. 68 

2004). It is therefore interesting to develop complementary methodologies to improve 69 

the interpretation of the resulting land cover maps obtained by means of this technique. 70 

Since classifications remain simplifications of real landscapes (Woodcock and 71 

Gopal 2000), the product of image classification always contains an element of 72 

uncertainty (Metternicht, 2003; Steele et al. 1998). Moreover, as the sequence of land 73 

covers actually constitute a continuum; the assignment of a particular category to a pixel 74 

will always generate a certain degree of confusion (Lewis et al. 2000; Bradley and 75 

Mustard 2005) that must be evaluated (Wang and Howarth 1993). This issue has been 76 

analyzed previously, often on the basis of the fuzzy k-means classification (Ahamed et 77 

al. 2000; Foody 1996), which is a well-established method used to map mixed units 78 

emerging in heterogeneous landscapes. However, although these techniques have been 79 

used in vegetation (Tapia et al. 2005), soil (Burrough et al. 1997), urban expansion 80 

(Zhang and Foody 1998) and forestry studies (Triepke et al. 2008), they have not been 81 

specifically applied in landscape dynamics assessment as presented in this work. In fact, 82 

most of the land cover change analyses found in the literature are based only on 83 

comparisons among a limited number of images over a larger period (Cayuela et al. 84 

2006; Gautam et al. 2003; Xiao et al. 2006). However, in changing human-dominated 85 

territories, processes which control landscape dynamics should be assessed on a yearly 86 

basis in order to detect all land cover changes and to avoid misunderstanding the real 87 

patterns within a landscape (Diaz-Delgado and Pons 2001; Lloret et al. 2002; Wilson 88 

and Sader 2002). 89 
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In this context, we studied inter-annual land cover changes in a Spanish Natural 90 

Park over the last fourteen years, using remote sensing techniques. We developed a 91 

methodology based on fuzzy classifications and confusion indices to identify the pixels 92 

where the classification and change detection is less accurate, because of the effect of 93 

uncertainty. Those pixels are then sequentially excluded from the further land cover 94 

change analyses in order to evaluate its potential increase in reliability. Finally, to 95 

illustrate the approach, we analyzed the series of land cover maps, with and without 96 

uncertainty, by means of a model developed specifically to assess the frequency of 97 

disturbances (mainly fire events) and vegetation recovery time. 98 

 99 

2.  Methods 100 

 101 

2.1  Study area 102 

 103 

La Sierra de Ancares is a Natural Park of the Autonomous Region of Castilla y 104 

León (Spain) located at the western extreme of the Cantabrian Mountains. It covers 105 

approximately 100,000 ha, which include two protected areas by the Nature 2000 106 

Network (92/43/EEC): Sierra de Los Ancares and Alto Sil (Figure 1). Recently, it was 107 

also declared a UNESCO Biosphere Reserve to preserve outstanding ecological values, 108 

such as habitats suitable for brown bear (Ursus arctos) and capercaillie (Tetrao 109 

urogallus cantabricus). The elevation ranges from 600 to 2200 meters of altitude and 110 

coincides with moderate to steep relief. Climatically, the area is dominated by an 111 

Atlantic climate with a mean annual precipitation of 1300 mm and a mean temperature 112 

of 8°C (Ninyerola et al. 2005), although the lower altitudes show sub-Mediterranean 113 

characteristics. 114 
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 Land cover experienced major changes in the past, and currently exhibits a 115 

fragmented pattern. Human interference during the last century has resulted in the 116 

fragmentation of the original forest cover, coinciding with extensive tree fellings from 117 

the 1940s to 1970s. During recent decades, the depopulation of rural areas has involved 118 

the disappearance of agriculture and livestock farming, reforestation and the invasion of 119 

old fields by shrubs and forests. Although pasture maintenance is not necessary under 120 

current forestry policies, deliberate burning is still continued. Burning takes place 121 

mainly during summer (from June to September), and is the main problem for wildlife 122 

maintenance, together with a significant mining industry, which is especially important 123 

in Alto Sil.  124 

  125 

2.2 Input data and pre-processing 126 

 127 

Fourteen Landsat TM and ETM+ images were acquired on a yearly basis (from 128 

1991 to 2004) for the study area (Table 1). We selected images from the end of summer 129 

to the beginning of autumn to allow for proper comparisons (avoiding major changes in 130 

vegetation phenology), and to ensure the collection of burned areas, a minimum cloud 131 

cover and a relatively high sun elevation. Nevertheless, image availability and cloud 132 

presence compelled us to acquire three images from early June/July. In addition, a 133 

complementary digital elevation model (DEM) was developed following a stereo-134 

matching technique from equidistant points derived digital aerial photographs obtained 135 

in 2004, at a scale of 1:5000. This DEM was resampled at 30 metres resolution to match 136 

the Landsat images. The model is reliable, as was concluded by a validation assessment 137 

with field data, and has already been used successfully in other environmental studies 138 

(Lozano et al. 2008; Prieto, pers. com.). 139 
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The images were geometrically corrected by means of a second-order 140 

polynomial (Pala and Pons 1995) using 60 ground-control points per image, producing 141 

an average root mean square error of 20.1 m for the Landsat TM images and 11.8 m for 142 

the ETM+ images. This method is effective in mountainous regions since it incorporates 143 

the DEM developed to allow close adjustment for topography. We applied the Nearest 144 

Neighbour Algorithm to keep the original values of pixels unchanged. The sub-pixel 145 

georectified images were then radiometrically corrected using the algorithms proposed 146 

by Markham and Barker (1987) and Moran et al. (1992). The COST model (Chavez 147 

1996) was applied for atmospheric correction. Down-welling transmittance values for 148 

bands five and seven were taken from Gilabert et al. (1994), since their study area had 149 

similar atmospheric conditions to ours. Finally, a topographic correction was applied 150 

with the C correction model (Riaño et al. 2003; Teillet 1986) to compensate for 151 

different solar illuminations due to the mountainous character of the area. As each 152 

individual image was classified independently, we did not carry out a normalization of 153 

the time series. The methods and algorithms used for correcting the images were the 154 

same than used in Lozano et al. (2008). 155 

 156 

2.3 Classification of satellite images 157 

 158 

After several exploratory analyses (i.e. regression and non-supervised 159 

classification followed by cluster analyses) for determining homogeneous land cover 160 

categories on study area, a supervised classification using a maximum likelihood 161 

algorithm (Maxlike) was conducted on a per-pixel based approach, for each of the 14 162 

available images. Seven major land cover classes were recognized: (1) broadleaf 163 

woodlands dominated by various species of oaks (Quercus pyrenaica, Q. robur and Q. 164 
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petraea) or birches (Betula sp.), and riverside forests. (2) Meadows with hedges and 165 

farmlands in the valley bottoms. (3) Shrublands and heathlands (Erica spp, 166 

Chamaespartium tridentatum, Calluna vulgaris, Cytisus spp. and Genista spp., in order 167 

of importance), where conifer reforestation by human planting occurs. (4) Rock 168 

outcrops and dry subalpine-alpine climatic pastures. (5) Bare land, mostly resulting 169 

from fire events and, in minor proportion, mines, quarries and shrub-clearings. (6) 170 

Water surfaces. (7) Urban patches (towns, villages and isolated farms). Water surfaces 171 

and urban patches were considered constant (and then digitalized on screen), because of 172 

their scarce representation (less that 1% of study area) and low values of change at a 173 

broad scale through the study period. Therefore, classification focused on the five 174 

remaining change categories from the seven described before. It was based on: (1) 175 

bands 1-7 of the Landsat images, excluding thermal band 6 because of its different 176 

spatial resolution and spectral characteristics, not allowed by the models used in the 177 

radiometric correction; (2) the Normalized Differenced Vegetation Index (NDVI) 178 

(Rouse et al. 1973) and the component ”greenness” of the Tasselled Cap 179 

Transformation (Kauth and Thomas 1976), as a measure of total photosynthesis and the 180 

productivity of vegetation; and (3) elevation and slope. 181 

Training areas were identified on-screen using a seed pixel (region growing) 182 

approach (Lillesand et al. 2008). A total of 200 “clouds of pixels” consisting of 50 183 

pixels each (4.5 ha) were determined independently for each image. To ensure that all 184 

spectral classes constituting each information class (land cover category) were 185 

statistically sampled, representing its spectral variability in the image, the number of 186 

areas per land cover unit increased with increasing heterogeneity (i.e. the nature of the 187 

information class sought-after) and the complexity of the geographic area under analysis 188 

(Lillesand et al. 2008). Thus, broadleaf forests accounted for the greatest number (100), 189 
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while shrublands had 40 and meadows, rock outcrops and bare land categories 190 

accounted for 20 each. The selection was aided by using information derived from field 191 

work during the year 2004 and high spatial resolution digital aerial photographs from 192 

1991, 1997, 2000 and 2004 (provided by the Regional Government of Castilla y León). 193 

When no source of ground-truthed information was available, analysis based on the 194 

visual training acquired during the image interpretation supported by the information 195 

sources, was used to develop the reference dataset (Chuvieco 2000). 196 

 197 

2.4 Accuracy and uncertainty 198 

 199 

The problem of accuracy in multi-temporal datasets 200 

 201 

In assessing land cover change with multi-temporal datasets, a variety of factors 202 

influences the accuracy of the products through misregistration (i.e. differences in 203 

boundary locations, or positional error) (Dai and Khorram 1998; Roy 2000) and 204 

misclassification (i.e. erroneous allocations made by conventional (hard) classifiers on 205 

mixed pixels, or classification error) (Bradley and Mustard 2005; Cherrill and McClean 206 

1995), as well as the interaction of both over time (Burnicki et al. 2007; Carmel et al. 207 

2001). The effect of topography is also important, since a larger error has been 208 

associated with north-facing aspects and steeper slopes (Carmel 2004), although this is 209 

only true for northern hemisphere areas at higher latitudes. Finally, radiometric and 210 

atmospheric effects can also affect classification accuracy (Carmel et al. 2001), as 211 

atmospheric attenuation and sometimes the radiometer or its conditions may vary.  212 

Irrespective of their origin, the spatial variability of error can be a major concern 213 

in change-detection (Foody 2002). When multiple data-layers are involved, the majority 214 
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of this error is not randomly distributed over the study area, but spatially correlated at 215 

the boundaries of classes, i.e. the edges of land cover patches (Edwards and Lowell 216 

1996; Steele et al. 1998). Unfortunately, the confusion matrix and the accuracy metrics 217 

derived from it provide no information on the spatial distribution of error (Canters 1997; 218 

Steele et al. 1998), which is crucial for proper interpretation (Pontius and Lippitt 2006). 219 

Thus, together with the accuracy assessment, some kind of spatially-explicit 220 

representation of the uncertainty of the classified maps (i.e. all type of errors acting as a 221 

whole) would be useful for making reliable predictions about landscape dynamics. This 222 

article discusses uncertainty introduced to the data by the characteristics of the land 223 

cover classes of interest, specifically resulting from spectral confusion and from image 224 

resolution (Lewis et al. 2000). Other sources of uncertainty, such as positional 225 

uncertainty, are beyond the scope of this work. 226 

 227 

Accuracy assessment of maps: ground information and confusion matrix 228 

 229 

The accuracy of the land cover maps developed for only 1991, 1997, 2000 and 230 

2004 could be assessed because of the limited availability of ancillary data (field 231 

verification and digital aerial photographs), which provided the required ground 232 

information. An individual set of test data was developed for each year. 233 

To determine the test sampling unit for a pixel-based classification, Janssen and 234 

Van der Vel (1994) stated that individual pixels were the most appropriate dataset. 235 

Nevertheless, as pixels are usually uniform in shape and size, represent small areas in 236 

Landsat images (30 m) and partition the mapped population into a finite, though large, 237 

number of sampling units, they are related to point sampling units. Thus, following a 238 

site-specific accuracy assessment procedure, a total of 300 testing points were selected 239 
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for the years 1991, 1997 and 2000. For 2004, the reference year for the image series, up 240 

to 1325 points were field-checked to assess the reliability of the results more rigorously. 241 

A stratified random sampling was applied to ensure that each class was represented by 242 

at least 50 points for collecting all the variability in the information classes. Points were 243 

selected using a 3x3 kilometers moving window. Each accuracy assessment point was 244 

then examined to ensure that it did not fall within the associated class of interest’s 245 

training regions; any point that did was replaced.   246 

The testing points were used to construct confusion matrices (Congalton 1991), 247 

using standard accuracy assessment methods (Stehman and Czaplewski 1998). These 248 

provided a global summary of: (1) overall accuracy, or an overall measure of the quality 249 

of a map; (2) producer’s accuracy or omission errors, as a measure of real pixels not 250 

included in the correct land cover class; and (3) user’s accuracy or commission errors, a 251 

measure of the pixels erroneously classified as a particular land cover (Stehman 1997). 252 

Some general level of accuracy is typically specified as a target against which the 253 

classification may be evaluated (Foody 2002). In general terms, overall accuracies of 254 

80-90% are commonly recommended (Liu et al. 2007; Thomlinson et al. 1999), 255 

although this threshold actually depends on the complexity of the study area and the 256 

objectives of the work (Rogan et al. 2002). 257 

Additionally, official fire occurrence statistics available at the Regional 258 

Government of Castilla y León for the entire study period (1991-2004), were analyzed 259 

to assess the contribution of fire events to the bare land category. The total area burned 260 

(and the number of fire events) per year, extracted for the study area from the statistics, 261 

were correlated with the area covered by bare land on the classified images, through a 262 

Spearman test for non-parametric data. The number of observations (n) was fourteen 263 

(one for each year of study period) and the unit of observation was the percentage of 264 
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area burned (or number of fire events) for each point in time. In addition, 265 

complementary fieldwork and visual analyses of the high spatial resolution digital 266 

photographs were carried out. 267 

 268 

Uncertainty assessment of error: fuzzy classification and confusion index 269 

 270 

 The likelihood rule classifies pixels in the land cover class with maximum 271 

membership probability, although they could have an almost equal probability of 272 

membership to another class (Lewis et al. 2000), which defines the uncertainty 273 

associated to the classification process. To assess the uncertainty derived from these 274 

erroneous allocations made by conventional (hard) classifiers, a methodology based on 275 

fuzzy k-means memberships was applied to the classification results (Owen et al. 2006). 276 

This method yields membership probabilities for each of the land cover classes which 277 

can be used to calculate a Confusion Index (CI) as a measure of classification 278 

uncertainty (Burrough et al. 1997). The CI distinguishes subareas with high uncertainty 279 

due to class overlapping (which occurs mainly at boundaries between categories) from 280 

those with low uncertainty (e.g. pure pixels), accepting that one pixel can belong to 281 

more than one class (Tapia et al. 2005). In the fuzzy k-means classification, a measure 282 

of distances to the class centre (dc) is calculated for each pixel. The similarity measure 283 

between the vector (xs) (the characteristics at a particular pixel s, where characteristics 284 

refer to the digital values for each band included in the classification procedure for that 285 

particular pixel s) and the representative vector of the land cover class c (µc) is 286 

determined by the normalized Euclidean distance as follows: 287 

( )∑
=

−=
n

i
iicisc sdxd

1

2
,, /)( µ

       (Eq. 1) 288 
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where sdi stands for the overall standard deviation of characteristic i, and n is the 289 

number of bands used in the classification procedure. 290 

 A small dc indicates that x is similar to the land cover class c, whereas a large dc 291 

indicates large differences. Using these distances, the fuzzy membership grade of one 292 

pixel for a suitability class c (pc) is given by Eq. 2, where m is the number of land cover 293 

classes: 294 

∑
=

=
m

j
jcc ddp

1

/
        (Eq. 2) 295 

The confusion associated with the classification of a pixel can be expressed by 296 

the Confusion Index (CI) given in Eq. 3, where pc(max) is the membership value of the 297 

class with the maximum pc for that pixel and pc(max-1) is the second-largest 298 

membership value for the same pixel. 299 

( )))1(max(max)(1 −−−= cc ppCI       (Eq. 3) 300 

If one class clearly dominates above the others (CI approaches 0), there is little 301 

confusion in the classification process for that pixel. If CI approaches 1, then both pc-302 

values are similar and there is confusion as to the land cover class to which the pixel 303 

certainly pertains.  304 

For each of the 14 classified images, a map with the CI was calculated. 305 

Subsequently, in addition to the original land cover maps where all pixels were 306 

considered (CI 100 maps), we created land cover maps with 75% of the pixels which 307 

showed the lowest Confusion Index (CI 75 maps) and with 50% of these pixels (CI 50 308 

maps). Classification errors will be progressively masked from the map series as the 309 

method increases in accuracy and coherence (i.e. similarity) between images. Thus, the 310 

most reliable land cover dynamics could be determined by using only those pixels 311 

classified with the lower uncertainty. 312 
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All analyses were undertaken using ArcGIS 9.2 (ESRI 2006) and ERDAS 313 

IMAGINE 8.5 (ERDAS 2001). 314 

 315 

2.5  Land cover dynamics  316 

 317 

Firstly, the temporal evolution of each land cover category and the Spearman 318 

correlations between them were analyzed. The number of observations (n) was fourteen 319 

(one for each year of study period) and the unit of observation was the percentage of 320 

area covered by any particular category for each point in time. Secondly, land cover 321 

change was analyzed through post-classification comparison (Lambin 1999). All pair-322 

wise images, also considering uncertainty, were studied using transition error matrices 323 

(van Oort 2007), which allowed an assessment of the nature and rate of land cover 324 

changes. The Spearman correlation between some changes was also assessed. The 325 

number of observations (n) was thirteen (one for each pair of years of study period) and 326 

the unit of observation was the percentage of area changing between both maps. 327 

Once analyzed, the most important changes were quantitatively validated. The 328 

amount of change in relation to the increase in forest cover (represented by the 329 

transition from shrubland to forest) was compared with data available from the 330 

successive National Forestry Inventories of Spain (NFI) (Area of Environment, Ministry 331 

of the Environment and Rural and Marine Affairs, Government of Spain) and the Forest 332 

Atlas of Castilla and León (Gil Sánchez and Torre Antón 2007). Moreover, the total 333 

area burned (represented by changes from all vegetated land covers to bare land, while 334 

transitions from rock outcrops to bare were mainly related with new mines and 335 

quarries), was compared with data extracted from the official fire occurrence statistics 336 

of the Regional Government, for the period 1991-2004. Analyses were carried out for 337 
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the entire area (CI 100 maps), but also for maps retaining 75% (CI 75 maps) and 50% 338 

(CI 50 maps) of the most certainly classified pixels. 339 

Subsequently, we analyzed land cover dynamics through the dataset of empirical 340 

observations (i.e. all the unmasked pixels of the classified images), by using a model 341 

specifically programmed by the authors. The model analyzes the dynamics along study 342 

period of each individual pixel and determines when, where and how often a particular 343 

land cover change takes place. This transition can include two different categories: 344 

original land cover (LCA), in year i, and new land cover after change (LCB), in year j; 345 

with i, j representing two years of study period such as i < j (in advance sequence A_B). 346 

A bigger number of land covers can be included in the model, creating more complex 347 

sequences (e.g. LCA remaining constant in years i and i+1, followed by LCB in years j 348 

and j+1; with i, j representing two years of study period such as i+1 < j; in advance 349 

sequence AA_BB). In addition, the model allows for the calculation of the duration of a 350 

particular change (e.g. the time it takes for a burned pixel to recover into the original 351 

vegetation type). The output consists of a spatially-explicit representation for each of 352 

the model parameters: (i) year of first and last land cover change occurrence, (ii) 353 

number of times that a particular change occurs on the same pixel during study period, 354 

from an original land cover (LCA) to another (LCB) (or recurrence), and (iii) duration of 355 

any particular land cover change, since the year it happens (appearing LCB) until the 356 

year of recovery to the original land cover class (LCA) (time for vegetation recovery). In 357 

this work, we applied the model on sequences A_B and AA_BB using two parameters: 358 

change recurrence and time for vegetation recovery. To illustrate the effect of 359 

uncertainty, analyses were applied on the three levels of classification uncertainty (CI 360 

100, CI 75 and CI 50 maps). Only pixel-strings with observations for all years were 361 

included in the modelling. Thus, when any pixel on any map is eliminated by the 362 
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uncertainty assessment, no observations for that particular location (i.e. the location of 363 

the pixel masked) were considered in the analyses. 364 

 365 

3.  Results and Discussion 366 

 367 

3.1 Classification accuracy 368 

 369 

Hard classification 370 

 371 

All maps for the whole temporal series showed a common pattern of land cover, 372 

with different landscape elements spread out over a matrix of shrublands (see Figure 1a 373 

for a representation of the maps for the first and last years). Due to its lower disturbance 374 

regime (mainly less fire events), Alto Sil was more extensively covered by forest than 375 

the Sierra de Los Ancares, where isolated patches of mature forest were relegated to 376 

head-water basins. Valley bottoms were associated with hedged meadows and 377 

farmlands, while bare land patches and rock outcrops appeared scattered throughout the 378 

whole area, frequently mixed with fragmented heathlands at higher altitudes and on 379 

slopes.  380 

Table 2 provides the classification accuracy for the validation years. The overall 381 

accuracy was consistently above 80%. The highest values were found in 2000 and the 382 

lowest in 1991. These differences could be related to: (1) variation in the quality of 383 

calibration data and image sensors between years; (2) confusion between real changes 384 

and phenological differences in vegetation, cropping and changes in soil moisture 385 

within the same land over type, associated with the acquisition date; and (3) limitations 386 
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in the classification procedure due to the spectral overlapping between categories 387 

(spectral uncertainty). 388 

In general terms, the producer’s accuracy was relatively lower in non-vegetated 389 

areas (where it was difficult to distinguish between rock outcrops and bare land) than in 390 

meadows, forests or shrublands. Nevertheless, this problem was expected given the 391 

difficulties of classifying land covers which share similar spectral response patterns 392 

from images relating to the dry season. Moreover, rock outcrop category aggregated a 393 

continuous gradation from non-vegetated surfaces to mixed heathlands on rocky places, 394 

which makes it difficult to identify pure patches. A similar problem appeared when 395 

classifying bare land, particularly in areas affected by fire events. In this case, there was 396 

confusion between recently burned areas, rock and shrublands, probably due to 397 

heterogeneous patterns in vegetation recovery after disturbance and fire severity (Diaz-398 

Delgado et al. 2003; Lozano et al. 2007). Even so, the area of bare land category during 399 

study period was significantly correlated (Spearman coefficient) with data on area 400 

affected (r2=0.31, p< 0.05; n=14) and number of wildfires (r2=0.35, p< 0.05; n=14) of 401 

study area, obtained from the official fire statistics of the Regional Government. This 402 

result indicates that fire events contribute substantially to this land cover class. 403 

The user’s accuracy showed similar patterns, especially in the overestimation of 404 

non-vegetated surfaces. In particular, large areas of bare land and rock outcrops 405 

appeared mixed because of spectral confusion. Broadleaf forests and shrublands had, in 406 

general terms, the highest accuracy values, while meadows outside valleys were 407 

sometimes confused with forests or shrublands.  408 

 409 

Analysis of uncertainty 410 

 411 
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Confusion index maps (see Figure 2) showed clear regional differences across 412 

the study area. The highest confusion was associated with non-vegetated areas (i.e. rock 413 

outcrops and bare land) by the reasons given before, while forests and meadows had the 414 

lowest values and shrublands showed an intermediate situation (see Figure 1b and 1c for 415 

a representation of the maps for the furthermost years). The overall pattern of 416 

uncertainty was consistent for the whole temporal series, even if certain inter-annual 417 

differences were detected, corresponding to real land cover changes. But how to 418 

interpret this confusion index map?. As an example, if a fire event occurs in one year in 419 

pixels classified as shrubland, these pixels will be certainly classified as bare land that 420 

year. The CI of the map will be low. Nevertheless, after a period of time, depending on 421 

fire severity and vegetation recovery patterns, the spectral characteristics of those pixels 422 

vary, becoming closer to other categories (with herbaceous vegetation or even heathers) 423 

and it results in confusion. Thus, the CI value of those pixels burned would increase, 424 

becoming closer to one, and the probability of being masked by the uncertainty 425 

assessment would also higher.  Nevertheless, after reducing uncertainty, the area of bare 426 

land continued to be significantly correlated, even at higher values (r2=0.36, p< 0.05; 427 

n=14), with data on the area and number of wildfires obtained from the official fire 428 

statistics of the Regional Government. Furthermore, complementary fieldwork and 429 

visual interpretation of aerial photographs provided an estimate that around 60% of the 430 

bare areas were related to fires and 40% to mines, quarries, shrub-clearings, as well as 431 

the effects of shadows on rock outcrops. 432 

The elimination of pixels with the higher values of confusion index increased 433 

maps accuracy (Table 3a), although the number of available pixels decreased 434 

noticeably. Where the CI 100 maps had 86.75% of overall accuracy (mean value for the 435 

four validated years), CI 75 showed 89.75% and CI 50 reached 92.50%. As a result, we 436 
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obtained maps composed of a lesser number of more reliable pixels spread throughout 437 

the area. Assuming temporal independence of error in individual classifications, the 438 

overall accuracy of a change map can be approximated by multiplying the individual 439 

overall accuracies of each classified image (Burnicki et al. 2007). In this work, as 440 

mentioned, because of the limited availability of ground-based information sources, we 441 

could assess only the accuracy of four non-consecutive maps, which allowed to creating 442 

and validating three change maps (Table 3b). The overall accuracy in all cases increased 443 

meaningfully after applying the CI, since the overall accuracy of the independent maps 444 

also increased. Consequently, the overall coherence (or similarity) of all pair-wise 445 

transition matrices increased after reducing the study area by eliminating the most 446 

uncertain classified pixels. It improved from 78.70% (average value with CI 100 maps) 447 

to 85.36% (with CI 75 maps) and 92.12% (with CI 50 maps). To clearly demonstrate 448 

the importance of incorporating uncertainty into the accuracy of the resulting change 449 

maps, all land cover changes computed for 1999-2000 are presented in Figure 4. The 450 

full difference image (Figure 4a) shows changes distributed all across the study area, 451 

affecting 25% of pixels of the whole map. Figures 4b and 4c, which represent an area 452 

more certainly classified, illustrate a diminishing amount of change (17% and 8% with 453 

CI 75 and CI 50 maps, respectively), giving a more realistic pattern. Nevertheless, the 454 

loss of pixels (or information) could imply an underestimation of the real amount of 455 

land change, as is demonstrated below. 456 

 457 

3.2  Trends of change in landscape patterns  458 

 459 

Hard classification 460 

 461 
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The temporal evolution of land cover classes between 1991 and 2004 is 462 

presented in Figures 1a and 3a. Global changes were gradual through the study period, 463 

with no major trends. Shrublands were, in all cases, the dominant land cover, reaching 464 

maximum values in 1992, 1994, 1997 and 2002, which correlates with minima for non-465 

vegetated areas (r2=-0.59, p<0.01; n=14). This indicates that fire events mainly occur in 466 

shrub vegetation. Even with the appearance of new mining and quarries since 1995 in 467 

Alto Sil, bare land slightly decreased through the years (r2=-0.37, p<0.05; n=14), 468 

probably because the widespread occurrence of fire events diminished and burned areas 469 

were quickly colonized by heather communities. Forest cover was detected as relatively 470 

higher in 1994 and 1999, probably due to the effect of the date of image acquisition 471 

(beginning of June and July, when the consequences of summer drought were less 472 

visible on vegetation). Hedged meadows and farmlands were the most stable land cover 473 

type, showing variations of around 1% between years. 474 

 Table 4 (CI 100) shows that 21.3% of the area changed land cover every year 475 

(on average for the study period), with different rates of gains and losses between land 476 

covers. Six major changes accounted for 78.2% of the computed transitions. They 477 

affected the following categories, in both directions of change: (1) forests and 478 

shrublands, related with successional processes affecting diffuse boundaries; (2) 479 

shrubland and rock outcrops, mainly associated with rapid recovery of vegetation after 480 

disturbance and spectral uncertainty in sparse heathlands, and (3) shrublands and bare 481 

land, where wildfires, shrub-clearings, mines and quarries cause vegetation losses over 482 

large areas, followed by subsequent recovery. We also detected some changes that are 483 

highly unlikely, such as the transition from rock outcrops to forest, which were related 484 

to errors.  485 
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Table 4 (CI 100) also shows that changes from shrubland to forest occur yearly 486 

across 3.76% of study area, involving an increase in forested areas. Nevertheless, 487 

several studies have shown that in Central Western Spain the forested area has increased 488 

30,000 ha year−1 over the last three decades (Gil Sánchez and Torre Antón 2007). 489 

Applying this data to the Province of León, it gives a growth rate of 1.94% per year. 490 

This change was also analyzed comparing the maps from the First (1966) and Third 491 

(2006) National Forestry Inventories of Spain (NFI) for Province of León, while the 492 

Second NFI (1991) was not advisable to use. The comparison showed that 493 

approximately only 0.50% of the area was converted to forest each year, which is a 494 

more reliable measure. Furthermore, Table 4 (CI 100) gives a mean value for the area 495 

burned per year of 3% (changes from vegetated land covers to bare land). By contrast, 496 

official fire statistics from the Regional Government indicate that 1.98% of study area 497 

was burned each year, as an average for study period. These differences between our 498 

results and the reference data lead us to suggest that the amount of change was 499 

overestimated when based on the CI 100 maps.  500 

 501 

Analysis of uncertainty 502 

 503 

Figures 1 (b, c) and 3 (b, c) show that, after the application of filters based on 504 

confusion indices, the regional pattern of land cover remained similar, even if the 505 

number of available (unmasked) pixels decreased. However, more marked maxima and 506 

minima are evident in Figure 3 (b, c). The “noise” introduced by the uncertainty 507 

disappears after applying CI and the maps show a more realistic landscape pattern, in 508 

accordance with the phenological status of the vegetation. For example, as the image 509 

available for 1994 corresponds to the beginning of June (when forest canopy is not 510 



 22

completely developed), it causes high confusion between forest and shrubland. After 511 

applying CI filters, misclassifications are reduced (which correspond mainly with pixels 512 

of forests), and shrublands became more abundant. 513 

The average transition matrices (Table 4, CI 75 and CI 50) showed less change 514 

after filtering the uncertainty (14.61% and 7.84% the of unmasked area with CI 75 and 515 

CI 50 maps, respectively). The six major changes accounted for 81.4% of the total 516 

change with CI 75 maps, reaching 85.7% with CI 50, while unlikely transitions were 517 

almost absent. Moreover, changes from shrubland to forests and those related to fire 518 

events decrease in extent when analyzing CI 75 and CI 50 maps. Thus, more realistic 519 

results are obtained when our results are compared with the forest growth rates given by 520 

NFI and Gil Sánchez and Torre Antón (2007), and mean area burned extracted from the 521 

official fire statistics. Nevertheless, against the benefits of this approach, an excessive 522 

loss of pixels after applying CI thresholds could imply an underestimation of the extent 523 

of real changes, which are known to have occurred. If the vast majority of the study area 524 

is masked due to uncertainty, then the data are probably not sufficient to estimate land 525 

change, which is important information to know. 526 

Despite these differences in area estimates, the rate of change in relation to the 527 

unmasked area (i.e. all pixels with CI 100 maps, 75% of each image with CI 75 and 528 

50% with CI 50 maps), was consistent between all the analyses. As an example, Figure 529 

5a illustrates how the change from shrubland to bare land (mainly fire events, the most 530 

important change in controlling landscape dynamics) was significantly (r2>0.9, p<0.01; 531 

n=13) consistent as detected by CI 100, CI 75 and CI 50 maps. Inversely, Figure 5b 532 

shows the change from bare land to shrubland (vegetation recovery after disturbance). 533 

Again, the percentages provided by CI 100 maps were significantly correlated (r2>0.36, 534 

p<0.01; n=13) with CI 75 and CI 50 maps. Nevertheless, differences in the area 535 
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affected, prompted by the uncertainty assessment, were more important here than in 536 

Figure 5a. After one fire event, if the vegetation has time enough to recover until a 537 

certain level of biomass before the date of image acquisition, it will result in confusion. 538 

Thus, the most uncertainly classified pixels on CI 100 maps will be eliminated by the 539 

CI, and the changing area will be smaller. On the other hand, analyzing both figures 540 

together, quick recuperations appear after burning maxima (e.g. in 1994-1995), with 541 

rapid recovery rates during the subsequent two years (e.g. during 1995-1996 and 1996-542 

1997). In fact, high correlations were found between fire events in shrublands at time i 543 

and vegetation recovery at time i+1 and i+2 (r2>0.56, p<0.01; n=13). This indicates a 544 

short recovery period (i.e. between one and two years) for these communities after fire, 545 

in accordance with previous works (Calvo et al. 2002b; Lozano et al. 2007). 546 

 547 

3.3 Landscape dynamics modelling 548 

 549 

Modelling landscape dynamics identified “hot spots” affected by recurrence of 550 

disturbances and vegetation recovery patterns, which were also visible at a broad scale 551 

after applying confusion filters (Figure 6). A partial correlation was found between the 552 

higher recurrence values and longer times for vegetation recovery. Nonetheless, there 553 

were large differences throughout the area. Some areas with high resilience and a long 554 

history of anthropogenic disturbances, such as communities dominated by Erica 555 

australis, only needed one or two years to recover after a fire event (Calvo et al. 2002b), 556 

while others required more time. Whatever the reason for change, these differences 557 

might be related not only to patterns of fire recurrence and severity, or the previous 558 

stage of vegetation, but also to human factors, site history, climate and soil 559 

characteristics, which determinate the availability of nutrients, organic matter and other 560 
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properties (Roder et al. 2008; Serra et al. 2008; Vicente-Serrano et al. 2004). These 561 

driving factors are the most compelling research issues to investigate for modelling 562 

future landscape dynamics in the area. 563 

Table 5 provides disturbance recurrence and recovery rates for the four major 564 

changes defined in Table 4 (i.e. transitions between forest-shrubland, and shrubland-565 

bare land, in both directions of change), which have been modelled in this section. In 566 

general, the recurrence values varied between one and two. When the changes were 567 

analyzed after filtering uncertainty, or with the more secure AA_BB sequences, the 568 

recurrence values decreased significantly, showing a value of 1 with a low standard 569 

deviation. This could be explained by different reasons, depending on the change 570 

analyzed. The transition from forest to shrubland represents the most important change 571 

in terms of extent on study area (see Table 4). Nevertheless, it is highly unlikely to 572 

happen and it was related to misclassification effects, caused by succession phenomena 573 

on mixed pixels. On the other hand, the recurrence of change from shrubland to bare 574 

land may be interpreted as follows: (1) the majority of pixels classified as shrubland 575 

change to bare land only once or possibly twice during the study period (because of fire 576 

events and vegetation clearings), and (2) if shrub vegetation is eliminated by 577 

perturbations such as mines and quarries, it never recovers, so the recurrence of change 578 

is one, with no uncertainty. 579 

In terms of vegetation recovery, results were more heterogeneous. The major 580 

change detected in extent was the transition from shrublands to forest (see Table 4). 581 

After filtering the uncertainty and analyzing the more secure sequences, the results were 582 

moderately realistic (e.g. a shrubland would need more than four years to evolve into a 583 

forest), probably as a consequence of the scale of the analyses and the effect of 584 

uncertainty. Therefore, further research is needed on study area for analyzing this land 585 
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cover change at a more detailed spatial scale. A comprehensive explanation for the 586 

processes leading to land use and cover changes can only be achieved by combining 587 

observations from different approaches. By contrast, changes from bare land to 588 

shrubland gave interesting information. Working with sequences A_B, bare land needed 589 

around two years to return to shrubland, with and without reducing classification 590 

uncertainty. However, as Figure 6b shows, different situations may occur, ranging from 591 

a recovery time of one year (e.g. areas where a small fire or in general low-severe 592 

disturbance occurred) to thirteen years (i.e. mines and quarries established in areas 593 

initially covered by shrubs, which never recover along study period). Furthermore, an 594 

interesting effect appeared when more complex trajectories were explored (AA_BB 595 

sequences). When bare land category persisted in the same place for more than one year 596 

(two in this particular case), it is supposed that the disturbance which initially 597 

eliminated the vegetation was more severe (e.g. strong fire severity), or that consecutive 598 

disturbances occurred in a continuous basis (higher recurrence of fire events). This will 599 

affect soil properties and, thus, it will potentially increase the time needed for vegetation 600 

recovery. While 2.17 years were required on CI 100 maps with A_B sequences, 4.05 601 

years were needed in AA_BB trajectories. This situation has been demonstrated in 602 

previous works using other methodologies (Diaz-Delgado et al. 2002; Diaz-Delgado et 603 

al. 2003), although the time required for recovery may also be related to the level of 604 

complexity in the community affected by the disturbance (Calvo et al. 2002b). 605 

 606 

3.4 General discussion 607 

 608 

The effects of uncertainty on inter-annual land cover changes have been 609 

assessed. Patterns of change in the study area were consistent with and without masking 610 
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the most uncertain classified pixels. The vegetation has started to recover in disturbed 611 

areas, although wildfires continue to occur. Those areas affected by higher recurrences 612 

or more severe effects from disturbance required more time for vegetation recovery. But 613 

at a global level, the rate of change decreased over time and a slow but continuous 614 

homogenization of landscape occurred, although natural and socioeconomic driving 615 

factors have not acted with the same intensity and direction of change over the whole 616 

area. 617 

Although we could never say that the present method eliminates uncertainty 618 

because there will always be uncertainty, the patterns of land cover change were more 619 

realistic after applying filters to the classified images based on CI thresholds, as 620 

demonstrated previously. The CI was used to distinguish between a hard area, 621 

containing relevant units, and an uncertain area, representing possible errors. The 622 

number of available (unmasked) pixels decreased as those with the higher uncertainty 623 

were removed. Consequently, the accuracy and coherence (i.e. similarity) of the 624 

classified images increased substantially. This evidence is highly important for 625 

measuring land dynamics in heterogeneous and resilient landscapes, using temporal 626 

sequences of remotely sensed imagery (Roy 2000). If the datasets are not accurately 627 

coregistered or misclassification errors significantly exaggerate or alternatively mask 628 

change, the assessment of thematic accuracy would be hampered (Foody 2002), and any 629 

difference observed over time may not be attributable solely, if at all, to real change on 630 

the ground (Pontius and Lippitt 2006). In fact, a key concern is that thematic maps 631 

derived from remotely sensed data are often judged to be of insufficient quality for 632 

operational applications (Foody 2002), and usually tend to be poorly communicated to 633 

the user (van Oort 2007; Shao and Wu 2008). 634 
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 Nevertheless, against the benefits of this approach, the method is not able to 635 

detect whether some of the eliminated pixels are largely areas of true land cover change. 636 

The method can show how much of the study area contains a substantial amount of 637 

error, so we can distinguish data that might be useful to measure land change from data 638 

that are not particularly useful. For some case studies, there might be so much 639 

uncertainty that the method masks most of the map, which would be helpful to know; 640 

while other types of maps might have so little uncertainty that very little of the map 641 

becomes masked. In this way, an excessive loss of pixels could make change detection 642 

difficult, so underestimating the real extent of land cover change on the ground, while 643 

the direct use of hard classifications overestimate its magnitude. Thus, since land cover 644 

transitions are sensitive to the elimination of pixels that are highly uncertain, their 645 

elimination requires extreme caution (Story and Congalton 1986). Although the overall 646 

accuracy of confusion and transition matrices might be high enough to detect real 647 

changes between consecutive years, without increasing the effects due to errors (Fuller 648 

et al. 2003), this will always depend on the complexity of study area (Rogan et al. 2002) 649 

and the objectives of the analysis (Canters 1997; Janssen and van der Wel 1994).  650 

 651 

4. Conclusions 652 

 653 

The application of uncertainty analyses to high temporal resolution image series 654 

(at an annual scale) provides a useful tool to describe land cover dynamics in 655 

heterogeneous and resilient landscapes, which are affected by recurrent disturbances 656 

(such as fire events). Firstly, when studies on landscape change are carried out on the 657 

basis of simple classification products derived from few images spread over time, 658 

landscape dynamics could be miss-detected and, therefore, linking patterns to processes 659 
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may became unreliable. The rapid vegetation recoveries after fire found in the study 660 

area would not be detected if the image data were not available for every year. 661 

Secondly, if the research question does not go beyond determining the nature of general 662 

changes or trends, the analysis of aggregated values obtained directly from Maxlike 663 

would be an acceptable choice, on the basis of the consistent trends obtained with and 664 

without the analysis of uncertainty. Nevertheless, when analyzing the rate of change, 665 

frequency of disturbances (recurrence) or vegetation recovery times, the effects of 666 

uncertainty must be eliminated to obtain trustworthy results. In this case, working 667 

directly with the hard-classified images could seriously hamper our understanding of 668 

reality.  669 

Secure interpretation requires that the reader be cognizant with what the 670 

proposed methods can and cannot accomplish. Although an excessive loss of pixels (or 671 

information) hampers the accurate assessment of land cover change on the ground, the 672 

approach, however, eliminates false positives and determines where a particular 673 

transition takes place with higher levels of reliability. On the one hand, CI 100 maps 674 

contain all land cover changes in the study area, but are severely affected by large areas 675 

of error. By contrast, CI 75 and CI 50 maps can eliminate the majority of error as well 676 

as real changes, if conversions occur where the maps tend to be uncertain. Following 677 

this approach, and given information concerning the maps and their errors, our method 678 

could quantify whether it is possible to determine the amount of change on the ground. 679 

This requires work directed towards the search for a suitable CI threshold that provides 680 

some level of equilibrium, maximizing the real land cover change and minimizing the 681 

sources of error and uncertainty, by comparing results with reliable sources of ground 682 

information. 683 

 684 



 29

Acknowledgements 685 

 686 

This work was supported by the Regional Government of Junta de Castilla y León 687 

(Spain) and Fondo Social Europeo, under the research project funding supplied by the 688 

order EDU/1490/2003, awarded to J. M. Álvarez. The authors would like to thank their 689 

support and comments to Fire Ecology research group of the University of León, Land 690 

Dynamics group of the University of Wageningen, Cartography Support Service of the 691 

University of León and forest engineers and rangers of the Autonomous Region of 692 

Castilla y León. We also are grateful to Althea Davies, F.J. Lozano, A. Moran and L. 693 

Soler for help, and the anonymous reviewers for their helpful comments and 694 

information. Finally we wish to thank the Environmental Section of Junta de Castilla y 695 

León for their support to this study by providing digital geographical data. 696 

 697 

References 698 

Ahamed, T.R.N., Rao, K.G., and Murthy, J.S.R. (2000). GIS-based fuzzy membership 699 

model for crop-land suitability analysis. Agricultural Systems 63: 75-95 700 

Benayas, J.M., Martins, A., Nicolau, J.M., and Schulz, J.J. (2007). Abandonment of 701 

agricultural land: an overview of drivers and consequences. In V.S. CAB Reviews: 702 

Perspectives in Agriculture, Nutrition and Natural Resources (Ed.) 703 

Bradley, B.A., and Mustard, J.F. (2005). Identifying land cover variability distinct from 704 

land cover change: Cheatgrass in the Great Basin. Remote Sensing of Environment 94: 705 

204-213 706 

Burgi, M., Hersperger, A.M., and Schneeberger, N. (2004). Driving forces of landscape 707 

change - current and new directions. Landscape Ecology 19: 857-868 708 



 30

Burnicki, A.C., Brown, D.G., and Goovaerts, P. (2007). Simulating error propagation in 709 

land-cover change analysis: The implications of temporal dependence. Computers, 710 

Environment and Urban Systems 31: 282-302 711 

Burrough, P.A., vanGaans, P.F.M., and Hootsmans, R. (1997). Continuous 712 

classification in soil survey: Spatial correlation, confusion and boundaries. Geoderma 713 

77: 115-135 714 

Calvo, L., Tarrega, R., and de Luis, E. (1999). Post-fire succession in two Quercus 715 

pyrenaica communities with different disturbance histories. Annals of Forest Science 716 

56: 441-447 717 

Calvo, L., Tarrega, R., and de Luis, E. (2002a). The dynamics of mediterranean shrubs 718 

species over 12 years following perturbations. Plant Ecology 160: 25-42 719 

Calvo, L., Tarrega, R., and de Luis, E. (2002b). Secondary succession after 720 

perturbations in a shrubland community. Acta Oecologica-International Journal of 721 

Ecology 23: 393-404 722 

Canters, F. (1997). Evaluating the uncertainty of area estimates derived from fuzzy 723 

land-cover classification. Photogrammetric Engineering and Remote Sensing 63: 403-724 

414 725 

Carmel, Y. (2004). Characterizing location and classification error patterns in time-726 

series thematic maps. Geoscience and Remote Sensing Letters IEEE 1: 11-14 727 

Carmel, Y., Dean, D.J., and C.D., Flather (2001). Combining location and classification 728 

error sources for estimating multi-temporal database accuracy. Photogrammetric 729 

Engineering and Remote Sensing 67: 865-872 730 

Carvalho, d.L.M.T., Jan G. P. W. Clevers, Andrew K. Skidmore, and Jong, S.M.d. 731 

(2004). Selection of imagery data and classifiers for mapping Brazilian semideciduous 732 



 31

Atlantic forests. International Journal of Applied Earth Observation and Geoinformation 733 

5: 173-186 734 

Cayuela, L., Benayas, J.M.R., and Echeverria, C. (2006). Clearance and fragmentation 735 

of tropical montane forests in the Highlands of Chiapas, Mexico (1975-2000). Forest 736 

Ecology and Management 226: 208-218 737 

Conese, C., and Maselli, F. (1992). Use of Error Matrices to Improve Area Estimates 738 

with Maximum-Likelihood Classification Procedures. Remote Sensing of Environment 739 

40: 113-124 740 

Congalton, R.G. (1991). A Review of Assessing the Accuracy of Classifications of 741 

Remotely Sensed Data. Remote Sensing of Environment 37: 35-46 742 

Chavez, P.S. (1996). Image-based atmospheric corrections revisited and improved. 743 

Photogrammetric Engineering and Remote Sensing 62: 1025-1036 744 

Cherrill, A., and McClean, C. (1995). An investigation of uncertainty in field habitat 745 

mapping and the implications for detecting land cover change. Landscape Ecology 10: 746 

5-21 747 

Chuvieco, E. (2000). Fundamentos de Teledetección espacial. Madrid: EDICIONES 748 

RIALP, S.A.  749 

Dai, X.L., and Khorram, S. (1998). The effects of image misregistration on the accuracy 750 

of remotelysensed change detection. IEEE Transactions on Geoscience and Remote 751 

Sensing 36: 1566-1577 752 

Diaz-Delgado, R., Lloret, F., Pons, X., and Terradas, J. (2002). Satellite evidence of 753 

decreasing resilience in Mediterranean plant communities after recurrent wildfires. 754 

Ecology 83: 2293-2303 755 



 32

Diaz-Delgado, R., Llorett, F., and Pons, X. (2003). Influence of fire severity on plant 756 

regeneration by means of remote sensing imagery. International Journal of Remote 757 

Sensing 24: 1751-1763 758 

Diaz-Delgado, R., and Pons, X. (2001). Spatial patterns of forest fires in Catalonia (NE 759 

of Spain) along the period 1975-1995 - Analysis of vegetation recovery after fire. Forest 760 

Ecology and Management 147: 67-74 761 

Duveiller, G., Defourny, P., Desclée, B., and Mayaux, P. (2008). Deforestation in 762 

Central Africa: Estimates at regional, national and landscape levels by advanced 763 

processing of systematically-distributed Landsat extracts. Remote Sensing of 764 

Environment 115: 1969-1981 765 

Edwards, G., and Lowell, K.E. (1996). Modeling uncertainty in photointerpreted 766 

boundaries. Photogrammetric Engineering and Remote Sensing 62: 377-391 767 

ERDAS (2001). ERDAS Imagine 8.5. 768 

ESRI (2006). ArcGIS 9.2. 769 

Foody, G.M. (1996). Approaches for the production and evaluation of fuzzy land cover 770 

classifications from remotely-sensed data. International Journal of Remote Sensing 17: 771 

1317-1340 772 

Foody, G.M. (2002). Status of land cover classification accuracy assessment. Remote 773 

Sensing of Environment 80: 185-201 774 

Foody, G.M., and Boyd, D.S. (1999). Detection of partial land cover change associated 775 

with the migration of inner-class transitional zones. International Journal of Remote 776 

Sensing 20: 2723-2740 777 

Fuller, R.M., Smith, G.M., and Devereux, B.J. (2003). The characterisation and 778 

measurement of land cover change through remote sensing: problems in operational 779 



 33

applications? International Journal of Applied Earth Observation and Geoinformation 4: 780 

243-253 781 

Gautam, A.P., Webb, E.L., Shivakoti, G.P., and Zoebisch, M.A. (2003). Land use 782 

dynamics and landscape change pattern in a mountain watershed in Nepal. Agriculture 783 

Ecosystems and Environment 99: 83-96 784 

Gil Sánchez, C., and Torre Antón, M. (2007). Atlas forestal de Castilla y León, Junta de 785 

Castilla y León, Consejería de Medio Ambiente, Valladolid. 786 

Gilabert, M.A., Conese, C., and Maselli, F. (1994). An Atmospheric Correction Method 787 

for the Automatic Retrieval of Surface Reflectances from Tm Images. International 788 

Journal of Remote Sensing 15: 2065-2086 789 

Janssen, L.L.F., and Van der Vel, F.J.M. (1994). Accuracy assessment of satellite 790 

derived land-cover data: a review. Photogrammetric Engineering and Remote Sensing 791 

60: 419-426 792 

Janssen, L.L.F., and van der Wel, F.J.M. (1994). Accuracy assessment of satellite 793 

derived land-cover data: a review. Photogrammetric Engineering and Remote Sensing 794 

60: 419-426 795 

Kauth, R.J., and Thomas, G.S. (1976). The Tasseled Cap. A Graphic Description of the 796 

Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT. In, 797 

Symposium on Machine Processing of Remotely Sensed Data (pp. 4B-41 to 44B-51). 798 

Purdue University of West Lafayette, Indiana 799 

Lambin, E.F. (1999). Monitoring forest degradation in tropical regions by remote 800 

sensing: some methodological issues. Global Ecology and Biogeography 8: 191-198 801 

Lambin, E.F., Turner, B.L., Geist, H.J., Agbola, S.B., Angelsen, A., Bruce, J.W., 802 

Coomes, O.T., Dirzo, R., Fischer, G., Folke, C., George, P.S., Homewood, K., 803 

Imbernon, J., Leemans, R., Li, X.B., Moran, E.F., Mortimore, M., Ramakrishnan, P.S., 804 



 34

Richards, J.F., Skanes, H., Steffen, W., Stone, G.D., Svedin, U., Veldkamp, T.A., 805 

Vogel, C., and Xu, J.C. (2001). The causes of land-use and land-cover change: moving 806 

beyond the myths. Global Environmental Change-Human and Policy Dimensions 11: 807 

261-269 808 

Lewis, H.G., Brown, M., and Tatnall, A.R.L. (2000). Incorporating uncertainty in land 809 

cover classification from remote sensing imagery. Remote Sensing for Land Surface 810 

Characterisation 26: 1123-1126 811 

Lillesand, T.M., Kiefer, R.W., and Chipman, J.W. (2008). Remote Sensing and Image 812 

Interpretation: John Wiley and Sons  813 

Liu, C.R., Frazier, P., and Kumar, L. (2007). Comparative assessment of the measures 814 

of thematic classification accuracy. Remote Sensing of Environment 107: 606-616 815 

Lozano, F.J., Suárez-Seoane, S., and de Luis, E. (2007). Estudio comparativo de los 816 

regímenes de fuego en tres espacios naturales protegidos del oeste peninsular mediante 817 

imágenes Landsat. Revista Española de Teldetección. Accepted 818 

Lozano, F.J., Suarez-Seoane, S., Kelly, M., and Luis, E. (2008). A multi-scale approach 819 

for modeling fire occurrence probability using satellite data and classification trees: A 820 

case study in a mountainous Mediterranean region. Remote Sensing of Environment 821 

112: 708-719 822 

Lloret, F., Calvo, E., Pons, X., and Diaz-Delgado, R. (2002). Wildfires and landscape 823 

patterns in the Eastern Iberian peninsula. Landscape Ecology 17: 745-759 824 

MacDonald, D., Crabtree, J.R., Wiesinger, G., Dax, T., Stamou, N., Fleury P., Gutierrez 825 

Lazpita, J.a., and Gibon, A. (2000). Agricultural abandonment in mountain areas of 826 

Europe: Environmental consequences and policy response. Journal of Environmental 827 

Management 59: 47-69 828 



 35

Markham, B.L., and Barker, J.L. (1987). Radiometric Properties of United-States 829 

Processed Landsat Mss Data. Remote Sensing of Environment 22: 39-71 830 

Martin, M.E., Newman, S.D., Aber, J.D., and Congalton, R.G. (1998). Determining 831 

forest species composition using high spectral resolution remote sensing data. Remote 832 

Sensing of Environment 65: 249-254 833 

Metternicht, G.I. (2003). Categorical fuzziness: a comparison between crisp and fuzzy 834 

class boundary modelling for mapping salt-affected soils using Landsat TM data and a 835 

classification based on anion ratios. Ecological Modelling 168: 371-389 836 

Moran, M.S., Jackson, R.D., Slater, P.N., and Teillet, P.M. (1992). Evaluation of 837 

Simplified Procedures for Retrieval of Land Surface Reflectance Factors from Satellite 838 

Sensor Output. Remote Sensing of Environment 41: 169-184 839 

Ninyerola, M., Pons, X., and Roure, J.M. (2005). Atlas Climático Digital de la 840 

Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. ISBN 841 

932860-8-7. Universidad Autónoma de Barcelona, Bellaterra 842 

Owen, S.M., MacKenzie, A.R., Bunce, R.G.H., Stewart, H.E., Donovan, R.G., Stark, 843 

G., and Hewitt, C.N. (2006). Urban land classification and its uncertainties using 844 

principal component and cluster analyses: A case study for the UK West Midlands. 845 

Landscape and Urban Planning 78: 311-321 846 

Pala, V., and Pons, X. (1995). Incorporation of Relief in Polynomial-Based Geometric 847 

Corrections. Photogrammetric Engineering and Remote Sensing 61: 935-944 848 

Pontius, R.G., and Lippitt, C.D. (2006). Can Error Explain Map Differences Over 849 

Time? Cartography and Geographic Information Science 33: 159-171 850 

Pontius, R.G., Shusas, E., and McEachern, M. (2004). Detecting important categorical 851 

land changes while accounting for persistence. Agriculture Ecosystems and 852 

Environment 101: 251-268 853 



 36

Rees, W.G., Williams, M., and Vitebsky, P. (2003). Mapping land cover change in a 854 

reindeer herding area of the Russian Arctic using Landsat TM and ETM+ imagery and 855 

indigenous knowledge. Remote Sensing of Environment 85: 441-452 856 

Riaño, D., Chuvieco, E., Salas, J., and Aguado, I. (2003). Assessment of different 857 

topographic corrections in Landsat-TM data for mapping vegetation types (2003). IEEE 858 

Transactions on Geoscience and Remote Sensing 41: 1056-1061 859 

Roder, A., Hill, J., Duguy, B., Alloza, J.A., and Vallejo, R. (2008). Using long time 860 

series of Landsat data to monitor fire events and post-fire dynamics and identify driving 861 

factors. A case study in the Ayora region (eastern Spain). Remote Sensing of 862 

Environment 112: 259-273 863 

Rogan, J., Franklin, J., and Roberts, D.A. (2002). A comparison of methods for 864 

monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote 865 

Sensing of Environment 80: 143-156 866 

Rollings, M. G., R. E. Keane and R. A. Parsons (2004) Mapping fuels and fire regimes 867 

using remote sensing, ecosystem simulation and gradient modeling. Ecological 868 

Applications 14: 75-95. 869 

Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W. (1973). Monitoring vegetation 870 

systems in the Great Plains with ERTS. In NASA (Ed.), Third ERTS Symposium (pp. 871 

309-317) 872 

Roy, D.P. (2000). The impact of misregistration upon composited wide field of view 873 

satellite data and implications for change detection. IEEE Transactions on Geoscience 874 

and Remote Sensing 38: 2017-2032 875 

Serra, P., Pons, X., and Saurí, D. (2008). Land-cover and land-use change in a 876 

Mediterranean landscape: A spatial analysis of driving forces integrating biophysical 877 

and human factors. Applied Geography 28: 189-209 878 



 37

Shalaby, A., and Tateishi, R. (2007). Remote sensing and GIS for mapping and 879 

monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. 880 

Applied Geography 27: 28-41 881 

Shao G. and Wu J. 2008. On the accuracy of landscape pattern analysis using remote 882 

sensing data. Landscape Ecology 23: 505-511. 883 

Steele, B.M., Winne, J.C., and Redmond, R.L. (1998). Estimation and Mapping of 884 

Misclassification Probabilities for Thematic Land Cover Maps. Remote Sensing of 885 

Environment 66: 192-202 886 

Stehman, S.V. (1997). Selecting and interpreting measures of thematic classification 887 

accuracy. Remote Sensing of Environment 62: 77-89 888 

Stehman, S.V., and Czaplewski, R.L. (1998). Design and analysis for thematic map 889 

accuracy assessment: Fundamental principles. Remote Sensing of Environment 64: 331-890 

344 891 

Stoorvogel, J.J., and Antle, J.M. (2001). Regional land use analysis: the development of 892 

operational tools. Agricultural Systems 70: 623-640 893 

Story, M., and Congalton, R.G. (1986). Accuracy Assessment - a Users Perspective. 894 

Photogrammetric Engineering and Remote Sensing 52: 397-399 895 

Tapia, R., Stein, A., and Bijker, W. (2005). Optimization of sampling schemes for 896 

vegetation mapping using fuzzy classification. Remote Sensing of Environment 99: 897 

425-433 898 

Teillet, P.M. (1986). Image Correction for Radiometric Effects in Remote-Sensing. 899 

International Journal of Remote Sensing 7: 1637-1651 900 

Thomlinson, J.R., Bolstad, P.V., and Cohen, W.B. (1999). Coordinating Methodologies 901 

for Scaling Landcover Classifications from Site-Specific to Global: Steps toward 902 

Validating Global Map Products. Remote Sensing of Environment 70: 16-28 903 



 38

Treitz, P., and Rogan, J. (2004). Remote sensing for mapping and monitoring land-904 

cover and land-use change-an introduction. Progress in Planning 61: 269-279 905 

Triepke, F.J., Brewer, C.K., Leavell, D.M., and Novak, S.J. (2008). Mapping forest 906 

alliances and associations using fuzzy systems and nearest neighbor classifiers. Remote 907 

Sensing of Environment 112: 1037-1050 908 

van Oort, P.A.J. (2007). Interpreting the change detection error matrix. Remote Sensing 909 

of Environment 108: 1-8 910 

Veldkamp, A., and Fresco, L.O. (1997). Reconstructing land use drivers and their 911 

spatial scale dependence for Costa Rica (1973 and 1984). Agricultural Systems 55: 19-912 

43 913 

Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., and Mastura, 914 

S.S.A. (2002). Modeling the spatial dynamics of regional land use: The CLUE-S model. 915 

Environmental Management 30: 391-405 916 

Vicente-Serrano, S.M., Lasanta, T., and Romo, A. (2004). Analysis of Spatial and 917 

Temporal Evolution of Vegetation Cover in the Spanish Central Pyrenees: Role of 918 

Human Management. Environmental Management 34: 802-818 919 

Wang, M.H., and Howarth, P.J. (1993). Modeling Errors in Remote-Sensing Image 920 

Classification. Remote Sensing of Environment 45: 261-271 921 

Wilson, E.H., and Sader, S.A. (2002). Detection of forest harvest type using multiple 922 

dates of Landsat TM imagery. Remote Sensing of Environment 80: 385-396 923 

Woodcock, C.E., and Gopal, S. (2000). Fuzzy set theory and thematic maps: accuracy 924 

assessment and area estimation. International Journal of Geographical Information 925 

Science 14: 153-172 926 



 39

Xiao, J.Y., Shen, Y.J., Ge, J.F., Tateishi, R., Tang, C.Y., Liang, Y.Q., and Huang, Z.Y. 927 

(2006). Evaluating urban expansion and land use change in Shijiazhuang, China, by 928 

using GIS and remote sensing. Landscape and Urban Planning 75: 69-80 929 

Zhang, J., and Foody, G.M. (1998). A fuzzy classification of sub-urban land cover from 930 

remotely sensed imagery. International Journal of Remote Sensing 19: 2721-2738 931 

932 



 40

Table 1. Image series used in land cover classification, with date of acquisition, sensor 933 

type and solar elevation angle (degrees). 934 

Image Date Sensor type Sun Angle 

04/08/1991 TM 54.15 
06/08/1992 TM 53.49 
09/08/1993 TM 52.89 
09/06/1994 TM 58.75 
15/08/1995 TM 48.87 
02/09/1996 TM 46.35 
19/07/1997 TM 57.88 
08/09/1998 TM 47.42 
01/07/1999 ETM 63.03 
05/09/2000 ETM 49.45 
08/09/2001 ETM 48.39 
27/09/2002 ETM 42.22 
05/08/2003 TM 55.89 
24/09/2004 TM 42.72 

935 
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Table 2. Accuracy assessment of supervised classification for the validation years 936 

(number of validation points) 937 

 ground information     

2004 
classification Forest Meadow Shrubland Rock Bare TOTAL user´s 

accuracy 
Forest 324 27 7 3 0 361 89.75% 

Meadow 4 207 0 2 0 213 97.18% 
Shrubland 21 12 341 14 2 390 87.44% 

Rock 0 3 1 219 3 226 96.90% 
Bare 1 1 1 62 70 135 51.85% 

TOTAL 350 250 350 300 75 1325  
producer´s 
accuracy 

92.57% 82.80% 97.43% 73.00% 93.33%  88% 

2000 
classification 

Forest Meadow Shrubland Rock Bare TOTAL user´s 
accuracy 

Forest 45 0 3 0 0 48 93.75% 
Meadow 0 48 0 0 0 48 100.00% 

Shrubland 5 1 91 0 1 98 92.86% 
Rock 0 1 2 40 2 45 88.89% 
Bare 0 0 4 10 47 61 77.05% 

TOTAL 50 50 100 50 50 300  
producer´s 
accuracy 

90.00% 96.00% 91.00% 80.00% 94.00%  90% 

1997 
classification 

Forest Meadow Shrubland Rock Bare TOTAL user´s 
accuracy 

Forest 45 1 2 1 0 49 91.63% 
Meadow 1 48 0 0 0 49 97.97% 

Shrubland 4 0 93 2 13 112 82.79% 
Rock 0 1 4 42 0 47 89.36% 
Bare 0 0 1 5 37 43 85.94% 

TOTAL 50 50 100 50 50 300  
producer´s 
accuracy 

90.00% 96.03% 93.00% 83.81% 73.33%  88% 

1991 
classification Forest Meadow Shrubland Rock Bare TOTAL user´s 

accuracy 
Forest 47 5 0 0 1 53 88.68% 

Meadow 0 39 0 0 0 39 100.00% 
Shrubland 3 5 91 7 7 113 80.53% 

Rock 0 1 4 33 8 46 71.74% 
Bare 0 0 5 10 34 49 69.39% 

TOTAL 50 50 100 50 50 300  
producer´s 
accuracy 

94.00% 78.00% 91.00% 66.00% 68.00%  81% 
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Table 3. Overall accuracies of: (a) land cover maps, validated by accuracy assessment, 938 

and (b) land cover change maps, created by comparing the validated land cover maps. 939 

Analyses were done with all pixels classified by maximum likelihood (CI 100) and after 940 

the application of the corresponding filters of confusion index (CI 75 and CI 50), to 941 

eliminate the uncertainty associated with misclassification. 942 

a) overall accuracy of maps  b) overall accuracy of change maps 

land cover 
map 

CI 100 CI 75 CI 50  
land cover 

change map 
CI 100 CI 75 CI 50 

2004 88% 90.00% 90.00%      

     2000-2004 79.20% 83.70% 85.50% 

2000 90% 93.00% 95.00%      

     1997-2000 79.20% 85.56% 90.25% 

1997 88% 92.00% 95.00%      

     1991-1997 71.28% 77.28% 85.50% 

1991 81% 84.00% 90.00%      

943 
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Table 4. Average transition matrices for all pair-wise images through the study period, 944 

considering the analysis of uncertainty. Percentage of constant land cover is shown in 945 

parentheses and major changes in bold. Averaged gains and losses, as percentage of the 946 

area, are also shown. 947 

CI 100 
year  i+1 Total year 

i+1 
Gross loss 

Forest  Meadow Shrubland Rock Bare 

year  i               
Forest  (21.08) 0.58 3.70 0.22 0.13 25.71 4.63 

Meadow 0.54 (3.99) 0.53 0.22 0.19 5.47 1.48 
Shrubland 3.76 0.47 (44.08) 1.77 2.68 52.76 8.68 

Rock 0.23 0.24 1.84 (4.97) 0.42 7.7 2.73 
Bare 0.10 0.22 2.90 0.56 (4.58) 8.36 3.78 

Total year  i 25.71 5.5 53.05 7.74 8,00 100.00 21.3 
Gross gain 4.63 1.51 8.97 2.77 3.42 21.3   

        

CI 75 
year  i+1 Total year 

i+1 
Gross loss 

Forest  Meadow Shrubland Rock Bare 

year  i               
Forest  (25.40) 0.36 2.81 0.13 0.09 28.79 3.39 

Meadow 0.33 (3.81) 0.26 0.16 0.11 4.67 0.86 
Shrubland 2.77 0.24 (45.87) 1.12 2.33 52.33 6.46 

Rock 0.12 0.17 0.99 (5.43) 0.23 6.94 1.51 
Bare 0.05 0.12 1.88 0.34 (4.87) 7.26 2.39 

Total year i 28.8 4.67 52.32 6.95 7.25 100.00 14.61 
Gross gain 3.27 0.89 5.94 1.75 2.76 14.61   

        

CI 50 
year  i+1 Total year 

i+1 
Gross loss 

Forest  Meadow Shrubland Rock Bare 

year  i               
Forest  (32.68) 0.15 1.77 0.05 0.05 34.7 2.02 

Meadow 0.14 (3.55) 0.08 0.08 0.04 3.89 0.34 
Shrubland 1.71 0.08 (45.98) 0.48 1.66 49.91 3.93 

Rock 0.05 0.09 0.31 (5.35) 0.10 5.9 0.55 
Bare 0.02 0.04 0.78 0.16 (4.61) 5.61 1,00 

Total year i 34.7 3.89 49.9 5.90 5.61 100.00 7.84 
Gross gain 1.92 0.36 2.94 0.77 1.85 7.84   

948 
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Table 5. Averaged recurrence of changes (in number of occurrences) and time needed 949 

for restoration (in years) between the most important changes found on study area. 950 

Standard deviations are shown in parentheses. Modelling was done with all pixels 951 

classified by maximum likelihood (CI 100) and after the application of the 952 

corresponding filters of confusion index (CI 75 and CI 50), to reduce the uncertainty 953 

associated with misclassification. Land cover sequences A_B and AA_BB are assessed. 954 

Changed from ( A ) Changed to ( B) Sequence CI 100 CI 75 CI 50 

  RECURRENCE  

Forest Shrubland A_B 1.89 (1.02) 1.56 (0.88) 1.29 (0.66) 

  AA_BB 1.07 (0.25) 1.06 (0.24) 1.02 (0.15) 

Shrubland Bare land A_B 1.4 (0.68) 1.19 (0.46) 1.13 (0.38) 

    AA_BB 1.04 (0.19) 1.02 (0.15) 1.01 (0.07) 

  TIME FOR RESTORATION  

Shrubland Forest A_B 2.96 (2.94) 2.34 (2.94) 1.74 (2.38) 

  AA_BB 4.69 (2.92) 4.51 (2.97) 4.13 (2.88) 

Bare land Shrubland A_B 2.17 (1.95) 1.84 (1.88) 1.69 (1.95) 

    AA_BB 4.05 (2.62) 3.41 (2.53) 2.96 (2.47) 

 955 

956 
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Figure 1. Images of the study area for the start and end years of the series (1991 and 957 

2004). (a) All pixels classified by maximum likelihood (CI 100). (b, c) 75% and 958 

50% of the unmasked pixels after the application of the corresponding filters of 959 

confusion index (CI 75 and CI 50), to reduce the uncertainty associated with 960 

misclassification 961 

Figure 2. Confusion index map for the classified image from 2004. CI 75 and CI 50 962 

maps, where 75% and 50% of the image pixels remains unmasked, respectively, 963 

after the application of both CI thresholds, are also shown 964 

Figure 3. Temporal evolution (% area occupied) of each land cover class, in relation to 965 

the % of unmasked area. (a) All pixels classified by maximum likelihood (CI 966 

100). (b, c) 75% and 50% of the pixels remaining after the application of the 967 

corresponding filters of confusion index (CI 75 and CI 50) to mask the 968 

uncertainty associated with misclassification 969 

Figure 4. Change image between 1999 and 2000. (a) All pixels classified by maximum 970 

 likelihood (CI 100). (b, c) 75% and 50% of the pixels remaining after the 971 

 application of the corresponding filters of confusion index (CI 75 and CI 50), to 972 

 mask the uncertainty associated with misclassification 973 

Figure 5. Percentage of area changed, in relation to unmasked area, from: (a) shrubland 974 

to bare land (burned areas), and (b) bare land to shrubland (vegetation recovery 975 

after fire), for all pairs of consecutive years. Analyses were done with all pixels 976 

classified by maximum likelihood (CI 100) and after the application of the 977 

corresponding filters of confusion index (CI 75 and CI 50), to mask the 978 

uncertainty associated with misclassification 979 

Figure 6. Landscape dynamics modelling between shrublands and bare land: (a) 980 

disturbance recurrence (in number of times), (b) vegetation recovery (in years). 981 
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Analyses were done with all  pixels classified by maximum likelihood (CI 100 982 

maps), and with 75% least uncertain pixels (CI 75 maps), but interpolating 983 

results obtained with the Nearest Neighbour algorithm for creating continuous 984 

maps for the whole study area 985 

986 
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