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Abstract

In this work, we developed a RS-based methodology aimed at imprbeiragsessment
of inter-annual land cover dynamics in heterogeneous and resdiegdapes. This is
the case of the Spanish Natural Park of Sierra de Ancaleseviiuman interference
during the last century has resulted in the destruction and éragtion of the original
land cover. A supervised classification with a maximum Iia@d algorithm was
followed by an uncertainty assessment by using fuzzy claggfisaand confusion
indices (CI). This allowed us to show how much of the study areaig®@taubstantial
amount of error, distinguishing data that might be useful tassuredand change from
data that are not particularly useful, and therefore to datexzichanges not skewed by
the effects of uncertainty. Even if patterns of change vabsays coherent among
images, they were more realistic after reducing uncertaaitjough the number of
available pixels (i.e. unmasked by the method) decreased sidistahising these
data, we modelled land cover dynamics by using a program spkygificaated to
determine the frequency of disturbances (mainly fire eveatsjecurrence, and the
vegetation recovery time during the study period. The model ougpatsed correlated
landscape patterns at a broad scale and provide useful resukpldce dand cover

change from pattern to process.

Keywords: Land cover change; Remote sensing; Uncertainty; Fuzzy fidatisin;

Confusion Index; Recurrence; Vegetation recovery
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1. Introduction

Land cover mosaics are highly dynamic at varying spatio-temhgoales as a
result of the contrasting effects of both anthropogenic and nalist@irbances and
vegetation recovery processes (Burgi et al. 2004; Lambin.e208l1). In human-
dominated landscapes, disturbances such as fire (Lozano et al. 20@8gtlal. 2002),
deforestation or overgrazing (Duveiller et al. 2008; Rees &003), in addition to land
abandonment (Benayas et al. 2007; MacDonald et al. 2000), drivertamidyg of land
cover patterns and the associated processes. Therefore, decegrg decades, an
increasing number of spatially-explicit methodologies have beeglaped to provide a
better knowledge of past-to-present land cover changes at a tegpatea (Stoorvogel
and Antle 2001; Verburg et al. 2002). Many of these methods are basesmote
sensing (RS) techniques (Roder et al. 2008; Treitz and Rogan, 2604)they provide
regional data at different temporal scales with low colbecéffort. However, although
RS has in some cases been presented as an easy tool fexgdaridi cover inventories,
the images require the application of complex and laborious prosgduckiding pre-
processing (for geometric, radiometric, atmospheric and topographiections) and
classification tasks. The correct implementation of adséhsteps plays an important
role in the reliability of the final characterizations (Eulket al. 2003).

The most commonly used land cover classifier is maximum likelihglacl{ke)
(Conese and Maselli, 1992; Martin et al. 1998; Shalaby and ma@@®7), which
produces a hard classification based on simple statistical gdaaciThis technique has
shown satisfactory results in various applications, improving on gthecedures
(Carvalho et al. 2004; Rogan et al. 2002), and it has been widsllyhecause of its

easy implementation. However, classifications derived fitamlike often still result in
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an approximate error of 20% (Liu et al. 2007; Treitz and Rogan 2004.|aVel of
misclassification may be acceptable if the study is chwig on a single image, but it
may seriously affect land cover change studies based on muttigdes (Pontius et al.
2004). 1t is therefore interesting to develop complementary melthgide to improve
the interpretation of the resulting land cover maps obtaineddans of this technique.
Since classifications remain simplifications of real landssafyVoodcock and
Gopal 2000), the product of image classification always containglement of
uncertainty (Metternicht, 2003; Steele et al. 1998). Moreovethasequence of land
covers actually constitute a continuum; the assignment otiaydar category to a pixel
will always generate a certain degree of confusion (Lewial. 2000; Bradley and
Mustard 2005) that must be evaluated (Wang and Howarth 1993). Thish&ssueen
analyzed previously, often on the basis of the fuzzy k-meansficassn (Ahamed et
al. 2000; Foody 1996), which is a well-established method used to mad omis
emerging in heterogeneous landscapes. However, although these techaigpiégen
used in vegetation (Tapia et al. 2005), soil (Burrough et al. 199Gan expansion
(Zhang and Foody 1998) and forestry studies (Triepke et al. 20@§)have not been
specifically applied in landscape dynamics assessment anfgesn this work. In fact,
most of the land cover change analyses found in the literaturdased only on
comparisons among a limited number of images over a largerdp@iayuela et al.
2006; Gautam et al. 2003; Xiao et al. 2006). However, in changingrdomainated
territories, processes which control landscape dynamics shoukkéssad on a yearly
basis in order to detect all land cover changes and to avoid mistarakng the real
patterns within a landscape (Diaz-Delgado and Pons 2001; Llorét202; Wilson

and Sader 2002).
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In this context, we studied inter-annual land cover changes inras§pgdatural
Park over the last fourteen years, using remote sensing deekniWe developed a
methodology based on fuzzy classifications and confusion indices toiydéetipixels
where the classification and change detection is less aecbetause of the effect of
uncertainty. Those pixels are then sequentially excluded fronfuttieer land cover
change analyses in order to evaluate its potential inclieasgliability. Finally, to
illustrate the approach, we analyzed the series of land coaps, with and without
uncertainty, by means of a model developed specificallystess the frequency of

disturbances (mainly fire events) and vegetation recovesy tim

2. Methods

21 Study area

La Sierra de Ancares is a Natural Park of the Autonomous RegiCastiila y
Ledn (Spain) located at the western extreme of the Cantabrian difminkt covers
approximately 100,000 ha, which include two protected areas by the NzQQfe
Network (92/43/EEC): Sierra de Los Ancares and Alto Sil (FigoreRecently, it was
also declared a UNESCO Biosphere Reserve to preservenalingtacological values,
such as habitats suitable for brown bebirs(s arctos) and capercaillie Tetrao
urogallus cantabricus). The elevation ranges from 600 to 2200 meters of altitude and
coincides with moderate to steep relief. Climatically, tiheaais dominated by an
Atlantic climate with a mean annual precipitation of 1300 mm amekan temperature
of 8°C (Ninyerola et al. 2005), although the lower altitudes shawMediterranean

characteristics.
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Land cover experienced major changes in the past, and currahthite a
fragmented pattern. Human interference during the last gehtas resulted in the
fragmentation of the original forest cover, coinciding witheegive tree fellings from
the 1940s to 1970s. During recent decades, the depopulation of easlhas involved
the disappearance of agriculture and livestock farming, i&ftiren and the invasion of
old fields by shrubs and forests. Although pasture maintenance reocessary under
current forestry policies, deliberate burning is still contthuBurning takes place
mainly during summer (from June to September), and is the malihepr for wildlife
maintenance, together with a significant mining industryctviig especially important

in Alto Sil.

2.2 Input data and pre-processing

Fourteen Landsat TM and ETM+ images were acquired on a yeaily (fram
1991 to 2004) for the study area (Table 1). We selected imameghe end of summer
to the beginning of autumn to allow for proper comparisons (avoidingrrobanges in
vegetation phenology), and to ensure the collection of burned arsasinaum cloud
cover and a relatively high sun elevation. Neverthelesagénavailability and cloud
presence compelled us to acquire three images from early ulynéhl addition, a
complementary digital elevation model (DEM) was developedviotlg a stereo-
matching technique from equidistant points derived digital aerial pragibg obtained
in 2004, at a scale of 1:5000. This DEM was resampled at 8@smesolution to match
the Landsat image¥he model is reliable, as was concluded by a validation aseass
with field data, and has already been used successfully in eth@onmental studies

(Lozano et al. 2008; Prieto, pers. com.).



140 The images were geometrically corrected by means o$eaond-order
141 polynomial (Pala and Pons 1995) using 60 ground-control points per imagecing
142 an average root mean square error of 20.1 m for the Landsat TMsraag 11.8 m for
143 the ETM+ images. This method is effective in mountainous regiog it incorporates
144 the DEM developed to allow close adjustment for topography. Wikedphe Nearest
145 Neighbour Algorithm to keep the original values of pixels unchangkd. sub-pixel
146 georectified images were then radiometrically corrected ubaa@lgorithms proposed
147 by Markham and Barker (1987) and Moran et al. (1992). The COST modeleCha
148 1996) was applied for atmospheric correction. Down-welling tratenaé values for
149 bands five and seven were taken from Gilabert et al. (1994 8ietr study area had
150 similar atmospheric conditions to ours. Finally, a topographicecton was applied
151 with the C correction model (Riafio et al. 2003; Teillet 1986) to pmmsate for
152 different solar illuminations due to the mountainous charactehefatea. As each
153 individual image was classified independently, we did not cautya normalization of
154 the time series. The methods and algorithms used for correbgngnages were the
155 same than used in Lozano et al. (2008).

156
157 2.3 Clasdfication of satelliteimages

158

159 After several exploratory analyses (i.e. regression and nomvesgx
160 classification followed by cluster analyses) for determining homeges land cover
161 categories on study area, a supervised classification usimgu@mum likelihood
162 algorithm (Maxlike) was conducted on a per-pixel based approackatbr of the 14
163 available images. Seven major land cover classes were reedgr(il) broadleaf

164 woodlands dominated by various species of ogk&rcus pyrenaica, Q. robur andQ.



165 petraea) or birches Betula sp.), and riverside forests. (2) Meadows with hedges and
166 farmlands in the valley bottoms. (3) Shrublands and heathlakdisa( spp,
167 Chamaespartium tridentatum, Calluna vulgaris, Cytisus spp. andGenista spp., in order
168 of importance), where conifer reforestation by human plantingirecq4) Rock
169 outcrops and dry subalpine-alpine climatic pastures. (5) Bare raastly resulting
170 from fire events and, in minor proportion, mines, quarries and sheabirgs. (6)
171 Water surfaces. (7) Urban patches (towns, villages and iddktes). Water surfaces
172 and urban patches were considered constant (and then digitalizedem),doeeause of
173 their scarce representation (less that 1% of study areapandalues of change at a
174 broad scale through the study period. Therefore, classification thausehe five
175 remaining change categories from the seven described béfomas based on: (1)
176 bands 1-7 of the Landsat images, excluding thermal band 6 becaitsedidferent
177 spatial resolution and spectral characteristics, not alldwethe models used in the
178 radiometric correction; (2) the Normalized Differenced Vetygtalndex (NDVI)
179 (Rouse et al. 1973) and the component "greenness” of the TasdeHded
180 Transformation (Kauth and Thomas 1976), as a measure of total phbassgrand the
181 productivity of vegetation; and (3) elevation and slope.

182 Training areas were identified on-screen using a seed @iglon growing)
183 approach (Lillesand et al. 2008). A total of 200 “clouds of pixelsfisisting of 50
184 pixels each (4.5 ha) were determined independently for each.imagmsure that all
185 spectral classes constituting each information class (landr coaegory) were
186 statistically sampled, representing its spectral tdita in the image, the number of
187 areas per land cover unit increased with increasing heterogéneitthe nature of the
188 information class sought-after) and the complexity of the geograpbécunder analysis

189 (Lillesand et al. 2008). Thus, broadleaf forests accounted fordlagegt number (100),
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while shrublands had 40 and meadows, rock outcrops and bare land ieategor
accounted for 20 each. The selection was aided by using infomusrived from field
work during the year 2004 and high spatial resolution digital aeriabgrayhs from
1991, 1997, 2000 and 2004 (provided by the Regional Government of Catgémy,
When no source of ground-truthed information was available, asdigsed on the
visual training acquired during the image interpretation supported binfibrenation

sources, was used to develop the reference dataset (Cihn@@e0).

2.4 Accuracy and uncertainty

The problem of accuracy in multi-temporal datasets

In assessing land cover change with multi-temporal datasetsiegyvof factors
influences the accuracy of the products through misregistratien differences in
boundary locations, or positional error) (Dai and Khorram 1998; Roy 2000) and
misclassification (i.e. erroneous allocations made by convent{baadl) classifiers on
mixed pixels, or classification error) (Bradley and Mus205; Cherrill and McClean
1995), as well as the interaction of both over time (Burnickil.eR007; Carmel et al.
2001). The effect of topography is also important, sincergetaerror has been
associated with north-facing aspects and steeper slopesglC2064), although this is
only true for northern hemisphere areas at higher latitudeslyfinadiometric and
atmospheric effects can also affect classification aogu(Carmel et al. 2001), as
atmospheric attenuation and sometimes the radiometer onigions may vary.

Irrespective of their origin, the spatial variability ofe can be a major concern

in change-detection (Foody 2002). When multiple data-layers are @u/dlve majority



215 of this error is not randomly distributed over the study area, gaitadly correlated at
216 the boundaries of classes, i.e. the edges of land cover pakdheards and Lowell
217 1996; Steele et al. 1998). Unfortunately, the confusion matrix anactheacy metrics
218 derived from it provide no information on the spatial distributionrodrgCanters 1997;
219 Steele et al. 1998), which is crucial for proper interpretationt{ls and Lippitt 2006).
220 Thus, together with the accuracy assessment, some kind of llgmaticit
221 representation of the uncertainty of the classified mapsa(l.gype of errors acting as a
222 whole) would be useful for making reliable predictions about landstyapemics. This
223 article discusses uncertainty introduced to the data by thectdwstcs of the land
224  cover classes of interest, specifically resulting frggectral confusion and from image
225 resolution (Lewis et al. 2000). Other sources of uncertaintgh sas positional
226 uncertainty, are beyond the scope of this work.

227

228 Accuracy assessment of maps: ground infor mation and confusion matrix

229

230 The accuracy of the land cover maps developed for only 1991, 1997, 2000 and
231 2004 could be assessed because of the limited availability dfapnadata (field
232 verification and digital aerial photographs), which provided the reduiground
233 information. An individual set of test data was develope@&wh year.

234 To determine the test sampling unit for a pixel-based @leestsbn, Janssen and
235 Van der Vel (1994) stated that individual pixels were the mostopppte dataset.
236 Nevertheless, as pixels are usually uniform in shape andrep@sent small areas in
237 Landsat images (30 m) and partition the mapped population intate, timugh large,
238 number of sampling units, they are related to point sampling uritss, Tollowing a

239 site-specific accuracy assessment procedure, a total dB8@g points were selected

10



240 for the years 1991, 1997 and 2000. For 2004, the reference year iimathe series, up
241 to 1325 points were field-checked to assess the reliability akthdts more rigorously.
242 A stratified random sampling was applied to ensure that dash was represented by
243 at least 50 points for collecting all the variability in theomfation classes. Points were
244  selected using a 3x3 kilometers moving window. Each accuraegsmsent point was
245 then examined to ensure that it did not fall within the assatiatass of interest’s
246 training regions; any point that did was replaced.

247 The testing points were used to construct confusion matrices (Gmmd&91),
248 using standard accuracy assessment methods (Stehman and Gdal®98% These
249 provided a global summary of: (1) overall accuracy, or an dveedsure of the quality
250 of a map; (2) producer’s accuracy or omission errors, as aureeasreal pixels not
251 included in the correct land cover class; and (3) user’s accaramymmission errors, a
252 measure of the pixels erroneously classified as a partileuid cover (Stehman 1997).
253 Some general level of accuracy is typically specified darget against which the
254  classification may be evaluated (Foody 2002). In general termesalbaccuracies of
255 80-90% are commonly recommended (Liu et al. 2007; Thomlinson et al. 1999),
256 although this threshold actually depends on the complexity of the stadyaad the
257  objectives of the work (Rogan et al. 2002).

258 Additionally, official fire occurrence statistics availablgt the Regional
259 Government of Castilla y Ledn for the entire study period (1991-20@%k analyzed
260 to assess the contribution of fire events to the bare landocatéithe total area burned
261 (and the number of fire events) per year, extracted fostigy area from the statistics,
262 were correlated with the area covered by bare land on théfielhssiages, through a
263 Spearman test for non-parametric data. The number of observationss fourteen

264 (one for each year of study period) and the unit of observation wasetbentage of

11



265 area burned (or number of fire events) for each point in time.addition,
266 complementary fieldwork and visual analyses of the high speg&dlution digital
267 photographs were carried out.

268

269 Uncertainty assessment of error: fuzzy classification and confusion index

270

271 The likelihood rule classifies pixels in the land cover chlagth maximum
272 membership probability, although they could have an almost equal prbbatsil
273 membership to another class (Lewis et al. 2000), which defihesuncertainty
274 associated to the classification process. To assess the untgedizrived from these
275 erroneous allocations made by conventional (hard) classifiengtlaodology based on
276 fuzzy k-means memberships was applied to the classificasoitséOwen et al. 2006).
277 This method yields membership probabilities for each of the land ctagses which
278 can be used to calculate a Confusion Index (Cl) as a measurtassification
279 uncertainty (Burrough et al. 1997). The CI distinguishes subangasigh uncertainty
280 due to class overlapping (which occurs mainly at boundaries betwésgodes) from
281 those with low uncertainty (e.g. pure pixels), accepting that axed pan belong to
282 more than one class (Tapia et al. 2005). In the fuzzy k-ndassification, a measure
283 of distances to the class centdg) (s calculated for each pixel. The similarity measure
284 between the vectoxd) (the characteristics at a particular pigselvhere characteristics
285 refer to the digital values for each band included in the &ilasbn procedure for that
286 particular pixels) and the representative vector of the land cover ata$s) is

287 determined by the normalized Euclidean distance as follows:

d, =\/i((xs,i )}

288 =1 (Eq. 1)

12
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where sd; stands for the overall standard deviation of characteiisténdn is the
number of bands used in the classification procedure.

A smalld. indicates thak is similar to the land cover classwhereas a large:.
indicates large differences. Using these distances, tlzg faembership grade of one
pixel for a suitability class (pc) is given by Eq. 2, whema is the number of land cover
classes:
p.=d,/>d,

= (Eq. 2)

The confusion associated with the classificatiora gfixel can be expressed by
the Confusion Index (CI) given in Eq. 3, wh@&max) is the membership value of the
class with the maximunp. for that pixel andpc(max-1) is the second-largest

membership value for the same pixel.
Cl = (1~ (p,(max)- p,(max-1))) (Eq. 3)

If one class clearly dominates above the othersafproaches 0), there is little
confusion in the classification process for thatepilf Cl approaches 1, then bagbk
values are similar and there is confusion as tdahd cover class to which the pixel
certainly pertains.

For each of the 14 classified images, a map witn @ was calculated.
Subsequently, in addition to the original land coweaps where all pixels were
considered (CI 100 maps), we created land coversmain 75% of the pixels which
showed the lowest Confusion Index (Cl 75 maps)waitkd 50% of these pixels (Cl 50
maps). Classification errors will be progressivelpsked from the map series as the
method increases in accuracy and coherence (ndasty) between images. Thus, the
most reliable land cover dynamics could be detesohiby using only those pixels

classified with the lower uncertainty.

13
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All analyses were undertaken using ArcGIS 9.2 (E2R06) and ERDAS

IMAGINE 8.5 (ERDAS 2001).

2.5 Land cover dynamics

Firstly, the temporal evolution of each land coeategory and the Spearman
correlations between them were analyzed. The nuwibabservations (n) was fourteen
(one for each year of study period) and the uniblidervation was the percentage of
area covered by any particular category for eadhtpo time. Secondly, land cover
change was analyzed through post-classificationpasison (Lambin 1999). All pair-
wise images, also considering uncertainty, werdistuusing transition error matrices
(van Oort 2007), which allowed an assessment ofnétere and rate of land cover
changes. The Spearman correlation between somegehamas also assessed. The
number of observations (n) was thirteen (one feheaair of years of study period) and
the unit of observation was the percentage of @éneaging between both maps.

Once analyzed, the most important changes weretitptarely validated. The
amount of change in relation to the increase iredbrcover (represented by the
transition from shrubland to forest) was compareith wata available from the
successive National Forestry Inventories of Spidifl) (Area of Environment, Ministry
of the Environment and Rural and Marine Affairs v&mment of Spain) and the Forest
Atlas of Castilla and Ledén (Gil Sanchez and Tormtdh 2007). Moreover, the total
area burned (represented by changes from all viegetand covers to bare land, while
transitions from rock outcrops to bare were mairdyated with new mines and
guarries), was compared with data extracted froendtfficial fire occurrence statistics

of the Regional Government, for the period 1991408nalyses were carried out for

14
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the entire area (Cl 100 maps), but also for magsmniaeg 75% (Cl 75 maps) and 50%
(Cl 50 maps) of the most certainly classified pxel

Subsequently, we analyzed land cover dynamics gfrthe dataset of empirical
observations (i.e. all the unmasked pixels of tlassified images), by using a model
specifically programmed by the authors. The modelyzes the dynamics along study
period of each individual pixel and determines whehere and how often a particular
land cover change takes place. This transition inalude two different categories:
original land cover (L&), in yeari, and new land cover after change £.Gn yearj;
with i, j representing two years of study period such<ag (in advance sequenée B).
A bigger number of land covers can be includedhi hodel, creating more complex
sequences (e.g. la@emaining constant in yearandi+1, followed by LG in years
andj+1; with i, j representing two years of study period such+ds< j; in advance
sequenc®A BB). In addition, the model allows for the calculatiof the duration of a
particular change (e.g. the time it takes for anbdrpixel to recover into the original
vegetation type). The output consists of a spgt@tplicit representation for each of
the model parameters: (i) year of first and lastdlaover change occurrence, (ii)
number of times that a particular change occurthersame pixel during study period,
from an original land cover (L& to another (L@) (or recurrence), and (iii) duration of
any particular land cover change, since the yeanjipens (appearing kCuntil the
year of recovery to the original land cover cldgS4) (time for vegetation recovery). In
this work, we applied the model on sequenteB andAA BB using two parameters:
change recurrence and time for vegetation recovéry.illustrate the effect of
uncertainty, analyses were applied on the threeldeof classification uncertainty (ClI
100, CI 75 and CI 50 maps). Only pixel-strings withservations for all years were

included in the modelling. Thus, when any pixel amy map is eliminated by the

15
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uncertainty assessment, no observations for théitpiar location (i.e. the location of

the pixel masked) were considered in the analyses.

3. Resultsand Discussion

3.1 Classification accuracy

Hard classification

All maps for the whole temporal series showed armoom pattern of land cover,
with different landscape elements spread out ovaatix of shrublands (see Figure la
for a representation of the maps for the first st years). Due to its lower disturbance
regime (mainly less fire events), Alto Sil was merdensively covered by forest than
the Sierra de Los Ancares, where isolated patchesature forest were relegated to
head-water basins. Valley bottoms were associatéth wedged meadows and
farmlands, while bare land patches and rock outceggpeared scattered throughout the
whole area, frequently mixed with fragmented heattls at higher altitudes and on
slopes.

Table 2 provides the classification accuracy fervhlidation years. The overall
accuracy was consistently above 80%. The highdaesavere found in 2000 and the
lowest in 1991. These differences could be related1) variation in the quality of
calibration data and image sensors between yegrgoffusion between real changes
and phenological differences in vegetation, crogpamd changes in soil moisture

within the same land over type, associated withattwuisition date; and (3) limitations
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in the classification procedure due to the speotnadrlapping between categories
(spectral uncertainty).

In general terms, the producer’s accuracy wasivelgtlower in non-vegetated
areas (where it was difficult to distinguish betwaeck outcrops and bare land) than in
meadows, forests or shrublands. Nevertheless,pttublem was expected given the
difficulties of classifying land covers which shasenilar spectral response patterns
from images relating to the dry season. Moreovaek outcrop category aggregated a
continuous gradation from non-vegetated surfacesited heathlands on rocky places,
which makes it difficult to identify pure patcheA. similar problem appeared when
classifying bare land, particularly in areas atbelcby fire events. In this case, there was
confusion between recently burned areas, rock admwdbknds, probably due to
heterogeneous patterns in vegetation recovery disasrbance and fire severity (Diaz-
Delgado et al. 2003; Lozano et al. 2007). Everttemarea of bare land category during
study period was significantly correlated (Spearncaefficient) with data on area
affected (f=0.31, p< 0.05; n=14) and number of wildfire&(.35, p< 0.05; n=14) of
study area, obtained from the official fire statistof the Regional Government. This
result indicates that fire events contribute sutifd#y to this land cover class.

The user’s accuracy showed similar patterns, ealbean the overestimation of
non-vegetated surfaces. In particular, large amfadare land and rock outcrops
appeared mixed because of spectral confusion. Rrafafibrests and shrublands had, in
general terms, the highest accuracy values, whigadows outside valleys were

sometimes confused with forests or shrublands.

Analysis of uncertainty
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Confusion index maps (see Figure 2) showed clegiomal differences across
the study area. The highest confusion was assdomth non-vegetated areas (i.e. rock
outcrops and bare land) by the reasons given hefdriée forests and meadows had the
lowest values and shrublands showed an intermesliatgion (see Figure 1b and 1c for
a representation of the maps for the furthermosirsje The overall pattern of
uncertainty was consistent for the whole tempoeaies, even if certain inter-annual
differences were detected, corresponding to readl leover changes. But how to
interpret this confusion index map?. As an exampk fire event occurs in one year in
pixels classified as shrubland, these pixels weélldertainly classified as bare land that
year. The CIl of the map will be low. Neverthelesf$er a period of time, depending on
fire severity and vegetation recovery patternssiiectral characteristics of those pixels
vary, becoming closer to other categories (wittbheeous vegetation or even heathers)
and it results in confusion. Thus, the CI valughaise pixels burned would increase,
becoming closer to one, and the probability of gemasked by the uncertainty
assessment would also higher. Nevertheless,raffecing uncertainty, the area of bare
land continued to be significantly correlated, ewtrhigher values %0.36, p< 0.05;
n=14), with data on the area and number of wildfiobtained from the official fire
statistics of the Regional Government. Furtherma@nplementary fieldwork and
visual interpretation of aerial photographs prodid® estimate that around 60% of the
bare areas were related to fires and 40% to mmesyies, shrub-clearings, as well as
the effects of shadows on rock outcrops.

The elimination of pixels with the higher values afnfusion index increased
maps accuracy (Table 3a), although the number diladle pixels decreased
noticeably. Where the Cl 100 maps had 86.75% ofadlvaccuracy (mean value for the

four validated years), Cl 75 showed 89.75% and@ieached 92.50%. As a result, we
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obtained maps composed of a lesser number of netiable pixels spread throughout
the area. Assuming temporal independence of emandividual classifications, the
overall accuracy of a change map can be approxdnagemultiplying the individual
overall accuracies of each classified image (Buinat al. 2007). In this work, as
mentioned, because of the limited availability ofund-based information sources, we
could assess only the accuracy of four non-consecotaps, which allowed to creating
and validating three change maps (Table 3b). Tleeadhvaccuracy in all cases increased
meaningfully after applying the CI, since the oVleaacuracy of the independent maps
also increased. Consequently, the overall coheréocesimilarity) of all pair-wise
transition matrices increased after reducing th&lystarea by eliminating the most
uncertain classified pixels. It improved from 784’ Qaverage value with Cl 100 maps)
to 85.36% (with Cl 75 maps) and 92.12% (with ClrB@ps). To clearly demonstrate
the importance of incorporating uncertainty inte #ccuracy of the resulting change
maps, all land cover changes computed for 1999-208(presented in Figure 4. The
full difference image (Figure 4a) shows changesridiged all across the study area,
affecting 25% of pixels of the whole map. Figurdsahd 4c, which represent an area
more certainly classified, illustrate a diminishiagount of change (17% and 8% with
ClI 75 andCl 50 maps, respectively), giving a more realig@tern. Nevertheless, the
loss of pixels (or information) could imply an umestimation of the real amount of

land change, as is demonstrated below.

3.2 Trendsof changein landscape patterns

Hard classification
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The temporal evolution of land cover classes betw&891 and 2004 is
presented in Figures la and 3a. Global changes gvadeial through the study period,
with no major trends. Shrublands were, in all caties dominant land cover, reaching
maximum values in 1992, 1994, 1997 and 2002, wbarhelates with minima for non-
vegetated areas’0.59, p<0.01; n=14). This indicates that fire rtgemainly occur in
shrub vegetation. Even with the appearance of navnghand quarries since 1995 in
Alto Sil, bare land slightly decreased through trears (f=-0.37, p<0.05; n=14),
probably because the widespread occurrence oé¥ieats diminished and burned areas
were quickly colonized by heather communities. Bboaver was detected as relatively
higher in 1994 and 1999, probably due to the eftédhe date of image acquisition
(beginning of June and July, when the consequentesimmer drought were less
visible on vegetation). Hedged meadows and farnslavele the most stable land cover
type, showing variations of around 1% between years

Table 4 (CI 100) shows that 21.3% of the area gbdrand cover every year
(on average for the study period), with differesties of gains and losses between land
covers. Six major changes accounted for 78.2% ef dbmputed transitions. They
affected the following categories, in both dirensoof change: (1) forests and
shrublands, related with successional processesctaffy diffuse boundaries; (2)
shrubland and rock outcrops, mainly associated waifiid recovery of vegetation after
disturbance and spectral uncertainty in sparsenlzedts, and (3) shrublands and bare
land, where wildfires, shrub-clearings, mines andrges cause vegetation losses over
large areas, followed by subsequent recovery. We détected some changes that are
highly unlikely, such as the transition from roaktcrops to forest, which were related

to errors.
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Table 4 (CI 100) also shows that changes from $angbto forest occur yearly
across 3.76% of study area, involving an increasdorested areas. Nevertheless,
several studies have shown that in Central WeS&pain the forested area has increased
30,000 ha yeat over the last three decades (Gil Sanchez and Tamtén 2007).
Applying this data to the Province of Leon, it giva growth rate of 1.94% per year.
This change was also analyzed comparing the maps fne First (1966) and Third
(2006) National Forestry Inventories of Spain (Nfd) Province of Ledn, while the
Second NFI (1991) was not advisable to use. The padson showed that
approximately only 0.50% of the area was convettedbrest each year, which is a
more reliable measure. Furthermore, Table 4 (C)) yd@s a mean value for the area
burned per year of 3% (changes from vegetated dandrs to bare land). By contrast,
official fire statistics from the Regional Governmiendicate that 1.98% of study area
was burned each year, as an average for studydpdriese differences between our
results and the reference data lead us to sugbastthhe amount of change was

overestimated when based on the CI 100 maps.

Analysis of uncertainty

Figures 1 (b, c) and 3 (b, c) show that, afterapplication of filters based on
confusion indices, the regional pattern of land ezokemained similar, even if the
number of available (unmasked) pixels decreaseweder, more marked maxima and
minima are evident in Figure 3 (b, c). The “noigatroduced by the uncertainty
disappears after applying Cl and the maps show r@ mealistic landscape pattern, in
accordance with the phenological status of the tagige. For example, as the image

available for 1994 corresponds to the beginninglwie (when forest canopy is not
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completely developed), it causes high confusionveen forest and shrubland. After
applying ClI filters, misclassifications are redugedhich correspond mainly with pixels
of forests), and shrublands became more abundant.

The average transition matrices (Table 4, Cl 75@h80) showed less change
after filtering the uncertainty (14.61% and 7.84% btf unmasked area with CI 75 and
Cl 50 maps, respectively). The six major changeaated for 81.4% of the total
change with Cl 75 maps, reaching 85.7% with Clwhile unlikely transitions were
almost absent. Moreover, changes from shrublanfdrests and those related to fire
events decrease in extent when analyzing Cl 75GisD maps. Thus, more realistic
results are obtained when our results are compaitedhe forest growth rates given by
NFI and Gil Sanchez and Torre Antén (2007), andrmagaa burned extracted from the
official fire statistics. Nevertheless, against thenefits of this approach, an excessive
loss of pixels after applying ClI thresholds couttbly an underestimation of the extent
of real changes, which are known to have occuifdéde vast majority of the study area
is masked due to uncertainty, then the data areapip not sufficient to estimate land
change, which is important information to know.

Despite these differences in area estimates, teeofachange in relation to the
unmasked area (i.e. all pixels with ClI 100 mapo & each image with Cl 75 and
50% with CI 50 maps), was consistent between allaihalyses. As an example, Figure
5a illustrates how the change from shrubland te temd (mainly fire events, the most
important change in controlling landscape dynamiea$ significantly @&>0.9, p<0.01;
n=13) consistent as detected by Cl 100, CI 75 ah80Cmaps. Inversely, Figure 5b
shows the change from bare land to shrubland (aéigatrecovery after disturbance).
Again, the percentages provided by Cl 100 maps wsigrgficantly correlated {0.36,

p<0.01; n=13) with CI 75 and ClI 50 maps. Nevertbgledifferences in the area
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affected, prompted by the uncertainty assessmesite \more important here than in
Figure 5a. After one fire event, if the vegetatimes time enough to recover until a
certain level of biomass before the date of imaggussition, it will result in confusion.

Thus, the most uncertainly classified pixels on1G0 maps will be eliminated by the
Cl, and the changing area will be smaller. On tileiohand, analyzing both figures
together, quick recuperations appear after burmmagima (e.g. in 1994-1995), with
rapid recovery rates during the subsequent twosyag. during 1995-1996 and 1996-
1997). In fact, high correlations were found betwéiee events in shrublands at time

and vegetation recovery at timel andi+2 (r>>0.56, p<0.01; n=13). This indicates a
short recovery period (i.e. between one and twosydar these communities after fire,

in accordance with previous works (Calvo et al.Z2)d_ozano et al. 2007).

3.3 Landscape dynamics modelling

Modelling landscape dynamics identified “hot spaa$fected by recurrence of
disturbances and vegetation recovery patterns,hnigre also visible at a broad scale
after applying confusion filters (Figure 6). A pattcorrelation was found between the
higher recurrence values and longer times for amet recovery. Nonetheless, there
were large differences throughout the area. Somasawith high resilience and a long
history of anthropogenic disturbances, such as aamties dominated byErica
australis, only needed one or two years to recover aftaeaf/ent (Calvo et al. 2002hb),
while others required more time. Whatever the rea®o change, these differences
might be related not only to patterns of fire reeace and severity, or the previous
stage of vegetation, but also to human factorse $iistory, climate and soil

characteristics, which determinate the availabitywutrients, organic matter and other
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properties (Roder et al. 2008; Serra et al. 2008gne-Serrano et al. 2004). These
driving factors are the most compelling researdudgs to investigate for modelling
future landscape dynamics in the area.

Table 5 provides disturbance recurrence and regawates for the four major
changes defined in Table 4 (i.e. transitions betweeest-shrubland, and shrubland-
bare land, in both directions of change), whichenaeen modelled in this section. In
general, the recurrence values varied between ndetveo. When the changes were
analyzed after filtering uncertainty, or with theoma secureAA BB sequences, the
recurrence values decreased significantly, showinglue of 1 with a low standard
deviation. This could be explained by different s@as, depending on the change
analyzed. The transition from forest to shrublaggresents the most important change
in terms of extent on study area (see Table 4).eNbegless, it is highly unlikely to
happen and it was related to misclassificationot$fecaused by succession phenomena
on mixed pixels. On the other hand, the recurresfcehange from shrubland to bare
land may be interpreted as follows: (1) the majoat pixels classified as shrubland
change to bare land only once or possibly twicénduthe study period (because of fire
events and vegetation clearings), and (2) if shualgetation is eliminated by
perturbations such as mines and quarries, it neoavers, so the recurrence of change
is one, with no uncertainty.

In terms of vegetation recovery, results were nitoeterogeneous. The major
change detected in extent was the transition fromabdands to forest (see Table 4).
After filtering the uncertainty and analyzing thema secure sequences, the results were
moderately realistic (e.g. a shrubland would needenthan four years to evolve into a
forest), probably as a consequence of the scalthefanalyses and the effect of

uncertainty. Therefore, further research is neededtudy area for analyzing this land
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cover change at a more detailed spatial scale. rApoehensive explanation for the
processes leading to land use and cover changesntarbe achieved by combining
observations from different approaches. By contrasianges from bare land to
shrubland gave interesting information. Workinghnsequence8_ B, bare land needed
around two years to return to shrubland, with anthout reducing classification
uncertainty. However, as Figure 6b shows, diffes#niations may occur, ranging from
a recovery time of one year (e.g. areas where dl $imaor in general low-severe
disturbance occurred) to thirteen years (i.e. miaed quarries established in areas
initially covered by shrubs, which never recovesng study period). Furthermore, an
interesting effect appeared when more complex drajies were exploredAA BB
sequences). When bare land category persistee isatime place for more than one year
(two in this particular case), it is supposed thia¢ disturbance which initially
eliminated the vegetation was more severe (e.gngtiire severity), or that consecutive
disturbances occurred in a continuous basis (higkmnrence of fire events). This will
affect soil properties and, thus, it will poteriifehcrease the time needed for vegetation
recovery. While 2.17 years were required on Cl b¥ps withA B sequences, 4.05
years were needed iAA BB trajectories. This situation has been demonstraied
previous works using other methodologies (Diaz-Bétget al. 2002; Diaz-Delgado et
al. 2003), although the time required for recovergy also be related to the level of

complexity in the community affected by the disambe (Calvo et al. 2002b).

3.4 General discussion

The effects of uncertainty on inter-annual land esoechanges have been

assessed. Patterns of change in the study areacamsistent with and without masking
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the most uncertain classified pixels. The vegetaktias started to recover in disturbed
areas, although wildfires continue to occur. Thaseas affected by higher recurrences
or more severe effects from disturbance requirecertime for vegetation recovery. But
at a global level, the rate of change decreased towe and a slow but continuous
homogenization of landscape occurred, althoughrabt@and socioeconomic driving
factors have not acted with the same intensity direttion of change over the whole
area.

Although we could never say that the present mettlodinates uncertainty
because there will always be uncertainty, the pattef land cover change were more
realistic after applying filters to the classifieshages based on CI thresholds, as
demonstrated previously. The CI was used to disigig between a hard area,
containing relevant units, and an uncertain aregresenting possible errors. The
number of available (unmasked) pixels decreaseti@®e with the higher uncertainty
were removed. Consequently, the accuracy and coteré.e. similarity) of the
classified images increased substantially. Thisdenge is highly important for
measuring land dynamics in heterogeneous and amessilandscapes, using temporal
sequences of remotely sensed imagery (Roy 200@helfdatasets are not accurately
coregistered or misclassification errors signifitamexaggerate or alternatively mask
change, the assessment of thematic accuracy weuldinpered (Foody 2002), and any
difference observed over time may not be attridetablely, if at all, to real change on
the ground (Pontius and Lippitt 2006). In fact, @y kconcern is that thematic maps
derived from remotely sensed data are often judgebe of insufficient quality for
operational applications (Foody 2002), and usualhd to be poorly communicated to

the user (van Oort 2007; Shao and Wu 2008).
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Nevertheless, against the benefits of this approtieh method is not able to
detect whether some of the eliminated pixels agelg areas of true land cover change.
The method can show how much of the study areaacent substantial amount of
error, so we can distinguish data that might béulise measure land change from data
that are not particularly useful. For some casealis) there might be so much
uncertainty that the method masks most of the mdugch would be helpful to know;
while other types of maps might have so little utaiaty that very little of the map
becomes masked. In this way, an excessive loselspcould make change detection
difficult, so underestimating the real extent afdacover change on the ground, while
the direct use of hard classifications overestinitatenagnitude. Thus, since land cover
transitions are sensitive to the elimination ofgbéxthat are highly uncertain, their
elimination requires extreme caution (Story and gadion 1986). Although the overall
accuracy of confusion and transition matrices migéthigh enough to detect real
changes between consecutive years, without incrgdke effects due to errors (Fuller
et al. 2003), this will always depend on the comipyeof study area (Rogan et al. 2002)

and the objectives of the analysis (Canters 19875sEn and van der Wel 1994).

4. Conclusions

The application of uncertainty analyses to highgeral resolution image series
(at an annual scale) provides a useful tool to ritescland cover dynamics in
heterogeneous and resilient landscapes, which fegetead by recurrent disturbances
(such as fire events). Firstly, when studies omldaape change are carried out on the
basis of simple classification products derivednfréew images spread over time,

landscape dynamics could be miss-detected anafdiner linking patterns to processes
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may became unreliable. The rapid vegetation retevefter fire found in the study
area would not be detected if the image data werteawailable for every year.

Secondly, if the research question does not gorimbgetermining the nature of general
changes or trends, the analysis of aggregated sralb&ined directly from Maxlike

would be an acceptable choice, on the basis ofdhsistent trends obtained with and
without the analysis of uncertainty. Neverthelaghen analyzing the rate of change,
frequency of disturbances (recurrence) or vegetaterovery times, the effects of
uncertainty must be eliminated to obtain trustwprtiesults. In this case, working
directly with the hard-classified images could sesly hamper our understanding of
reality.

Secure interpretation requires that the reader dgnizant with what the
proposed methods can and cannot accomplish. Althangexcessive loss of pixels (or
information) hampers the accurate assessment dfdaver change on the ground, the
approach, however, eliminates false positives astkrchines where a particular
transition takes place with higher levels of religp On the one hand, Cl 100 maps
contain all land cover changes in the study arebale severely affected by large areas
of error. By contrast, Cl 75 and Cl 50 maps camiglate the majority of error as well
as real changes, if conversions occur where thesrteapl to be uncertain. Following
this approach, and given information concerningrttegs and their errors, our method
could quantify whether it is possible to determihe amount of change on the ground.
This requires work directed towards the searchafeuitable ClI threshold that provides
some level of equilibrium, maximizing the real lacolver change and minimizing the
sources of error and uncertainty, by comparingltesuth reliable sources of ground

information.

28



685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

Acknowledgements

This work was supported by the Regional Governnedniunta de Castilla y Ledn
(Spain) and Fondo Social Europeo, under the relsgaaject funding supplied by the
order EDU/1490/2003, awarded to J. M. Alvarez. &hthors would like to thank their
support and comments to Fire Ecology research gobtipe University of Leén, Land
Dynamics group of the University of Wageningen, tGgiraphy Support Service of the
University of Ledn and forest engineers and rangdrghe Autonomous Region of
Castilla y Ledn. We also are grateful to Althea ieayF.J. Lozano, A. Moran and L.
Soler for help, and the anonymous reviewers forir theelpful comments and
information. Finally we wish to thank the Environmt&l Section of Junta de Castilla y

Ledn for their support to this study by providingital geographical data.

References

Ahamed, T.R.N., Rao, K.G., and Murthy, J.S.R. (90@S-based fuzzy membership
model for crop-land suitability analysis. Agriculéli Systems 63: 75-95

Benayas, J.M., Martins, A., Nicolau, J.M., and Szhd.J. (2007). Abandonment of
agricultural land: an overview of drivers and cansences. In V.S. CAB Reviews:
Perspectives in Agriculture, Nutrition and Naturasources (Ed.)

Bradley, B.A., and Mustard, J.F. (2005). Identifyilmnd cover variability distinct from

land cover change: Cheatgrass in the Great Basmoke Sensing of Environment 94:
204-213

Burgi, M., Hersperger, A.M., and Schneeberger,2004). Driving forces of landscape

change - current and new directions. Landscapeoggd9: 857-868

29



709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

Burnicki, A.C., Brown, D.G., and Goovaerts, P. (Zp05Simulating error propagation in
land-cover change analysis: The implications of geral dependence. Computers,
Environment and Urban Systems 31: 282-302

Burrough, P.A., vanGaans, P.F.M., and Hootsmans, (F997). Continuous
classification in soil survey: Spatial correlatiagnfusion and boundaries. Geoderma
77:115-135

Calvo, L., Tarrega, R., and de Luis, E. (1999).tfios succession in two Quercus
pyrenaica communities with different disturbancstdries. Annals of Forest Science
56: 441-447

Calvo, L., Tarrega, R., and de Luis, E. (2002a) dgnamics of mediterranean shrubs
species over 12 years following perturbations. tfiammlogy 160: 25-42

Calvo, L., Tarrega, R., and de Luis, E. (2002b).cobelary succession after
perturbations in a shrubland community. Acta Oegicl-International Journal of
Ecology 23: 393-404

Canters, F. (1997). Evaluating the uncertainty @faaestimates derived from fuzzy
land-cover classification. Photogrammetric Engimegand Remote Sensing 63: 403-
414

Carmel, Y. (2004). Characterizing location and sif&sation error patterns in time-
series thematic maps. Geoscience and Remote Seretiegs IEEE 1: 11-14

Carmel, Y., Dean, D.J., and C.D., Flather (200Dm®ining location and classification
error sources for estimating multi-temporal datebascuracy. Photogrammetric
Engineering and Remote Sensing 67: 865-872

Carvalho, d.L.M.T., Jan G. P. W. Clevers, Andrew $kidmore, and Jong, S.M.d.

(2004). Selection of imagery data and classifiersniapping Brazilian semideciduous

30



733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Atlantic forests. International Journal of Appliedrth Observation and Geoinformation
5:173-186

Cayuela, L., Benayas, J.M.R., and Echeverria, Q0§® Clearance and fragmentation
of tropical montane forests in the Highlands of dpiais, Mexico (1975-2000). Forest
Ecology and Management 226: 208-218

Conese, C., and Maselli, F. (1992). Use of Errotrias to Improve Area Estimates
with Maximum-Likelihood Classification Procedurd®&mote Sensing of Environment
40: 113-124

Congalton, R.G. (1991). A Review of Assessing thecukacy of Classifications of
Remotely Sensed Data. Remote Sensing of Environ8¥erg5-46

Chavez, P.S. (1996). Image-based atmospheric tiomecrevisited and improved.
Photogrammetric Engineering and Remote Sensin@®25-1036

Cherrill, A., and McClean, C. (1995). An investigat of uncertainty in field habitat
mapping and the implications for detecting landesoshange. Landscape Ecology 10:
5-21

Chuvieco, E. (2000). Fundamentos de Teledeteccspactal. Madrid: EDICIONES
RIALP, S.A.

Dai, X.L., and Khorram, S. (1998). The effectsrmfige misregistration on the accuracy
of remotelysensed change detection. IEEE Transectin Geoscience and Remote
Sensing 36: 1566-1577

Diaz-Delgado, R., Lloret, F., Pons, X., and Tersmda (2002). Satellite evidence of
decreasing resilience in Mediterranean plant conitiesnafter recurrent wildfires.

Ecology 83: 2293-2303

31



756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

7

778

779

Diaz-Delgado, R., Llorett, F., and Pons, X. (2008jluence of fire severity on plant
regeneration by means of remote sensing imagetgrniational Journal of Remote
Sensing 24: 1751-1763

Diaz-Delgado, R., and Pons, X. (2001). Spatialgpas of forest fires in Catalonia (NE
of Spain) along the period 1975-1995 - Analysisedetation recovery after fire. Forest
Ecology and Management 147: 67-74

Duveiller, G., Defourny, P., Desclée, B., and MayaR. (2008). Deforestation in
Central Africa: Estimates at regional, national adaddscape levels by advanced
processing of systematically-distributed Landsattraets. Remote Sensing of
Environment 115: 1969-1981

Edwards, G., and Lowell, K.E. (1996). Modeling uragty in photointerpreted
boundaries. Photogrammetric Engineering and Re®emsing 62: 377-391

ERDAS (2001). ERDAS Imagine 8.5.

ESRI (2006). ArcGIS 9.2.

Foody, G.M. (1996). Approaches for the productiad avaluation of fuzzy land cover
classifications from remotely-sensed data. Intéonat Journal of Remote Sensing 17:
1317-1340

Foody, G.M. (2002). Status of land cover classiftoa accuracy assessment. Remote
Sensing of Environment 80: 185-201

Foody, G.M., and Boyd, D.S. (1999). Detection oftiphland cover change associated
with the migration of inner-class transitional zendénternational Journal of Remote
Sensing 20: 2723-2740

Fuller, R.M., Smith, G.M., and Devereux, B.J. (2D03he characterisation and

measurement of land cover change through remotsingenproblems in operational

32



780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

applications? International Journal of Applied Badtbservation and Geoinformation 4:
243-253

Gautam, A.P., Webb, E.L., Shivakoti, G.P., and Zegh M.A. (2003). Land use
dynamics and landscape change pattern in a mounttgrshed in Nepal. Agriculture
Ecosystems and Environment 99: 83-96

Gil Sanchez, C., and Torre Antén, M. (2007). Aflaestal de Castilla y Le6n, Junta de
Castilla y Lebn, Consejeria de Medio Ambiente, a@dilid.

Gilabert, M.A., Conese, C., and Maselli, F. (199%). Atmospheric Correction Method
for the Automatic Retrieval of Surface Reflectandéesn Tm Images. International
Journal of Remote Sensing 15: 2065-2086

Janssen, L.L.F., and Van der Vel, F.J.M. (1994)cukacy assessment of satellite
derived land-cover data: a review. Photogramméirigineering and Remote Sensing
60: 419-426

Janssen, L.L.F., and van der Wel, F.J.M. (1994)cutacy assessment of satellite
derived land-cover data: a review. Photogrammdirigineering and Remote Sensing
60: 419-426

Kauth, R.J., and Thomas, G.S. (1976). The Tassedgd A Graphic Description of the
Spectral-Temporal Development of Agricultural Crops Seen by LANDSAT. In,
Symposium on Machine Processing of Remotely Sebsed (pp. 4B-41 to 44B-51).
Purdue University of West Lafayette, Indiana

Lambin, E.F. (1999). Monitoring forest degradation tropical regions by remote
sensing: some methodological issues. Global EcadmglyBiogeography 8: 191-198
Lambin, E.F., Turner, B.L., Geist, H.J., AgbolaBS.Angelsen, A., Bruce, J.W.,
Coomes, O.T., Dirzo, R., Fischer, G., Folke, C.,0@e, P.S., Homewood, K.,

Imbernon, J., Leemans, R., Li, X.B., Moran, E.Fgrinore, M., Ramakrishnan, P.S.,

33



805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

Richards, J.F., Skanes, H., Steffen, W., Stone,..G®edin, U., Veldkamp, T.A.,
Vogel, C., and Xu, J.C. (2001). The causes of las&l-and land-cover change: moving
beyond the myths. Global Environmental Change-Huiadh Policy Dimensions 11:
261-269

Lewis, H.G., Brown, M., and Tatnall, A.R.L. (2000hcorporating uncertainty in land
cover classification from remote sensing imagergmidte Sensing for Land Surface
Characterisation 26: 1123-1126

Lillesand, T.M., Kiefer, R.W., and Chipman, J.WO0(8). Remote Sensing and Image
Interpretation: John Wiley and Sons

Liu, C.R., Frazier, P., and Kumar, L. (2007). Conpi@e assessment of the measures
of thematic classification accuracy. Remote Sengfrignvironment 107: 606-616
Lozano, F.J., Suarez-Seoane, S., and de Luis,®.7J2Estudio comparativo de los
regimenes de fuego en tres espacios naturalegigiméedel oeste peninsular mediante
imagenes Landsat. Revista Espafiola de Teldetecstepted

Lozano, F.J., Suarez-Seoane, S., Kelly, M., and,Lii (2008). A multi-scale approach
for modeling fire occurrence probability using $i#tee data and classification trees: A
case study in a mountainous Mediterranean regi@md® Sensing of Environment
112: 708-719

Lloret, F., Calvo, E., Pons, X., and Diaz-DelgaBo,(2002). Wildfires and landscape
patterns in the Eastern Iberian peninsula. Lands&aplogy 17: 745-759

MacDonald, D., Crabtree, J.R., Wiesinger, G., DaxStamou, N., Fleury P., Gutierrez
Lazpita, J.a., and Gibon, A. (2000). Agriculturddaadonment in mountain areas of
Europe: Environmental consequences and policy respoJournal of Environmental

Management 59: 47-69

34



829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

Markham, B.L., and Barker, J.L. (1987). RadiometRooperties of United-States
Processed Landsat Mss Data. Remote Sensing ofdanwemt 22: 39-71

Martin, M.E., Newman, S.D., Aber, J.D., and CongaJtR.G. (1998). Determining
forest species composition using high spectralluésn remote sensing data. Remote
Sensing of Environment 65: 249-254

Metternicht, G.I. (2003). Categorical fuzzinesamparison between crisp and fuzzy
class boundary modelling for mapping salt-affecteils using Landsat TM data and a
classification based on anion ratios. Ecologicat®ting 168: 371-389

Moran, M.S., Jackson, R.D., Slater, P.N., and @&gilP.M. (1992). Evaluation of
Simplified Procedures for Retrieval of Land Surf&teflectance Factors from Satellite
Sensor Output. Remote Sensing of Environment 49:18g

Ninyerola, M., Pons, X., and Roure, J.M. (2005)laéat Climatico Digital de la
Peninsula Ibérica. Metodologia y aplicaciones eclithatologia y geobotanica. ISBN
932860-8-7. Universidad Autonoma de Barcelona,aBedta

Owen, S.M., MacKenzie, A.R., Bunce, R.G.H., StewlkE., Donovan, R.G., Stark,
G., and Hewitt, C.N. (2006). Urban land classifizatand its uncertainties using
principal component and cluster analyses: A casdysfor the UK West Midlands.
Landscape and Urban Planning 78: 311-321

Pala, V., and Pons, X. (1995). Incorporation ofi&dah Polynomial-Based Geometric
Corrections. Photogrammetric Engineering and Rer8etesing 61: 935-944

Pontius, R.G., and Lippitt, C.D. (2006). Can Erixplain Map Differences Over
Time? Cartography and Geographic Information S@e38: 159-171

Pontius, R.G., Shusas, E., and McEachern, M. (2(Ddjecting important categorical
land changes while accounting for persistence. oMfjure Ecosystems and

Environment 101: 251-268

35



854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

Rees, W.G., Williams, M., and Vitebsky, P. (2008)apping land cover change in a
reindeer herding area of the Russian Arctic usiagdsat TM and ETM+ imagery and
indigenous knowledge. Remote Sensing of Environr8Bnd41-452

Riafo, D., Chuvieco, E., Salas, J., and Aguaddqz003). Assessment of different
topographic corrections in Landsat-TM data for magwegetation types (2003). IEEE
Transactions on Geoscience and Remote Sensin@86:11061

Roder, A., Hill, J., Duguy, B., Alloza, J.A., andaNgjo, R. (2008). Using long time
series of Landsat data to monitor fire events agl-fire dynamics and identify driving
factors. A case study in the Ayora region (east8pain). Remote Sensing of
Environment 112: 259-273

Rogan, J., Franklin, J., and Roberts, D.A. (200%)comparison of methods for
monitoring multitemporal vegetation change usingmatic Mapper imagery. Remote
Sensing of Environment 80: 143-156

Rollings, M. G., R. E. Keane and R. A. Parsons 4200apping fuels and fire regimes
using remote sensing, ecosystem simulation and iggradmodeling. Ecological
Applications 14: 75-95.

Rouse, J.W., Haas, R.H., Schell, J.A., and Deebng/. (1973). Monitoring vegetation
systems in the Great Plains with ERTS. In NASA JEd@hird ERTS Symposium (pp.
309-317)

Roy, D.P. (2000). The impact of misregistration mpmmposited wide field of view
satellite data and implications for change detectl@EE Transactions on Geoscience
and Remote Sensing 38: 2017-2032

Serra, P., Pons, X., and Sauri, D. (2008). Landcmand land-use change in a
Mediterranean landscape: A spatial analysis ofimyiorces integrating biophysical

and human factors. Applied Geography 28: 189-209

36



879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

Shalaby, A., and Tateishi, R. (2007). Remote sensind GIS for mapping and
monitoring land cover and land-use changes in thehWestern coastal zone of Egypt.
Applied Geography 27: 28-41

Shao G. and Wu J. 2008. On the accuracy of landspatiern analysis using remote
sensing data. Landscape Ecology 23: 505-511.

Steele, B.M., Winne, J.C., and Redmond, R.L. (19®timation and Mapping of
Misclassification Probabilities for Thematic Lancdver Maps. Remote Sensing of
Environment 66: 192-202

Stehman, S.V. (1997). Selecting and interpretin@suees of thematic classification
accuracy. Remote Sensing of Environment 62: 77-89

Stehman, S.V., and Czaplewski, R.L. (1998). Desigd analysis for thematic map
accuracy assessment: Fundamental principles. Redeotgng of Environment 64: 331-
344

Stoorvogel, J.J., and Antle, J.M. (2001). Regidaatl use analysis: the development of
operational tools. Agricultural Systems 70: 623-640

Story, M., and Congalton, R.G. (1986). Accuracy ésssnent - a Users Perspective.
Photogrammetric Engineering and Remote Sensin§%2399

Tapia, R., Stein, A., and Bijker, W. (2005). Optnation of sampling schemes for
vegetation mapping using fuzzy classification. REm8ensing of Environment 99:
425-433

Teillet, P.M. (1986). Image Correction for RadionwtEffects in Remote-Sensing.
International Journal of Remote Sensing 7: 1637:165

Thomlinson, J.R., Bolstad, P.V., and Cohen, W.B9@). Coordinating Methodologies
for Scaling Landcover Classifications from Site-8fie to Global: Steps toward

Validating Global Map Products. Remote Sensingrofibnment 70: 16-28

37



904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

Treitz, P., and Rogan, J. (2004). Remote sensingni@pping and monitoring land-
cover and land-use change-an introduction. ProgneBEnning 61: 269-279

Triepke, F.J., Brewer, C.K., Leavell, D.M., and M&y S.J. (2008). Mapping forest
alliances and associations using fuzzy systemshaatest neighbor classifiers. Remote
Sensing of Environment 112: 1037-1050

van Oort, P.A.J. (2007). Interpreting the changeat®n error matrix. Remote Sensing
of Environment 108: 1-8

Veldkamp, A., and Fresco, L.O. (1997). Reconstngctiand use drivers and their
spatial scale dependence for Costa Rica (1973 @8d)) 1Agricultural Systems 55: 19-
43

Verburg, P.H., Soepboer, W., Veldkamp, A., LimpiaRa Espaldon, V., and Mastura,
S.S.A. (2002). Modeling the spatial dynamics ofaegl land use: The CLUE-S model.
Environmental Management 30: 391-405

Vicente-Serrano, S.M., Lasanta, T., and Romo, A042. Analysis of Spatial and
Temporal Evolution of Vegetation Cover in the SganiCentral Pyrenees: Role of
Human Management. Environmental Management 34.83@2-

Wang, M.H., and Howarth, P.J. (1993). Modeling EBsrin Remote-Sensing Image
Classification. Remote Sensing of Environment 48:-271

Wilson, E.H., and Sader, S.A. (2002). Detectiorfarést harvest type using multiple
dates of Landsat TM imagery. Remote Sensing offanment 80: 385-396

Woodcock, C.E., and Gopal, S. (2000). Fuzzy satrthand thematic maps: accuracy
assessment and area estimation. International dlowfn Geographical Information

Science 14: 153-172

38



927

928

929

930

931

932

Xiao, J.Y., Shen, Y.J., Ge, J.F., Tateishi, R.,gra®.Y., Liang, Y.Q., and Huang, Z.Y.
(2006). Evaluating urban expansion and land usegshan Shijiazhuang, China, by
using GIS and remote sensing. Landscape and UlbaniRg 75: 69-80

Zhang, J., and Foody, G.M. (1998). A fuzzy clasatiion of sub-urban land cover from

remotely sensed imagery. International JournalehBe Sensing 19: 2721-2738

39



933 Table 1. Image series used in land cover classiicawith date of acquisition, sensor

934 type and solar elevation angle (degrees).

Image Date Sensor type Sun Angle
04/08/1991 ™ 54.15
06/08/1992 ™ 53.49
09/08/1993 ™ 52.89
09/06/1994 ™ 58.75
15/08/1995 ™ 48.87
02/09/1996 ™ 46.35
19/07/1997 ™ 57.88
08/09/1998 ™ 47.42
01/07/1999 ETM 63.03
05/09/2000 ETM 49.45
08/09/2001 ETM 48.39
27/09/2002 ETM 42.22
05/08/2003 ™ 55.89
24/09/2004 ™ 42.72
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936 Table 2. Accuracy assessment of supervised cleastidn for the validation years

937 (number of validation points)

ground information

2(.)(.)4 . Forest Meadow  Shrubland Rock Bare TOTAL USer s
classification accuracy
Forest 324 27 7 3 0 361 89.75%
Meadow 4 207 0 2 0 213 97.18%
Shrubland 21 12 341 14 2 390 87.44%
Rock 0 3 1 219 3 226 96.90%
Bare 1 1 1 62 70 135 51.85%
TOTAL 350 250 350 300 75 1325
producer's o, 5705 82.80%  97.43%  73.00% 93.33% 88%
accuracy
2(.)(.)0 . Forest Meadow  Shrubland Rock Bare TOTAL UYS€'s
classification accuracy
Forest 45 0 3 0 0 48 93.75%
Meadow 0 48 0 0 0 48 100.00%
Shrubland 5 1 91 0 1 98 92.86%
Rock 0 1 2 40 2 45 88.89%
Bare 0 0 4 10 47 61 77.05%
TOTAL 50 50 100 50 50 300
producer's o4 h00s  96.00%  91.00%  80.00%  94.00% 90%
accuracy
1997 . Forest Meadow  Shrubland Rock Bare TOTAL UYS€'s
classification accuracy
Forest 45 1 2 1 0 49 91.63%
Meadow 1 48 0 0 0 49 97.97%
Shrubland 4 0 93 2 13 112 82.79%
Rock 0 1 4 42 0 47 89.36%
Bare 0 0 1 5 37 43 85.94%
TOTAL 50 50 100 50 50 300
producer's o, n005  96.03%  93.00%  83.81%  73.33% 88%
accuracy
1991 . Forest Meadow  Shrubland Rock Bare  TOTAL users
classification accuracy
Forest 47 5 0 0 1 53 88.68%
Meadow 0 39 0 0 0 39 100.00%
Shrubland 3 5 91 7 7 113 80.53%
Rock 0 1 4 33 8 46 71.74%
Bare 0 0 5 10 34 49 69.39%
TOTAL 50 50 100 50 50 300
producer's g, no0s  78.00%  91.00%  66.00%  68.00% 81%
accuracy
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938 Table 3. Overall accuracies of: (a) land cover mapidated by accuracy assessment,
939 and (b) land cover change maps, created by congp#renvalidated land cover maps.
940 Analyses were done with all pixels classified byximaum likelihood (CI 100) and after
941 the application of the corresponding filters of fummon index (Cl 75 and CI 50), to

942 eliminate the uncertainty associated with miscfasgion.

a) overall accuracy of maps b) overall accuracy of change maps
'a”r‘igg"er Cl100  CI75 CI 50 !ﬁgggcg‘rf;p CI100  CI75 CI 50
2004 88% 90.00% 90.00%

2000-2004  79.20% 83.70% 85.50%
2000 90% 93.00% 95.00%

1997-2000  79.20% 85.56% 90.25%
1997 88% 92.00% 95.00%

1991-1997 71.28% 77.28% 85.50%
1991 81% 84.00% 90.00%
943
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944

945

946

947

948

Table 4. Average transition matrices for all paisevimages through the study period,
considering the analysis of uncertainty. Percents#geonstant land cover is shown in

parentheses and major changes in bold. Averaged gad losses, as percentage of the

area, are also shown.

yeari+1 Total year
C1 100 Forest Meadow Shrubland Rock Bare i+1 Gross loss
year i
Forest (21.08) 0.58 3.70 0.22 0.13 25.71 4.63
Meadow 0.54 (3.99) 0.53 0.22 0.19 5.47 1.48
Shrubland 3.76 0.47 (44.08) 1.77 2.68 52.76 8.68

Rock 0.23 0.24 1.84 (4.970.42 7.7 2.73
Bare 0.10 0.22 2.90 0.56 (4.58) 8.36 3.78
Total yeari 25.71 5.5 53.05 7.74 8,00 100.00 21.3
Gross gain  4.63 1.51 8.97 277 3.42

21.3
yeari+1 Total year
Cr7s Forest Meadow Shrubland Rock Bare i+1 Gross loss
year i
Forest (25.40) 0.36 2.81 0.13 0.09 28.79 3.39
Meadow 0.33 (3.81) 0.26 0.16 0.11 4.67 0.86
Shrubland 2.77 0.24 (45.87) 1.12 2.33 52.33 6.46
Rock 0.12 0.17 0.99 (5.43)0.23 6.94 1.51
Bare 0.05 0.12 1.88 0.34 (4.87) 7.26 2.39

Total yeai  28.8 4.67 52.32 6.95 7.25

100.00 14.61
Gross gain  3.27 0.89 5.94 1.75 2.76

14.61

yeari+1 Total year
Cl 50 . Gross loss
Forest Meadow Shrubland Rock Bare I+1

year i
Forest (32.68) 0.15 177 0.05 0.05 34.7

2.02
Meadow  0.14 (3.55) 0.08 0.08 0.04 3.89 0.34
Shrubland 1.71 0.08 (45.98) 0.48 1.66 49.91 3.93
Rock 0.05 0.09 0.31  (5.350.10 5.9 0.55

Bare 002 004 078 016 (4.61) 5.61 1,00
Total yeai 34.7  3.89 499 590 561 100.00 7.84
Grossgain 1.92  0.36 294 077 185 7.84
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949
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956

Table 5. Averaged recurrence of changes (in nurabeccurrences) and time needed

for restoration (in years) between the most imparizhanges found on study area.

Standard deviations are shown in parentheses. Muglekas done with all pixels

classified by maximum likelihood (CI 100) and aftéhe application of the

corresponding filters of confusion index (Cl 75 adt50), to reduce the uncertainty

associated with misclassification. Land cover saqasA B andAA BB are assessed.

Changed from A) Changed to B) Sequence CI 100 Cl 75 C1 50

RECURRENCE

Forest Shrubland AB 1.89(1.02) 1.56 (0.88) 1.29 (0.66)
AA BB 1.07 (0.25) 1.06(0.24) 1.02(0.15)

Shrubland Bare land AB 1.4(0.68) 1.19(0.46) 1.13(0.38)
AA BB 1.04(0.19) 1.02(0.15) 1.01(0.07)

TIME FOR RESTORATION

Shrubland Forest AB  296(2.94) 2.34(2.94) 1.74(2.38)
AA BB 4.69(2.92) 4.51(2.97) 4.13(2.88)

Bare land Shrubland AB  217(1.95) 1.84(1.88) 1.69 (1.95)
AA BB 4.05(2.62) 3.41(2.53) 2.96 (2.47)
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Figure 1. Images of the study area for the stagtemd years of the series (1991 and

2004). (a) All pixels classified by maximum likedibd (CI 100). (b, c) 75% and
50% of the unmasked pixels after the applicatiothefcorresponding filters of
confusion index (Cl 75 and CI 50), to reduce theeutainty associated with

misclassification

Figure 2. Confusion index map for the classifiechgim from 2004. CI 75 and CI 50

maps, where 75% and 50% of the image pixels remainsasked, respectively,

after the application of both CI thresholds, asmahown

Figure 3. Temporal evolution (% area occupied)axteland cover class, in relation to

the % of unmasked area. (a) All pixels classifigdnaximum likelihood (ClI
100). (b, c) 75% and 50% of the pixels remaininigrathe application of the
corresponding filters of confusion index (CI 75 a@d 50) to mask the

uncertainty associated with misclassification

Figure 4. Change image between 1999 and 2000.I(qjx&ls classified by maximum

likelihood (CI 100). (b, ¢) 75% and 50% of the gl remaining after the
application of the corresponding filters of condusindex (Cl 75 and CI 50), to

mask the uncertainty associated with misclassifina

Figure 5. Percentage of area changed, in relatiammasked area, from: (a) shrubland

to bare land (burned areas), and (b) bare lantiridokand (vegetation recovery
after fire), for all pairs of consecutive years.afyses were done with all pixels
classified by maximum likelihood (Cl 100) and aftdwe application of the
corresponding filters of confusion index (ClI 75 afd 50), to mask the

uncertainty associated with misclassification

Figure 6. Landscape dynamics modelling between btfmds and bare land: (a)

disturbance recurrence (in number of times), (lgetation recovery (in years).
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982 Analyses were done with all pixels classified bgximum likelihood (CI 100

983 maps), and with 75% least uncertain pixels (Cl 7&ps), but interpolating
984 results obtained with the Nearest Neighbour alforifor creating continuous
985 maps for the whole study area

986
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987 Figure 1.
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989 Figure 2.
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Figure 4.
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995 Figure 5.
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