MELATONIN RECEPTORS MT₁ AND MT₂ ARE EXPRESSED IN SPERMATOZOA FROM SEVERAL SEASONAL AND NON-SEASONAL BREEDER SPECIES

Marta Gonzalez-Arto¹⁺, Alejandro Vicente-Carrillo²⁺, Felipe Martinez-Pastor³, Estela Fernández-Alegre³, Jordi Roca⁴, Jordi Miro⁵, Teresa Rigau⁵, Joan Enric Rodriguez-Gil⁵, Rosaura Pérez-Pé³, Teresa Muiño-Blanco⁴, José A. Cebrián-Pérez⁴†, Adriana Casao⁴⁺*

¹ Grupo Biología y Fisiología de la Reproducción, Facultad de Veterinaria, Instituto de Investigación de Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Spain.
² Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
³ INDEGSAL, Facultad de Veterinaria, Universidad de León, Spain.
⁴ Departamento de Medicina y Cirugía Animal, Universidad de Murcia, Spain
⁵ Departamento de Reproducción Animal, Facultad de Veterinaria, Universidad Autónoma de Barcelona, Spain

⁺ These two authors contributed equally to this work
† These two authors co-directed this work
* Corresponding author: Adriana Casao, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain.
E-mail: adriana@unizar.es
ABSTRACT
Melatonin is a ubiquitous and multipurpose molecule, and one of its roles is to regulate reproduction in some seasonal mammals. Our group has previously shown the variation in the melatonin levels in ram seminal plasma along the year, and identified MT1 and MT2 receptors in ram spermatozoa. The objective of this study was to elucidate whether the presence of melatonin receptors (MT1 and MT2) in the sperm plasma membrane and melatonin in the seminal plasma is related to seasonal breeding. For this purpose, the presence of melatonin receptors and the levels of melatonin in seminal plasma have been examined in several species: donkey and stallion as long day breeders; red deer as a wild, short day, highly seasonal breeder (epididymal spermatozoa); bull as a conventional non-seasonal breeder; boar as a seasonal breeder under management techniques and dog as possible a seasonal breeder not regulated by melatonin. We have detected measurable levels of melatonin in the seminal plasma of all ejaculated semen samples (from donkey, stallion, boar, bull and dog). Also, and for the first time, we have demonstrated the presence of MT1 and MT2 melatonin receptors in the spermatozoa of all these species, regardless their type of reproduction or sperm source (ejaculated or epididymal), by using indirect immunofluorescence techniques and Western Blotting. Our findings suggest that melatonin and melatonin receptors may be universally distributed in the reproductive system of mammals, and that the sperm melatonin receptors cells may not be necessarily related with seasonal reproduction. Furthermore, the presence of MT1 at the cytoplasmic droplet in immature ejaculated stallion spermatozoa found in one sample, and epididymal red deer spermatozoa suggests that melatonin may be involved in specific functions during spermatogenesis and sperm maturation, like protecting spermatozoa from oxidative damage, this activity being mediated through these receptors.

Keywords: donkey, stallion, boar, bull, deer, dog, melatonin

1. INTRODUCTION
Melatonin is a ubiquitous molecule, widely distributed in nature. It has been hypothesized that melatonin originally evolved as a free-radical scavenger [1], still one of its biological roles, and later on it acquired receptor-mediated important biological functions such as the chemical expression of darkness, immunomodulation and anti-inflammatory activity [2].
This hormone is also the main regulator of reproduction in photoperiodic animals. The melatonin signal works both as an inhibitor in long day breeders such as the Syrian hamster [3] and horse [4], and as a stimulator in short-day breeders such as sheep, goat [5] and deer [6]. Seminal plasma is a putative biological source of melatonin for mammal ejaculated spermatozoa, as this pineal hormone has been found in human [7] and ram [8] seminal plasma.

Seasonality is one of the most significant factors constraining reproduction in certain domestic animals, including sheep and horse. Despite that sperm production in these species is continuous throughout the year and that the seasonality is less marked in the male than in the female, the sexual behavior and sperm quality vary throughout the year in the ram and stallion, and they decrease during the non-breeding season [9-11]. In other temperate seasonal species like the red deer, sperm production is very low and even null during the non-reproductive season, with the reproductive organs undergoing dramatic changes at the beginning of the reproductive season (including testicular recrudescence), achieving a peak of sperm and glandular production for a short time in cervids [12].

In certain domestic species such as dairy cattle, this seasonality has been lost during its domestication process [13], or decreased by management techniques as in swine [14]. Dog seems to have seasonal reproduction, given that bitches tend to be in estrus in winter and summer [15], but this seasonal rhythm seems to be independent from short/long days or melatonin [16]. Nevertheless, male dogs constantly produce sperm and are fertile throughout the year [17].

Regardless seasonality, in vitro studies have shown a direct beneficial action of melatonin on sperm cells irrespective of the species being non-seasonal [18,19], long-day [20] or short-day breeders [21,22], which suggests a separate action of melatonin on spermatozoa from different species to the seasonal control of fertility. In general, the incubation of spermatozoa species with melatonin decreased the oxidative damage, improved their motility and increased their viability [23].

The direct action of melatonin on spermatozoa has been related with the free radical scavenging properties of this molecule [24] and its ability to cross the plasma membrane. However, in somatic cells, melatonin exerts most of its physiological actions by interacting MT$_1$ and MT$_2$ receptors. Both of them are involved in the circadian rhythm and play important roles in reproductive and endocrine functions in mammals [25].
We have previously shown the presence of both MT\textsubscript{1} and MT\textsubscript{2} melatonin receptors on the plasma membrane of ram spermatozoa using immuno-detection techniques [26]. Likewise, MT\textsubscript{1} and MT\textsubscript{2} activity has been reported in human spermatozoa by 2--[125I]-iodomelatonin binding [27] and in hamster and human spermatozoa by using competitive antagonists [28,29]. Conversely, previous attempts to detect the MT\textsubscript{1} and/or MT\textsubscript{2} receptors in stallion, dog and boar spermatozoa have been unsuccessful [20]. These previous observations lead us to hypothesise that the presence of melatonin receptors in the sperm plasma membrane and the presence of melatonin in the seminal plasma might be related to seasonal breeding. Therefore, the aims of the present study were to determine the presence of i) melatonin in seminal plasma and ii) melatonin MT\textsubscript{1} and MT\textsubscript{2} receptors in spermatozoa of different types of breeders: donkey and stallion as long day breeders, red deer as a wild, short day, highly seasonal breeder, bull as a conventional non-seasonal breeder, boar as a seasonal breeder subjected to management techniques and dog as a seasonal but melatonin independent breeder.

2. MATERIAL AND METHODS

2.1. Animals and semen collection

Most experiments were performed using ejaculated spermatozoa. Semen was individually collected from five donkeys (Guara Catalá, ages 4 – 10 years), five stallions (Purebred Spanish Horse, ages 7 – 10 years) and seven dogs (four breeds, ages 2 – 6 years) from the Faculty of Veterinary Medicine of Barcelona (Spain). Donkey and stallion semen was obtained during the breeding season (March-June) by means of artificial vagina, and diluted in a commercial extender for transport. Dog semen was obtained between March and June by masturbation. Boar semen was obtained from six boars (Pietrain x Landrace, ages 18 – 24 months) belonging to the Porcine Producers Association of Aragon and EbroValley (APPAVE, Zaragoza, Spain) and the AI centre of AIM Ibérica (Calasparra, Murcia, Spain) by artificial vagina in spring, summer and autumn. Bull semen was obtained from three Frisian and three Limousine bulls (ages 1-3 years) by means of artificial vagina in May/June. Red deer spermatozoa were obtained from the cauda epididymis of adult males harvested in regulated hunting activities in September (Picos de Europa hunting reserve, León, Spain).

2.2. Melatonin concentration in seminal plasma
Seminal plasma in all the studied species but the red deer was extracted by semen centrifugation at 10000 x g for 10 min in a microfuge at 4 ºC. The supernatant was centrifuged again in the same conditions, and seminal plasma was recovered, filtered through a 0.22 µm Millipore membrane (Millipore Ibérica, Madrid, Spain) and stored at -20 ºC in darkness until analysed. Melatonin concentration was determined in several samples (between two and five) of each male, obtained in different days. Melatonin concentration in seminal plasma was measured by means of a commercial competitive immunoassay (Direct saliva melatonin ELISA kit, Bühlmann Laboratories AG, Schönenbuch, Switzerland, sensitivity: 0.5 pg/ml, intro-assay variability: 5.2%), following the manufacturer's instructions. Briefly, 100 µL of each sample (in duplicate), control and calibrator were loaded in duplicate in a microtiter plate coated with an anti-melatonin antibody, and incubated for 16-20 h at 2-8 ºC. After incubation, 50 µL of biotinylated melatonin were added to each well and incubated for 3 h at 2-8 ºC. After three washes, 100 µL of streptavidin conjugated to horseradish peroxidase (HRP) were loaded to the wells and incubated for a further 60 min in a plate rotator set at 600 rpm at 18-28 ºC. After incubation, the wells were washed three times, and 100 µL of tetramethylbenzidine substrate (TMB) were added to each well and incubated protected from direct light during 30 min on a plate rotator at 600 rpm and 18-28 ºC. After incubation, 100 µL of 0.25 M H₂SO₄ solution were added and absorbance was measured on a microtiter plate reader (TECAN Spectrafluor plus, Männendorf, Switzerland) at 450 nm.

2.3. Immunolocalization of MT₁ and MT₂ melatonin receptors

The localization and distribution of melatonin receptors MT₁ and MT₂ was investigated by different methods: imaging of single-cell-flow using an imaging flow cytometer (AMNIS ImageStreamX, Amnis, Seattle, Washington, USA), confocal microscopy (Leica TCS SP2, Leica Microsystems, Wetzlar, Germany) and epi-fluorescence microscopy (Nikon DXM1200, Tokio, Japan). Otherwise stated, all reactives were purchased in Sigma-Aldrich (St. Louis, MO, USA).

2.3.1. Imaging Flow Cytometry

Due to the commercial extender in which donkey and stallion spermatozoa were preserved, microscope visualization was not possible and an imaging flow cytometer was used instead. Cell suspensions previous to flow cytometry imaging examination
were prepared as follows: aliquots of 8×10^6 spermatozoa/mL were fixed in 3.7% formaldehyde (v:v in Phosphate Buffered Saline (PBS, 137 mM NaCl, 2.7 mM KCl, 8.1 mM Na_2HPO_4 and 1.76 KH_2PO_4, pH 7.2), pH 7.2) for 20 min at room temperature. After that, samples were centrifuged 6 min at 500 x g, and the pellet resuspended and incubated in the blocking solution (5% BSA in PBS) for 2 h at room temperature. Following incubation, samples were washed three times by centrifugation at 500 x g for 5 min and resuspension of the pellet in PBS. Following the last centrifugation, the pellet was resuspended with the primary antibody (rabbit Mel 1A-R antibody; Santa Cruz Biotechnology, Inc., Dallas, Texas, USA for MT$_1$ receptor, or rabbit melatonin receptor 1B antibody; Acris Antibodies GmbH, Herford, Germany, for MT$_2$ receptor, both diluted 1:50 in PBS with 1% BSA) and incubated overnight at 4 °C. Finally, samples were washed by centrifugation in PBS three times, and incubated for 75 min at room temperature and in darkness with an anti-rabbit secondary antibody (Alexa Fluor 488 chicken anti-rabbit, Invitrogen, Carlsbad, California, USA) diluted 1:500 in PBS with 1% BSA. After that, cells were washed three times with PBS and evaluated by imaging flow cytometry (AMNIS ImageStreamX, Amnis, Seattle, Washington, USA).

2.3.2. Microscopy

Slides for microscopy examination were prepared as follows: aliquots of 2×10^6 spermatozoa/mL from dog, boar, bull and deer were fixed with 3.7% (v:v) formaldehyde diluted in PBS for 20 min at room temperature. Once fixed, the samples were centrifuged 6 min at 900 x g and the pellet resuspended in PBS. Forty μL of cell suspension were smeared onto poly-L-lysine-coated slides and once the cells were properly adhered, slides were washed three times for 5 min with PBS, and non-specific binding sites were blocked with 5% BSA in PBS for 2 h at room temperature in a wet chamber. After three washes in PBS, spermatozoa were incubated with the primary antibody for melatonin receptor MT$_1$ (MTNR1A mouse polyclonal antibody, Abnova, Taipei, Taiwan) or melatonin receptor MT$_2$ (rabbit melatonin receptor 1B antibody, Acris Antibodies GmbH, Herford, Germany), both diluted 1:50 in PBS with 1% BSA overnight at 4 °C in a wet chamber. Following the incubation with primary antibodies, the slides were washed in PBS three times and incubated for 75 min at room temperature in darkness with the secondary antibodies Alexa Fluor 594 chicken anti-mouse (Invitrogen, Carlsbad, California, USA) for melatonin receptor MT1 and Alexa Fluor 488 chicken anti-rabbit (Invitrogen, Carlsbad, California, USA) for melatonin.
receptor MT$_2$, both diluted 1:800 in PBS containing 1% BSA. After three washes in PBS, 5 μL of 0.22 M triethylenediamine (DABCO) in glycerol:PBS (9:1) were added in order to enhance and preserve fluorescence. Boar and dog spermatozoa were visualized under confocal microscopy (Leica TCS SP2, Leica Microsystems, Wetzlar, Germany) and bull and deer spermatozoa under epi-fluorescence microscopy (Nikon DXM1200, Tokio, Japan).

2.4. Western Blotting

Sperm proteins were extracted by diluting samples in PBS (108 cells/mL) and centrifuging them in a microfuge at 900 x g for 6 min at room temperature. The supernatant was discarded and the pellet was resuspended in 100 μL extraction buffer (0.0626 M TRIS-HCl, 2% sodium dodecyl sulfate, 5% β-mercaptoethanol, 1% glycerol and 0.002% bromophenol blue). After incubation at 100 °C in a sand bath for 5 min, samples were centrifuged again at 13000 x g for 5 min at 4°C. The supernatant was recovered, 10% protease inhibitor cocktail was added and samples were stored at -20 °C.

For sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), 5 × 106 cells were loaded on 12% and 10% (w/v) SDS-PAGE gels for MT$_1$ and MT$_2$ receptors respectively. Proteins were separated by standard SDS-PAGE and transferred onto a polyvinylidene difluoride (PVDF) membrane (Bio-Rad, Hercules, California, USA) using a wet transfer unit (Mini Trans Blot Electrophoretic Transfer Cell Unit, Bio-Rad, Hercules, California, USA). After the blocking of non-specific sites on the membrane with 5% BSA in 0.5% Tween-20–PBS for 4 h at RT, the proteins were immunodetected by incubating overnight at 4 °C with the primary antibody, namely Mel-1A-R rabbit polyclonal antibody against the MT$_1$ receptor (GeneTex, Irvine, California, USA) or rabbit melatonin receptor 1B antibody (Acris Antibodies GmbH, Herford, Germany) for MT$_2$ receptor, diluted both 1:1000 in 0.1% Tween-20–PBS containing 1% BSA. Following incubation with the primary antibodies, membranes were washed three times for 15 min each time in 0.1% Tween-20–PBS and then incubated with a secondary donkey anti-rabbit IRDye 800RD antibody in all the studied species but the donkey and stallion (LI-COR Biosciences, Lincoln, Nebraska, USA), or a secondary goat anti-rabbit DyLight 680 Conjugated (Thermo Scientific, Waltham, Massachusetts, USA) for donkey and stallion samples, both of them diluted 1:15000 in 0.1% Tween-20 PBS containing 1% BSA for 1 h and 15 min at room temperature and in darkness. Finally,
fluorescent detection was performed, after extensive washing in darkness, in an Odyssey CLx Infrared Imaging System (LI-COR Biosciences, Lincoln, Nebraska, USA). Ram sperm protein extracts were used as a positive control [26].

2.5. Statistical analysis
Normality of seminal plasma melatonin values were first evaluated by the Kolmogorov-Smirnov test. After normality of data was established, differences between either species, individuals or breeds within each species were analysed by the Kruskal-Wallis test, and, when this test revealed significant differences, analyses by pairs were performed with the Mann-Whitney test. All statistical analysis was performed using SPSS (v.15.0, IBM Software, Armonk, New York, U.S.A.).

3. RESULTS
Measurable melatonin levels were detected in all studied species (Table 1). The mean concentration value in seminal plasma of donkey and stallion was similar, although the variation range was broader in donkey than in stallion. However, no statistical differences between individual males in these species were found. A broad range of melatonin values was also detected in seminal plasma of dog and boar, although average values were no significantly different from those in donkey or horse. Male variability was high, due to the fact that the melatonin concentration in one dog was several times higher than in the others (29.50 ± 8.01 pg/mL, P<0.05 compared to each other).

However, no age or breed influence was detected in that males. Likewise, the melatonin concentration in two boars was double than in the others (P<0.05). The highest melatonin mean concentration was found in bull (19.10 ± 7.37 pg/mL), being significantly different (P<0.05) to the other species. The maximum melatonin concentration in seminal plasma was found in the Frisian bulls (26.88 ± 9.96 vs. 2.00 ± 0.51 pg/mL for Frisian and Limousine bulls, respectively, P<0.05).

Likewise, indirect immunofluorescence assays against melatonin receptors revealed the presence of both types, MT₁ and MT₂, in all the studied species. However, their distribution within the spermatozoa appears to be species-specific and, in some cases, differences between cells within the same ejaculate were also detected. MT₁ receptor was located at the acrosomal region in almost all donkey spermatozoa (Fig. 1 a-c), some of them also showing a brighter band at the equatorial or postacrosomal region (Fig. 1 d-f). In stallion, the reactivity was found at the head and...
tail of all spermatozoa (Fig. 2 a-c). Furthermore, the immature spermatozoa found in
one sample showed a very intense immunoreactivity in the cytoplasmic droplet (Fig. 2
d-f). In boar spermatozoa, the MT₁ receptor distribution was identical in all the cells of
the studied ejaculates, showing an intense band at the equatorial region, and
immunoreactivity at the neck and midpiece of the flagellum (Fig. 3 a-c). Dog
spermatozoa presented a very characteristic MT₁ “banded” pattern in the head, with up
to three bands, located at the edge of the acrosome, equatorial band and/or
postacrosome, plus some staining at the neck and midpiece (Fig. 3 d-f). In bull
spermatozoa, MT₁ receptor was located at the postacrosome and flagellum; most cells
also showed an intense staining on the equatorial band and neck, and only a few of them
presented an additional signal on the acrosomal ridge (Figure 4 a-c). MT₁ location was
very similar in deer spermatozoa, with some cells showing immunoreactivity at the
postacrosomal region and flagellum, while other cells showed an intense band of
staining at the equatorial region and flagellum (Figure 4 d-f). Unlike the stallion
immature spermatozoa, the immunoreactivity intensity at the cytoplasmic droplet of red
deer was not higher than in the rest of the flagellum.
The MT₂ receptor distribution differed from that of MT₁ in all the studied species. In
donkey, spermatozoa were stained all over the head and tail (Fig. 1 g-i), although some
of them showed more intensity at either the acrosome (Fig. 1 j-l) or post-acrosome (Fig.
1 m-o). Stallion spermatozoa showed an intense staining at the acrosome of all cells in
the ejaculates (Fig. 2 g-i), plus a fainter staining at the postacrosome (Fig. 2 m-o) and
tail in some of them (Fig. 2 j-l); the cytoplasmic droplet present in immature
spermatozoa was not stained at all (Fig. 2 m-o). All the spermatozoa observed in boar
(Fig. 3 g-cj), bull (Fig. 4 g-i) and deer (Figure 4 j-l) samples showed an intense staining
in the neck, while in dog spermatozoa the reactivity was found at the acrosome, with a
faint signal at the midpiece of the flagellum (Fig. 3 j-l). A summary of both melatonin
receptors distribution is shown in Table 2.
In order to confirm these results, Western-blot analysis of the extracted proteins from all
sperm samples was carried out. The results obtained for the MT₁ receptor revealed a 39
kDa band, compatible with this receptor [30], in donkey, stallion (Fig. 9a, lanes 1 and
2), boar, bull and deer sperm extract, but not in dog (Fig. 9a, lanes 3-6). Another band
of 32 kDa was also found in boar, bull, deer and dog protein extracts. This 32 kDa band,
along with another one of 26 kDa, was also visible in donkey, but not in horse. Ram
sperm proteins, used as a positive control [26] also showed the 39 and 32 kDa bands (Fig. 9a, lane 7).

Western-blot analyses against MT$_2$ receptor revealed several small bands between 15 and 28 kDa in donkey sperm extract (Fig. 9b, lane 1). In stallion, a faint 42 kDa band along with another one of 32 kDa was detected (Fig. 9b, lane 2). These bands were also found in dog (32 kDa, Fig. 9b, lane 6), bull and deer (42 kDa, Fig. 9b, lanes 4 and 5, respectively) sperm extracts. Likewise, faint bands of 37 kDa and 39 kDa, compatible with the MT$_2$ receptor molecular weight [31], were identified in bull (Fig. 9b, lane 4) and dog (Fig. 9b, lane 6) sperm, respectively. Bands of 45 kDa were also found in boar (Fig. 9b, lane 3) and bull (Fig. 9b, lane 4) protein extracts, along with another 65 kDa band in the former. Finally a strong band of 75 kDa was detected in bull (Fig. 9b, lane 4) and deer (Fig. 9b, lane 5). Ram sperm proteins, the positive control, showed the 39 kDa, the double 45-50 kDa and the 75 kDa bands (Fig. 9b, lane 7).

4. DISCUSSION

We have previously detected the presence of melatonin in ram seminal plasma [8], and its relationship with testosterone, estradiol and antioxidant enzymes [32]. In this study, we have found measurable levels of melatonin in seminal plasma of donkey, stallion, boar, bull and dog. The mean values detected in the bull seminal plasma were statistically higher than those in the other analyzed species, with the lowest concentrations found in donkey and stallion. Furthermore, we observed a great intra-species individual variation, being the dog and boar the species with a higher deviation. An age-effect on melatonin concentration has been previously reported in the human nocturnal pineal melatonin secretion [33]. However, no age-effect was found in the individual variation observed in dog samples. In bulls, individual variation in the seminal plasma melatonin concentration seems to be breed-related, with the Frisian bulls showing the higher values.

In a previous study, we demonstrated the presence of melatonin receptors MT$_1$ and MT$_2$ in ram spermatozoa [26]. In this study, we have confirmed, for the first time, that melatonin receptors MT$_1$ and MT$_2$ are present in ejaculated spermatozoa of donkey, stallion, boar, bull, dog and in epididymal spermatozoa from red deer. The presence of melatonin receptors in spermatozoa had been initially hypothesized in human by the detection of melatonin binding sites [27] and the use of antagonists...
against these receptors [28]. Later on, the presence of the melatonin receptor MT\(_1\) was confirmed by immunofluorescence and RT-PCR in human spermatozoa [34], but not MT\(_2\). Regarding the presence of melatonin receptors in domestic mammalian spermatozoa other than the ram, a previous study using western blotting failed to detect the presence of melatonin receptors in stallion, boar and dog spermatozoa [20]. However, in the present study, we have verified the presence of both melatonin receptors MT\(_1\) and MT\(_2\) in all the tested species. This result suggests that their presence may be universal in mammalian spermatozoa and their role might be other than seasonal control. The differences in the receptor distribution were corroborated by the band pattern obtained by western-blot, and can be related to receptor activation [35,36] and/or dimerization [37,38], which may vary among species. However, the unequal distribution of these receptors on the sperm plasma membrane of the studied species, even those closely related such as stallion and donkey, together with the presence of different immunotypes in the same ejaculate suggest that the function of these receptors in spermatozoa may vary. They could be related to the fertilization process by improving their motility or extending their viability [23], or they could be involved in the antioxidant defense of the gametes by scavenging excessive ROS and RNS (Reactive Oxigen/Nitrogen Species) as already reported for human spermatozoa [39], rather than in seasonal control. These functions are compatible, and melatonin could be helping to preserve and regulate sperm functionality both by having a direct antioxidant effect and through receptor binding. However, the fact that melatonin is present in the seminal plasma of all studied species, and melatonin receptors in all spermatozoa even in the non-seasonal ones, lead us to suggest that its function might be other than seasonal control. Several results have reported that melatonin may exert its antioxidant and antiapoptotic effect, via MT\(_1\) and/or MT\(_2\) receptors, after ejaculation. It has been demonstrated that exogenous melatonin can prevent oxidative damage in boar [40], stallion [20] and human [41] spermatozoa. Due to its antioxidant properties, melatonin has also been used as an extender additive in sperm refrigeration and cryopreservation of boar [19], ram [42], and bull [18], and its addition increased the post-thawing sperm quality on red deer [21]. However, melatonin did not seem to exert any beneficial effects on dog sperm cryopreservation [43]. A species-specific effect has already been shown for the modulation of sperm motility through melatonin receptors. Thus, exogenous melatonin enhanced hyperactivation of
hamster sperm through the MT₁ receptor [29], whereas it increased progressive motility and other kinematics parameters in ram [42,44], bull [18], human [45] and even Iberian ibex spermatozoa [46], but not in the stallion [20]. In addition, several studies have reported contradictory results on the melatonin effects on boar sperm motility [19,40].

Our results show that although the distribution of MT₁ and MT₂ melatonin receptors is unequal in the sperm head of the studied species, all of them have one or both receptors in the neck and midpiece of the flagellum, which might be related to the modulation of sperm kinematics and hyperactivation, potentially contributing to increase the sperm fertilizing capacity. Furthermore, melatonin can exert its antiapoptotic effects in human spermatozoa via the MT₁ receptor [28]. Therefore, the presence of melatonin receptor MT₁ in the cytoplasmic droplet of stallion immature spermatozoa and epidydimal red deer spermatozoa suggests that melatonin may protect the future spermatozoon from oxidative damage during spermatogenesis and sperm maturation [47-49] through these receptors.

Melatonin receptors could also be involved in the fertilization process by modulating the capacitation process or the acrosome reaction. In fact, incubation of ram spermatozoa with different physiological doses of melatonin not only prevents apoptotic-like changes, but also modulates sperm capacitation and increases in vitro fertilization [22]. Moreover, we have recently shown that the melatonin effect on ram sperm capacitation is modulated through MT₂ receptors [50].

5. CONCLUSIONS

In conclusion, our study shows the presence of melatonin receptors MT₁ and MT₂ in spermatozoa of several domestic species and a wild, highly seasonal species, regardless of their seasonality. It also shows the existence of measurable levels of melatonin in the seminal plasma of ejaculated semen, despite a great intra-species individual variation. These results open new interesting perspectives of research to explore the exact role of melatonin and melatonin receptors in the fertility of domestic animals. A wider study is currently in progress to establish the cause of the wide inter-individual variation and the high variability found in seminal plasma samples, using a broader range of individuals and breeds in each species, and a higher number of samples.

Acknowledgements: This work was supported by grants CICYT-AGL2013-43328-P, AGL2012-39903, GV BFI-2010-229 and DGA A-26. The authors thank Oficina de
Medio Ambiente de León (Junta de Castilla y León, Spain) and the wardens of the
hunting reserves of Riaño and Mampodres (León, Spain).

Author contribution: Dr. Cebrián-Perez designed the experimental study, Marta
Gonzalez-Arto and Alejandro Vicente-Carrillo performed indirect immunofluorescence
analyses and Western blot in dog, boar, donkey and stallion, Dr. Martinez-Pastor and
Estela Fernández-Alegre analyzed bull and deer spermatozoa, Dr. Casao analyzed
seminal plasma, Drs. Roca, Miró, Rigau and Rodriguez-Gil provided dog, boar, donkey
and stallion samples and revised the parts concerning to these species, Dr. Casao drafted
the manuscript, whereas critical revision of the manuscript and approval of the article
was completed by Drs. Pérez-Pé, Muiño-Blanco and Cebrián-Pérez.

References

[1] Tan D-X, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule,
many derivatives: A never-ending interaction of melatonin with reactive oxygen

al. The changing biological roles of melatonin during evolution: from an
antioxidant to signals of darkness, sexual selection and fitness. Biol Rev Camb

al. Control of sheep and goat reproduction: Use of light and melatonin. Anim

Seasonal variations of melatonin in ram seminal plasma are correlated to those of testosterone and antioxidant enzymes. Reprod Biol Endocrinol 2010;8:59.

Sarabia L, Maurer I, Bustos-Obregón E. Melatonin prevents damage elicited by the organophosphorous pesticide diazinon on mouse sperm DNA. Ecotoxicol Environ Saf 2009;72:663-8.

Figure 1: Distribution of melatonin MT$_1$ (panels a-f) and MT$_2$ (panels g-o) receptor in donkey spermatozoa, evaluated by imaging flow cytometry. For MT$_1$ receptor, spermatozoa with staining at the acrosome (a-c), and with a brighter band at the postacrosomal region (d-f) are represented. For MT$_2$ receptor, spermatozoa with staining all over the head and tail (g-i), acrosome (j-l) and postacrosomal region (m-o) are shown. Bright field (a, d, g, j, m), MT$_1$ receptors (b, e), MT$_2$ receptors (h, k, n) and merged images (c, f, i, l, o) are shown.

Figure 2: Distribution of melatonin MT$_1$ (panels a-f) and MT$_2$ (panels g-o) receptor in horse spermatozoa, evaluated by imaging flow cytometry. For MT$_1$ receptor, spermatozoa with staining all over the head and tail (a-c), and cytoplasmic droplet (d-f) are represented. For MT$_2$ receptor, spermatozoa show staining at the acrosome (g-i), or acrosome and tail (j-l), but not cytoplasmic droplet (m-o). Bright field, (a, d, g, j, m) MT$_1$ receptors, (b, e), MT$_2$ receptors (h, k, n) and merged images (c, f, i, l, o) are shown.

Figure 3: Distribution of melatonin MT$_1$ (panels a-f) and MT$_2$ (panels g-l) receptor in boar (a-c, g-i), dog (d-f, j-l) spermatozoa. Magnification 400x. Differential Interference Contrast (a, d, g, j), melatonin receptors (b, e, h, k) and merged images (c, f, i, l) are shown.

Figure 4: Distribution of melatonin MT$_1$ (panels a-f) and MT$_2$ (panels g-l) receptor in bull (a-c, g-i) and red deer (d-f, j-l) spermatozoa. Magnification 1000x. Bright field (a, d, g, j), melatonin receptors (b, e, h, k) and merged images (c, f, i, l) are shown.

Figure 5: Western-blot images of the presence of MT$_1$ (a) and MT$_2$ (b) melatonin receptor in sperm protein extracts from donkey (1), horse (2), boar (3), bull (4), deer (5), dog (6) and ram (7, positive control).
Table 1: Concentration of melatonin (pg/mL) in donkey, stallion, boar, bull and dog seminal plasma. Values are shown as mean ± S.E.M. of different males (number of analyzed males (n), shown in brackets in each species). Range of values obtained in all samples from in each species is also displayed. Different letters account for significant differences between species (P<0.05).

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SEM (pg/mL)</th>
<th>Range (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donkey (n = 4)</td>
<td>2.82 ± 0.38<sup>b</sup></td>
<td>0.68 - 6.47</td>
</tr>
<tr>
<td>Stallion (n = 4)</td>
<td>2.48 ± 0.14<sup>b</sup></td>
<td>1.24 - 3.39</td>
</tr>
<tr>
<td>Boar (n = 6)</td>
<td>9.34 ± 1.38<sup>b</sup></td>
<td>1.07 - 26.71</td>
</tr>
<tr>
<td>Bull (n = 6)</td>
<td>19.10 ± 7.37<sup>a</sup></td>
<td>0.74 - 88.03</td>
</tr>
<tr>
<td>Dog (n = 7)</td>
<td>6.06 ± 2.28<sup>b</sup></td>
<td>0.74 - 46.22</td>
</tr>
</tbody>
</table>
Table 2: Summary of melatonin MT$_1$ (1) and MT$_2$ (2) receptor distribution in donkey, stallion, boar, bull, deer and dog spermatozoa, assessed by indirect immunofluorescence. Brackets ([[]]) indicate that in that location, the receptor was not detected in all the spermatozoa of the sperm sample. The absence of a number indicates that there was no immunostaining in that sperm region.

<table>
<thead>
<tr>
<th></th>
<th>Acrosome</th>
<th>Equatorial band</th>
<th>Postacrosome</th>
<th>Neck</th>
<th>Midpiece</th>
<th>Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donkey</td>
<td>1, 2</td>
<td>[1], 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Boar</td>
<td></td>
<td>1</td>
<td></td>
<td>1, 2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bull</td>
<td>[1]</td>
<td>[1]</td>
<td>[1]</td>
<td>[1], 2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Deer</td>
<td>[1]</td>
<td>[1]</td>
<td>[1]</td>
<td>[1], 2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dog</td>
<td>[1], 2</td>
<td>[1]</td>
<td>[1]</td>
<td>1</td>
<td>1, 2</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 greyscale

Click here to download high resolution image