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A B S T R A C T

In the Mediterranean Basin, wildland fires are major drivers of forest ecosystem dynamics. In the current context
of global change, these fires are becoming more severe and recurrent because of climatic conditions, land use
changes and invasive species. In areas affected by mega-fires (burned area>10,000ha), the patterns of regen-
eration may be heterogeneous due to local variations in fire regime, community composition and environmen-
tal features. The goal of this study was to analyze the post-fire structure of both Pinus pinaster Aiton. seedlings
population and understory community in a Mediterranean fire-prone ecosystem at short-term by means of high
spatial resolution satellite imagery within the perimeter of a full stand replacing mega-fire that burned around
12,000ha of a Pinus pinaster forest in NW Spain. We established 234 field plots of 2×2meters to cover four
recurrence-severity scenarios. In each plot, we sampled 15 vegetation structural variables at both pine seedlings
population and understory community levels. From the WorldView-2 satellite imagery, we obtained three sets
of spectral variables (reflectance, spectral indices and image textures) that were used as predictors of vegetation
recovery in generalized linear models. At population level, the number and cover of pine seedlings were suc-
cessfully modeled with spectral indices and textural information (normalized root mean square error of 16% and
17%, respectively). At understory community level, woody species cover was correlated with first order textures
(normalized root mean square error of 9%). Other understory structure variables (height and richness of woody
species, percentage of bare soil, necromass and leaves) were predicted with an error lower than 20%. The predic-
tive capacity of the models was similar for all recurrence-severity scenarios. Our results highlight the usefulness
of spectral indices and textural data at high spatial resolution in the analysis of post-fire recovery in large and
heterogeneous burnt areas. Given the accuracy and predictive capacity of the models obtained in this study, high
spatial resolution satellite imagery together with field data provide useful information in post-fire decision mak-
ing in fire prone ecosystems.

1. Introduction

In the Mediterranean Basin, forest fires are major drivers of ecosys-
tem productivity, composition and dynamics (Lozano et al., 2008; Sagra
et al., 2018). In this region, forest fires are increasingly larger and are
becoming more severe and recurrent, mainly due to climatic factors and
land use changes (Chuvieco et al., 2010; Moreira et al., 2011; Álvarez
et al., 2012; Lecina-Diaz et al., 2014; Quintano et al., 2015), but also
to alien species introduction (Pausas and Keeley, 2014). Furthermore,
large forest fires imply a loss of the ecosystem services provided by
forests (Calvo et al., 2015), which finally may affect human health (Van
Drooge et al., 2016).

In Mediterranean fire-prone ecosystems, pine populations not only
supply provisioning ecosystems services like timber (Leone and
Lovreglio, 2004), resin (Soliño et al., 2018) or mushrooms (Taye et al.,
2016), but also regulating services such as soil protection, biodiversity
support and cultural ecosystem services such as recreational benefits
(Leone and Lovreglio, 2004). On the other hand, the understory com-
munity also plays a key role in the provision of regulating ecosystem
services in fire-prone pine ecosystems (Gonzalez et al., 2013) such as
protection against soil erosion processes (Shakesby, 2011; Vieira et al.,
2018). Therefore, rapid and effective post-fire regeneration evaluation
is considered key for both the dominant tree species population and
the understory community of these ecosystems (Fernández-Guisuraga
et al., 2019) in order to recover their services supply (Leverkus et al.,
2018; Schmeer et al., 2018). The evaluation of other post-fire variables
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such as the dead plant material cover (i.e., coarse and fine woody de-
bris), is also of crucial importance for land management decision-mak-
ing (Pesonen et al., 2008; Joyce et al., 2019). Dead plant material has
a key role in the probability of occurrence of a new fire in a previously
burned area (Sullivan et al., 2018) but, on the other hand, dead plant
material increase rain interception following fire and behave as a sedi-
ment trap (Slesak et al., 2015).

Nevertheless, fire effects and vegetation recovery are not homoge-
neous across the landscape, due to spatial variations in fire regime pa-
rameters, species composition and environmental factors (Beaty and
Taylor, 2001). Fire severity and recurrence are the fire regime para-
meters that most affect post-fire regeneration (González-De Vega et
al., 2016; Tessler et al., 2016; Taboada et al., 2017; Fernández-García
et al., 2018a). Thus, their explicit consideration in the assessment of
spatial variations in post-fire regeneration is of vital importance for
planning strategies of ecosystem restoration in areas affected by large
fires (Ruíz-Gallardo et al., 2004; Moreira et al., 2009; Solans-Vila and
Barbosa, 2010).

Because of the increase in the number of large forest fires, post-fire
regeneration patterns in fire-prone pine ecosystems are increasingly het-
erogeneous (Fernández-García et al., 2018a), so that using exclusively
field-work monitoring is unfeasible (Chuvieco and Kasischke, 2007). In
this sense, remote sensing techniques (RST) are recognized as indis-
pensable tools to evaluate vegetation regeneration patterns after fire,
particularly across large areas (Lozano et al., 2012; Veraverbeke et al.,
2012; Fernández-Manso et al., 2016). However, the application of RST
is still a challenge in the case of heterogeneous mega-fires (burned
area>10,000ha; Stephens et al., 2014) with high variation in fire
regime parameters (Schoennagel et al., 2008; Chu et al., 2016).

Among the products derived from satellite imagery, spectral indices
are the most frequently employed in post-fire vegetation regeneration
analysis (Marchetti et al., 1995; Diaz-Delgado et al., 2003; Clemente et
al., 2009; Cuevas-Gonzalez et al., 2009; Lozano et al., 2010; Solans-Vila
and Barbosa, 2010; Lozano et al., 2012; Veraverbeke et al., 2012; Chu
et al., 2016). Other studies, such as that conducted by Pleniou and Kout-
sias (2013), have focused on the evaluation of reflectance bands as pre-
dictors of post-fire regeneration, instead of grouping the reflectance val-
ues into spectral indices. Additionally, some authors propose the use
of satellite imagery texture analysis as an indicator of vegetation struc-
tural parameters allowing for quantifying spatial variability within a de-
fined area (Kayitakire et al., 2006; Song and Dickinson, 2008; Eckert,
2012; Viedma et al., 2012; Wood et al., 2012; Gu et al., 2013; Bastin et
al., 2014; Pu and Cheng, 2015). Texture analysis is particularly relevant
with respect to other products derived from satellite imagery in areas of
high heterogeneity in ground cover, since visible structures are not only
related to discrete values of image pixels, but also to the spatial varia-
tion of these values between adjacent pixels (Gu et al., 2013).

Despite the increasing use of satellite products in post-fire recovery
analysis, most of those studies are constrained by coarse resolution sen-
sors to characterize post-fire environments with a high spatial hetero-
geneity (Meng et al., 2018). In this regard, the development of high spa-
tial resolution satellite imagery, such as QuickBird or WorldView, pro-
vides an improved performance in the monitoring of vegetation struc-
ture in heterogeneous post-fire landscapes (Viedma et al., 2012; Jung
et al., 2013; Chu et al., 2016; McKenna et al., 2018; Meng et al.,
2018; Fernández-Guisuraga et al., 2019). However, to our knowledge,
there are no studies evaluating the post-fire forest structure both at the
dominant tree species population and the shrub community levels by
means of high spatial resolution multispectral imagery alone (i.e. with-
out the combined use of optical satellite imagery and active sensors),
under the influence of the fire regime parameters and a high spatial
fine-scale heterogeneity. This approach could have broad scientific im-
plications for land management decision-making in Mediterranean fire-

prone pine ecosystems since it is essential to separate the dominant
tree species recovery and the understory recovery (García-Morote et al.,
2017; Meng et al., 2018).

The main goal of this study was to analyze the Pinus pinaster Aiton.
population and understory community structure in a Mediterranean
fire-prone ecosystem after the occurrence of a stand replacing mega-fire,
by means of high spatial resolution satellite imagery and an extensive
field sampling campaign. Specifically, we try to: (1) Identify the vege-
tation structure variables that best correlate with spectral information
under different scenarios of fire recurrence and severity, at the level of
both the dominant tree species population and the understory commu-
nity. (2) Determine the reflectance bands, spectral indices and textural
features derived from WorldView-2 multispectral satellite imagery that
best explain post-fire regeneration, which would therefore constitute a
useful management tool in large and heterogeneous burned areas. We
expect that within the perimeter of a stand replacing mega-fire where
salvage logging was conducted following fire, the recovery models of
the Pinus pinaster population will perform better in scenarios of low fire
recurrence and severity. The pine seedling recruitment on these scenar-
ios would be significant due to the massive seed storage in the canopy
seed bank during the previous fire-free period (Tapias et al., 2004; Calvo
et al., 2008; Calvo et al., 2016). Moreover, obligate seeder shrubs with
a slow recovery rate are promoted under low fire recurrence scenar-
ios and enhance seedling recruitment through facilitative interactions
(Pausas and Vallejo, 1999; Taboada et al., 2017). In contrast, recurrent
fires with short return interval will favor resprouter shrubs with a fast
post-fire recovery rate (Calvo et al., 2012; Taboada et al., 2018), turn-
ing facilitative interactions into competitive ones (Taboada et al., 2017).
Therefore, under fire regime scenarios with a high pine recruitment, the
seedlings reflectance contribution would presumably be large enough so
that their spectral response can be detected with the presence of sur-
rounding vegetation. Furthermore, we expect the advantage of texture
products, over reflectance values or spectral indices, in post-fire regen-
eration modeling under high spatial and fire regime heterogeneity (Gu
et al., 2013) within the fire perimeter because the textural features al-
low for quantifying spatial relationships in reflectance values (Pu and
Cheng, 2015).

The flowchart of this study is schematized in Fig. 1.

2. Materials and methods

2.1. Study area. Definition of different scenarios of recurrence and severity

The study area (Fig. 2) is located in Sierra del Teleno (NW Spain),
within the perimeter of a full stand replacing mega-fire (11,602ha)
that occurred in August 2012 and affected a forest dominated by Pinus
pinaster. The burned area sites at an average altitude of 1063m.a.s.l.
and is relief is typically Appalachian, with quartzite banks outcrop-
ping in the peaks forming prominent crests. The north of the area is
made of wide valleys with moderate slopes, while the southernmost
zone is mainly composed of sedimentary plains and terraces. This is
an Atlantic-Mediterranean transition area, with a mean annual precip-
itation of 650mm, a mean annual temperature of 10 °C and less than
two months of summer drought. The soils are predominantly acidic
(pH 4.5–5.5), with sandy texture, being clay soils relegated to the
quaternary deposits (Santamaría, 2015). Forests dominated by Pinus
pinaster typically covered the quartzite slopes and tertiary soils of the
surrounding plains and are particularly subject to the occurrence of
large forest fires (Calvo et al., 2008). Therefore, the population of Pi-
nus pinaster in this region shows adaptive characteristics to the prevail-
ing fire regime, such as higher production of serotinous cones, thicker
bark and earlier flowering age than other Spanish populations (Tapias
et al., 2004; Alvarez et al., 2007). Quercus pyrenaica Willd. stands, more
resistant to forest fires, are present in valley bottoms with deeper soils
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Fig. 1. Conceptual framework of the present study.

(Santamaría, 2015). The pine canopy was totally consumed by fire and
the burned stands were salvaged logged in the two years immediately
after the fire (Taboada et al., 2017; Taboada et al., 2018). Vegetation
following fire mainly consists of Pinus pinaster regeneration stands in
a seedling growth stage, being the understory plant community domi-
nated by species such as Halimium lasianthum subsp. alyssoides (Lam.)
Greuter, Pterospartum tridentatum (L.) Willk. and Erica australis L. (Calvo
et al., 2008). Three years after the fire, the mean pine density in the
study area was 2.25±0.15 seedlings/m⁠2, the mean percent cover of
pine seedlings per square meter was 4.30±0.26 and their mean height
was 22.71cm±0.71 (Fernández-García et al., 2019).

Before the fire of 2012, the area had suffered another large fire in
1998 of around 3000ha. Therefore, within the perimeter of the 2012
fire, we defined two fire recurrence scenarios: low recurrence (one fire
in the last 15years) and high recurrence (two fires in the last 15years).
Three months after the wildfire, we estimated the burn severity through
the CBI (Composite Burn Index; Key and Benson, 2006) over 54 field
plots of 30×30m randomly distributed using the protocol described
in Fernández-García et al. (2018b). Additionally, the dNBR (differenced
Normalized Burn Ratio) index (Key, 2006) was derived from Landsat
pre-fire and post-fire images (September 20th, 2011 - September 6th,
2012). We established two severity scenarios within the perimeter of the
fire of 2012 based on a dNBR threshold computed from the CBI (Miller
and Thode, 2007; Quintano et al., 2015): low severity (dNBR≤573)
and high severity (dNBR>573). Overlaying the recurrence and sever-
ity classes, we identified four recurrence-severity scenarios (low recur-
rence-low severity, low recurrence-high severity, high recurrence-low
severity and high recurrence-high severity) (Fig. 2) to subsequently
model post-fire regeneration with regard to the fire regime. Within the
fire perimeter, we selected a 3000ha study framework where the four
scenarios of recurrence and severity were represented (Fig. 2) to collect
field data for further model calibration and validation.

2.2. Field data

In summer of 2015, a set of 234 plots of 2×2m (resolution of
WorldView-2) were randomly established in the field. The number of
plots for each recurrence-severity scenario was proportional to the rel-
ative area occupied by each scenario within the fire perimeter (Table
1). The center of each plot was georeferenced by a sub-meter accuracy

GPS (Spectra Precision MobileMapper 20) in post-processing mode. The
guaranteed accuracy after post-processing the coordinates was greater
than 0.4m. Within each plot, we measured 15 regeneration structure
variables of both the population of the dominant tree species (Pinus
pinaster) and the understory community with a great potential in
post-fire management decision-making (Table 2). All cover variables
were estimated using the methodology of visual percentage cover (Calvo
et al., 2008).

The values of the predictors were extracted from the pixels of World-
View-2 image matching the 2×2m plots where field measurements
were made. 66% of the experimental plots were used to calibrate the
regeneration models, while the remaining 33% were used for validation
(Table 1).

2.3. WorldView-2 image data

The WorldView-2 image was acquired on 16th of June 2015 at
10:34:02 UTC, with a cloud cover of 8.1%. Sensors on-board World-
View-2 capture data in 11-bit format over a panchromatic (Pan,
450–800nm) and eight multispectral bands (MS, 400–1040nm), with a
spatial resolution of 0.5m and 2.0m, respectively. This satellite image
was selected due to its high spatial resolution, presumably able to dis-
criminate between spatial structures given the scale of variability ob-
served in the field. Furthermore, WorldView-2 is the first satellite to of-
fer eight multispectral bands on the visible and infrared region of the
spectrum (Ni et al., 2015).

2.3.1. Image processing
The image was orthorectified to subpixel accuracy (root mean square

error=0.58m) using rational polynomial coefficients provided with the
image, a digital surface model with a resolution of 0.5m and ground
control points taken in the field. The radiometric calibration of the
image to apparent surface reflectance was conducted by the atmos-
pheric correction algorithm FLAASH, the acronym for Fast Line-of-sight
Atmospheric Analysis of Spectral Hypercubes (Vermote et al., 1997;
Adler-Golden et al., 1999; Berk et al., 1999; Matthew et al., 2003). Vis-
ibility, column water vapor amount and some ancillary data for atmos-
pheric correction of the scene were obtained from the image metadata
and from the State Meteorology Agency of Spain (AEMET). The work-
flow of the image processing is shown in Fig. 3.
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Fig. 2. Study framework within the perimeter of the Sierra del Teleno mega-fire which occurred in 2012, and the considered recurrence-severity scenarios.

2.3.2. Spectral predictors: Reflectance values, spectral indices and image
textures

Three types of products were obtained from the WorldView-2
processed image to be used as predictors of vegetation recovery: (1) sur-
face reflectance values, (2) spectral indices and (3) first and second or-
der textures.

We accounted for the reflectance values of the eight bands of the
imagery: 1-coastal blue (400–450nm), 2-blue (450–510nm), 3-green
(510–580nm), 4-yellow (585–625nm), 5-red (630–690nm), 6-red edge
(705–745), 7-NIR1 (770–895nm) and 8-NIR2 (860–1040nm).

A total amount of 27 spectral indices were calculated from the ap-
parent surface reflectance image and clustered into three groups: indices
related to leaf pigments, detection indices of burned areas and soil and
plant health indices (Table 3). These three sets of spectral indices are ex-
pected to account for the structure of the Pinus pinaster population and
understory community during the first successional stages after the fire.

For each of the eight bands of WorldView-2 reflectance image,
we calculated five first order (1rd) textures (occurrence statistic mea-
surements: data range, mean, variance, entropy and skewness) and
eight second order (2rd) textures (co-occurrence statistic measurements:

4
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Table 1
Number of experimental plots used for model calibration and validation across recur-
rence-severity scenarios.

Recurrence-
Severity
scenarios

Low
recurrence &
low severity

Low
recurrence &
high severity

High
recurrence &
low severity

High
recurrence &
high severity

Model
calibration

24 60 24 48

Model
validation

12 30 12 24

Total plots 36 90 36 72

Table 2
Field regeneration variables measured in 2×2m plots.

Category Variable Code
Unit of
measurement

Pinus pinaster
population

No. of living seedlings Pn number

No. of dead seedlings dPn number
Average height of living seedlings Ph cm
Maximum height of living
seedlings

Pmaxh cm

Minimum height of living
seedlings

Pminh cm

Cover of seedlings Pcov %
Understory

community
Cover of woody species Wcov %

Maximum height of woody
species

Wmaxh cm

Richness of woody species Wrich number
Cover of herbaceous species Hcov %
Richness of herbaceous species Hrich number
Cover of leaves and thin branches
less than 2 cm

Lcov %

Cover of lying necromass greater
than 2cm

Ncov %

Cover of stones St %
Percentage of bare soil S %

Fig. 3. Workflow of WorldView-2 image processing (RPC=rational polynomial coeffi-
cients; GCP=ground control points).

mean, variance homogeneity, contrast, dissimilarity, entropy, angular
second moment and correlation) (Table 4). First order texture measure-
ments are statistics calculated from the original pixel values in a mov-
ing window. The second order texture measurements are calculated us-
ing the Gray Level Co-Occurrence Matrix (GLCM), which describes the
probability that the values of each pair of pixels concur in a given di

Table 3
Spectral indices used in this study derived from WorldView-2 reflectance bands (B1–B8).

Index Formula Reference

Leaf pigments
Anthocyanin

Reflectance Index
2 (ARI)

B7[(1/B3)-(1/B6)] Gitelson et
al. (2001)

Carotenoid
Reflectance Index
(CRI)

(1/B3)-(1/B6) Gitelson et
al. (2002a)

Modified
Chlorophyll
Absorption Ratio
Index (MCARI)

[(B6-B5)-0.2(B6-B3)](B6/B5) Daughtry
et al.
(2000)

Plant Senescence
Reflectance Index
(PSRI)

(B5-B3)/B6 Merzlyak
et al.
(1999)

Structure Intensitive
Pigment Index
(SIPI)

(B7-B1)/(B7-B5) Penuelas et
al. (1995)

Transformed
Chlorophyll
Absorption
Reflectance Index
(TCARI)

3[(B6-B5)-0.2(B6-B3)(B6/B5)] Haboudane
et al.
(2004)

Detection of burned areas and soil
Burnt Area Index

(BAI)
1/[(0.1−B5)⁠2+(0.06−B8)⁠2] Chuvieco

et al.
(2002)

WorldView Soil
Index (WSI)

(B3−B4)/(B3+B4) Wolf
(2010)

Plant health
Atmospherically

Resistant
Vegetation Index
(ARVI)

(B7-2B5+B2)/(B7+2B5-B2) Kaufman
and Tanre
(1992)

Difference
Vegetation Index
(DVI)

B7-B5 Tucker
(1979)

Far Red to Red
Index (FRRI)

B6/B5 Barry et al.
(2008)

Green
Atmospherically
Resistant Index
(GARI)

[B7-(B3-1.7B2 +1.7B5)]/
[B7+(B3-1.7B2 +1.7B5)]

Gitelson et
al. (1996)

Green Difference
Vegetation Index
(GDVI)

B7-B3 Sripada et
al. (2006)

Green Normalized
Difference
Vegetation Index
(GNDVI)

(B7-B3)/(B7+B3) Gitelson
and
Merzlyak
(1998)

Green Ratio
Vegetation Index
(GRVI)

B7/B3 Sripada et
al. (2006)

Infrared Percentage
Vegetation Index
(IPVI)

B7/(B7+B5) Crippen
(1990)

Leaf Area Index
(LAI)

3.618[(B7-B5)/(B7 +6B5-7.5B2+1)]-0.118 Boegh et
al. (2002)

Modified Non-Linear
Index (MNLI)

[(B7⁠2-B5)1.5]/(B7 ⁠2 +B5+0.5) Yang et al.
(2008)

Modified Simple
Ratio (MSR)

[(B7/B5)-1]/[sqrt(B7/B5) +1] Chen
(1996)

Modified Triangular
Vegetation Index
(MTVI)

1.2[1.2(B7-B3)-2.5(B5-B3)] Haboudane
et al.
(2004)

Normalized
Difference
Vegetation Index
(NDVI)

(B7-B5)/(B7+B5) Rouse et
al. (1973)

Optimized Soil
Adjusted
Vegetation Index
(OSAVI)

[1.5(B7-B5)]/(B7 +B5+0.16) Rondeaux
et al.
(1996)

Red Green Ratio
Index (RGI)

B5/B3 Gamon
and Surfus
(1999)

Renormalized
Difference
Vegetation Index
(RDVI)

(B7-B5)/[sqrt(B7 +B5)] Roujean
and Breon
(1995)

Transformed
Difference
Vegetation Index
(TDVI)

sqrt[0.5+(B7-B5)/(B7 +B5)] Bannari et
al. (2002)

Visible
Atmospherically
Resistant Index
(VARI)

(B3-B5)/(B3+B5-B2) Gitelson et
al. (2002b)

WorldView
Improved
Vegetative Index
(WIVI)

(B8-B5)/(B8+B5) Wolf
(2010)

rection and distance (Haralick et al., 1973). In all texture analysis, the
moving window size was 3×3pixels since this window size will cap-
ture the heterogeneity of the reflectance values in the variability range
of the cover pattern observed in the field (Gu et al., 2013). Chen et al.
(2004) also highlighted that, in heterogeneous landscapes, a small win-
dow size should be chosen. Second order textures were calculated for
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Table 4
First and second order textures extracted for each surface reflectance bands. On first order
textures, p⁠i is the relative frequency of the i gray levels in the window, X is the pixel gray
level and N is the number of gray levels. On second order textures, p(i,j) represents the
value in i,j cell of the co-occurrence matrix and N is the number of gray levels used in the
analysis.

Texture Description ⁠a, ⁠b Formula⁠c

First order
Data range Difference of the maximum and

minimum pixel value in the moving
window.

Mean Local mean of pixels in the moving
window.

Variance Local variance of pixels in the moving
window.

Entropy Shannon diversity index.
Skewness Lack of symmetry around the mean of

the moving window pixels.
Second order
Mean Local mean of GLCM window.
Variance Local variance of GLCM window.
Homogeneity Measurement of homogeneous pixel

values through image. The values
range between 0 and 1.

Contrast Measurement of the local variation in
the image. Opposed to homogeneity.

Dissimilarity Similar to the contrast, measured as
the absolute value of grayscale
differences.

Entropy Shannon diversity index. The values
range between 0 and the natural
logarithm of the GLCM window size.

Angular second
moment

Measure of the image homogeneity.
The values range between 0 and 1.

Correlation Measurement of linear dependencies
of the image gray levels. The values
range between −1 and 1.

a Haralick et al. (1973).**
b Wood et al. (2012).
c Pu and Cheng (2015).

the four spatial directions (0°, 45°, 90° and 135°, represented in this case
by the Cartesian coordinates [1,0], [1,−1], [0,−1] and [−1,−1]). The
directionally invariant texture measures were subsequently obtained by
calculating the mean of the co-occurrence measurements in the four di-
rections (Zhang and Xie, 2012).

2.4. Statistical analysis

The relationship between biotic variables accounting for post-fire re-
generation (Table 2) and spectral predictors (Tables 3 and 4) was ana-
lyzed using multivariate Generalized Linear Models (GLMs; McCullagh
and Nelder, 1989). For each biotic variable, we tested five sets of predic-
tors: reflectance values, spectral indices, first order textures, second or-
der textures and ensemble ([reflectance+spectral indices+textures]).
We calibrated separate models for each recurrence-severity scenario and
for the entire study framework. Therefore, we ran a total number of 375
models (15 biotic variables×5 sets of spectral predictors×5 frame-
works). For modelling biotic variables related to vegetation height, we
assumed a normal error distribution and an identity link function (lin-
ear model). For count variables, a Poisson distribution of error with a
logarithmic link function (Zeileis et al., 2008) was used; in the case of
overdispersion occurrence, a quasi-Poisson distribution type with a log-
arithmic link function (Ver-Hoef and Boveng, 2007) was carried out.
For response variables measured as a percentage, we used a quasi-Pois-
son type error distribution with a logarithmic link function, according
to Martin et al. (2005).

In order to detect multicollinearity problems within each set of
predictors, bivariate Pearson correlations and VIF values were evalu-
ated. Correlation analyses allowed for discriminating strongly correlated

groups of predictors (r⁠Pearson >0.7) (Engler et al., 2013). Within each
group, we only preserved for subsequent analysis the predictor that ex-
plained the greatest proportion of variance for a given response variable
in univariate generalized linear models (GLMs) (McCullagh and Nelder,
1989). The uncorrelated predictors that were used in the calibration of
post-fire regeneration models are shown in Table SM.1 (Supplementary
Material). Additionally, we checked that the variance inflation factor
(VIF) of each predictor included in the models was lower than four
(Zuur et al., 2010). Models were calibrated in a backwards stepwise
regression procedure (Draper and Smith, 1998). The overall fit of the
models was evaluated as the proportion of deviance explained by the
predictors (McFadden, 1974) and the predictive power as the root mean
square error (RMSE, Eq. (1)) normalized from the maximum (y⁠max)
and minimum (y⁠min) value of observations for each response variable
(nRMSE, Eq. (2)).

(1)

(2)

All statistical analyses were performed using R (Core Team, 2015).

3. Results

The highest recovery of the Pinus pinaster population structure vari-
ables (density, cover and height of pine seedlings) was observed for the
low fire recurrence scenario. Fire severity was inversely related to the
population recovery in both fire recurrence scenarios. The opposite pat-
tern was observed for the understory community structure variables,
which exhibited greater recovery under high fire recurrence than for the
low recurrence scenario. There was no clear pattern for the influence of
fire severity in the community structure recovery (Table 5).

The highest model fit (Table 6) and predictive capacity (Fig. 4) was
found, for the whole study framework, in either the models includ-
ing texture predictors or the ensemble model (spectral indices+tex-
tures). Pinus pinaster structure was modeled both in terms of number
(Pn) (deviance=34% and nRMSE=16%) and cover (Pcov) of pine
seedlings (deviance=39% and nRMSE=17%) from the second order
textures and the ensemble set (spectral indices+first order textures),
respectively. At the understory community level, the biotic variable
most successfully modeled was the cover of woody species (Wcov) (de-
viance=58% − 63% and nRMSE=9% − 11% for the considered set
of predictors), with all sets of predictors having a similar performance.
The overall fit and nRMSE of the other understory community variables
were lower than 45% and 27%, respectively.

None of the reflectance bands explained the recovery of the Pinus
pinaster population. However, bands 1 (coastal blue) and 7 (NIR-1) were
significantly correlated with the understory community structure. For
its part, band 6 (red edge) was related with the cover of leaves, ly-
ing necromass and stones (Table 7). Among the spectral indices, An-
thocyanin Reflectance Index 2 significantly explained the structure vari-
ables related to the regeneration of the Pinus pinaster population and
the understory community. The Burnt Area Index and the WorldView
Soil Index were the best predictors of the cover of leaves, lying necro-
mass and bare soil at community level (Table 7). In all models ana-
lyzed, at least one variable within the set of first and second order tex-
tures was selected as a significant predictor of post-fire vegetation struc-
ture. Among first order textures, the mean and data range of differ-
ent bands had the highest level of significance. For the second order
textures, the mean also gained special relevance, along with entropy
and homogeneity (Table 7). None of the set of predictors explained the
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Table 5
Mean±standard deviation of Pinus pinaster population and understory community structure variables under the fire recurrence (R) and Severity (S) scenarios. The variable codes corre-
spond to that shown in Table 2.

lowR-lowS lowR-highS highR-lowS highR-highS

Pn (number) 5.35±5.18 3.13±4.55 0.73±1.05 0.34±0.90
dPn (number) 0.33±0.66 0.24±0.81 0.04±0.14 0.00±0.00
Ph (cm) 18.80±9.15 23.36±14.10 17.20±9.78 28.62±19.25
Pmaxh (cm) 32.88±18.14 34.45±23.23 13.16±16.56 13.08±22.38
Pminh (cm) 7.69±4.13 10.91±10.26 6.08±7.68 8.77±16.28
Pcov (%) 8.01±7.85 6.72±7.91 1.16±1.68 0.97±2.27
Wcov (%) 44.96±14.79 41.29±14.67 50.69±14.21 50.19±15.87
Wmaxh (cm) 68.55±17.79 73.02±18.26 86.77±33.58 82.33±22.70
Wrich (number) 2.41±1.02 2.45±0.91 3.22±0.59 2.97±0.50
Hcov (%) 3.84±9.32 2.06±2.54 1.06±1.68 0.64±1.12
Hrich (number) 1.31±1.32 1.41±1.31 0.50±0.72 0.28±0.42
Lcov (%) 17.28±12.39 10.96±12.45 5.46±11.77 0.75±1.52
Ncov (%) 10.06±10.57 12.98±10.06 3.57±5.46 3.72±3.78
St (%) 17.65±11.79 13.80±14.28 23.42±14.49 25.86±14.08
S (%) 12.88±8.82 24.35±15.58 20.88±10.66 20.15±11.38

Table 6
Explained deviance by the regeneration models run for the entire study framework (see Table 2 for the codes of the response variables).

Category Response variable Set of predictors

Reflectance Indices 1rd textures 2rd textures Ensemble

Pinus pinaster population Pn ─ 26.66% 27.85% 26.79% 33.63%
dPn ─ ─ ─ ─ ─
Ph ─ 25.97% 29.21% 27.59% ─
Pmaxh ─ 40.82% 13.13% 12.13% 16.49%
Pminh ─ ─ ─ ─ ─
Pcov ─ ─ 27.08% 38.63% ─

Understory community Wcov 62.84% 60.80% 63.02% 61.51% 57.90%
Wmaxh 27.88% 38.15% 33.04% 42.88% 44.73%
Wrich 23.07% 24.39% 27.75% 33.09% 36.41%
Hcov ─ ─ 8.63% 14.80% ─
Hrich ─ ─ ─ ─ ─
Lcov 17.60% 21.83% 22.23% 35.98% 38.83%
Ncov 15.46% 34.95% 23.12% 29.67% 39.24%
St 4.66% 3.46% 10.68% 14.20% ─
S ─ 33.07% ─ ─ 35.48%

Fig. 4. Normalized root mean square error (nRMSE) of the regeneration models calibrated for the entire study framework (see Table 2 for the codes of the response variables).
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Table 7
Spectral predictors selected in the regeneration models ran for the entire study framework. The response variable code corresponds to that shown in Table 2. The abbreviations of the
spectral indices correspond to those shown in Table 3. For the first order (1rd) and second order (2rd) textures, CON=contrast, COR=correlation, DIS=dissimilarity, DR=data range,
ENT=entropy, HOM=homogeneity, MEAN=mean and VAR=variance.

Category
Response
variable Reflect.

Spectral
indices First order textures Second order textures Ensemble model

Pinus pinaster
population

Pn ─ ARI⁠***,
PSRI⁠*,
WSI⁠*

B7(DR⁠***) B7(ENT⁠**) ARI⁠**, PSRI⁠*⁠, 1rd[B4(ENT⁠*), B7(DR⁠**)]

dPn ─ ─ ─ ─ ─
Ph ─ MTVI⁠*,

PRI⁠*, PSRI⁠*
B4(DR⁠*⁠,MEAN⁠**) B8(MEAN⁠**) ─

Pmaxh ─ PSRI⁠* B4(DR⁠**) B7(DR⁠***) B7(HOM⁠***) B8(MEAN⁠*) MTVI⁠*, 2rd[B3(HOM⁠**), B7(HOM⁠***),
B8(COR⁠*)]

Pminh ─ ─ ─ ─ ─
Pcov ─ ─ B8(DR⁠**) B3(MEAN⁠***,ENT⁠**) B6(MEAN⁠***) ─

Understory
community

Wcov B1⁠***,
B7⁠***

ARI⁠***,
WSI⁠*

B3(DR⁠*) B5(MEAN⁠***)
B8(DR⁠**,MEAN⁠***)

B1(MEAN⁠***) B2(COR⁠*) B3(ENT⁠*)
B7(MEAN⁠***)

GDVI⁠***, 1rd[B3(DR⁠*), B5(MEAN⁠***),
B8(DR⁠**)]

Wmaxh B1⁠*** ARI⁠***,
PSRI⁠**

B5(MEAN⁠***) B1(ENT⁠*) B4(MEAN⁠***) B6(MEAN⁠**)
B7(COR⁠*)

ARI⁠***, PSRI⁠***, 1rd[B5(MEAN⁠***)]

Wrich B1⁠***,
B7⁠***

ARI⁠***,
BAI⁠***

B1(MEAN⁠***)
B8(MEAN⁠***)

B1(MEAN⁠**) B8(MEAN⁠***,HOM⁠**) ARI⁠**, BAI⁠***, 2rd[B3(HOM⁠***),B8(CON⁠**)]

Hcov ─ ─ B3(DR⁠**) B8(DR⁠**) B3(DIS⁠***) B6(DIS⁠***) ─
Hrich ─ ─ ─ ─ ─
Lcov B6⁠** BAI⁠***,

FRRI⁠*,
WSI⁠*

B6(MEAN⁠***,ENT⁠*) B2(ENT⁠***) B7(HOM⁠***) FRRI⁠*, GEMI⁠*, 2rd[B2(ENT⁠***), B7(HOM⁠***)]

Ncov B6⁠** BAI⁠*** B4(MEAN⁠**,ENT⁠*)
B7(MEAN⁠***)

B2(ENT⁠*) B4(COR⁠*) B5(ENT⁠*)
B6(DIS⁠***,COR⁠*) B7(MEAN⁠***)

BAI⁠***, 2rd[B2(ENT⁠*), B4(COR⁠*),
B6(DIS⁠**⁠,COR⁠*), B7(ENT⁠*), B8(COR⁠*)]

St B6⁠* FRRI⁠*,
GEMI⁠*

B6(DR⁠*,MEAN⁠***) B6(MEAN⁠***,ENT⁠*,COR⁠*)

S ─ WSI⁠** ─ ─ WSI⁠**, 1rd[B5(DR⁠*)]

* Significant variable at p<0.05.
** Significant variable at p<0.01.

*** Significant variable at p<0.001.

number of dead pine seedlings or the minimum height of living pine
seedlings.

For the recurrence-severity scenarios, the overall fit and predictive
capacity of the regeneration models ran at population level were similar
to those found for the entire study framework, except for the high recur-
rence and severity scenario (Fig. 5). In the latter case, the nRMSE rose
to 52% for the number (Pn), 41% for the cover (Pcov), 62% for average
height (Ph) and 45% for maximum height (Pmaxh) of living seedlings.
The prediction of community level variables (except necromass cover
-Ncov-) under the different scenarios presented the same performance in
terms of fit and predictive capacity than for the entire study framework.
For Ncov, the predictive power of the model was significantly lower in
the scenarios defined by a high recurrence (nRMSE higher than 40%).

The recovery models for the entire study framework that achieved
the highest predictive capacity (nRMSE around 20% or lower) are
shown in Table 8. These models explained the variation correspond-
ing to the dominant tree species regeneration (Pn and Pcov), under-
story woody species regeneration (Wcov, Wmaxh and Wrich), necro-
mass cover (Ncov) and percentage of bare soil (S). The spatial outputs
of the best performing models at population and understory community
levels (Pn and the Wcov) are shown in Figs. 6 and 7 (see Figures SM.1
to SM.5 of the Supplementary Material for the maps of remaining mod-
els). From these model spatial outputs, priority areas to apply post-fire
management strategies could be identified.

4. Discussion

Spectral products derived from satellite imagery at high spatial res-
olution, such as WorldView-2, represent a useful tool for a rapid assess-
ment of the vegetation regeneration after the occurrence of large for-
est fires in Mediterranean fire prone ecosystems. Key biotic variables,
which are valuable indicators of the structure and functioning of both

Pinus pinaster population (i.e., number and cover of living seedlings) and
the understory community (i.e., cover, maximum height and richness
of woody species, necromass cover and percentage of bare soil) have
been successfully modeled under different fire regimes (recurrence and
severity) on the basis of texture predictors, which has clear implications
for land management in areas affected by mega-fires. The assessment
of post-fire recovery at different ecosystem levels is a key approach to
avoid harmful environmental processes such as post-fire erosion, the
loss of ecosystem services supplies or the occurrence of a new forest
fire in the same area. For instance, within our study area, it would be a
priority to evaluate the dominant tree species and the understory com-
munity structure recovery within the high and low fire recurrence sce-
narios, respectively, given their low regeneration observed under those
conditions. The methodology proposed in this study may be applied
to other high spatial resolution remote sensors available for land man-
agers, which channels cover similar regions of the electromagnetic spec-
trum.

Pinus pinaster seedlings presents a different spectral response in rela-
tion to the surrounding understory vegetation, especially in the NIR re-
gion (Viedma et al., 2012) (Figure SM.6 of the Supplementary Material),
given its geometry and leaf characteristics (Rautiainen, 2005). These
spectral differences along with the regeneration ability of the pine pop-
ulation allowed for satisfactory modeling of the variables corresponding
to the number and cover of Pinus pinaster seedlings for the entire study
framework. However, for the case of the high recurrence and severity
scenario, where the number of seedlings was very small and situated
under a dense shrub canopy, neither spectral information nor textures
could explain the population recovery due to the small contribution of
the seedlings to the overall reflectance of the plots (Viedma et al., 2012).

The Pinus pinaster seedling prediction model was calibrated with
Anthocyanin Reflectance Index 2 and Plant Senescence Reflectance In-
dex, along with the first order textures corresponding to the yellow re
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Fig. 5. Normalized root mean square error (nRMSE) of the regeneration models ran for the scenarios of recurrence and severity (see Table 2 for response variable codes).

gion entropy and NIR-1 data range. The two spectral indices were neg-
atively correlated with the number of pine seedlings, since these in-
dices measure plant stress from anthocyanins and carotenoids detection
(Merzlyak et al., 1999; Gitelson et al., 2001). Significant anthocyanins
and carotenoids accumulation in this phenological stage is induced, for
example, as a result of stress caused by increased solar radiation re-
ceived by the plant, presence of wounds or competitive effects (Lee and
Graham, 1986). These environmental stress conditions are characteris-
tic after the occurrence of a forest fire and a higher plant stress inten-
sity caused by the competitive effects of resprouter understory species

could adversely affect the recruitment of Pinus pinaster seedlings (Calvo
et al., 2008; Taboada et al., 2017). Similarly, the entropy texture of the
yellow region presents a negative correlation with the number of liv-
ing pine seedlings. This fact can be explained because this region can be
used to detect the characteristic vegetation “yellowness” under certain
conditions, such as plant stress (Immitzer et al., 2012), and therefore
a greater diversity of reflectance values in this region of the spectrum
could present an inverse relationship with the number of Pinus pinaster
seedlings. The direct correlation between the data range in the NIR-1
region and the number of pine seedlings could be explained because re

9
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Table 8
Best performing post-fire recovery models for the entire study framework. The + or − sign indicates a direct or inverse relationship between the predictor and the response variable. The response variable code corresponds to that shown in Table 2. The ab-
breviations of the spectral indices correspond to those shown in Table 3. For the first order (1rd) and second order (2rd) textures, CON=contrast, COR=correlation, DIS=dissimilarity, DR=data range, ENT=entropy, HOM=homogeneity, MEAN=mean
and VAR=variance.

Category Model
Response
variable

Deviance
(D⁠2) nRMSE Set of predictors

Spectral indices 1rd Textures 2rd Textures

Pinus pinaster
population

1 Pn 0.3363 0.1645 ARI (-)⁠** PSRI (-
)⁠*

B4(ENT) (-
)⁠*

B7(DR) (+)⁠**

2 Pcov 0.3863 0.1747 B3(MEAN)
(+)⁠***

B3(ENT) (-)⁠** B6(MEAN) (-
)⁠***

Understory
community

3 Wcov 0.6302 0.0906 B3(DR)
(+)⁠*

B5(MEAN) (-
)⁠***

B8(DR) (-
)⁠**

B8(MEAN)
(+)⁠***

4 Wmaxh 0.4288 0.1690 B1(ENT) (+)⁠* B4(MEAN) (-
)⁠***

B6(MEAN)
(+)⁠**

B7(COR) (-
)⁠*

5 Wrich 0.3641 0.1929 ARI
(+)⁠**

BAI (-
)⁠***

B3(HOM) (-)⁠*** B8(CON)
(+)⁠**

6 Ncov 0.3495 0.2006 BAI
(+)⁠***

7 S 0.3307 0.2157 WSI (-)⁠** B5(DR)
(+)⁠*

* Significant variable at p<0.05.
** Significant variable at p<0.01.

*** Significant variable at p<0.001.



UN
CO

RR
EC

TE
D

PR
OO

F

J.M. Fernández-Guisuraga et al. Forest Ecology and Management xxx (xxxx) xxx-xxx

Fig. 6. Spatial output of the understory woody species cover model developed for the entire study framework (see Table 8). White areas were covered by clouds or their projected shadows
in the raw WorldView-2 image and, therefore, were masked at the processing stage.

flectance in this region varies substantially for different types of vege-
tation cover, such as conifers and understory woody species, this band
being really effective in the discrimination of different vegetation types
(DigitalGlobe, 2010; Immitzer et al., 2012; Viedma et al., 2012). The Pi-
nus pinaster seedling prediction model represent an important base for
land management decision-making in fire-prone pine systems given its
predictive capacity. This tool may assist land managers in identifying
areas where external intervention could be necessary to facilitate the re-
generation of the dominant tree species and recover their ecosystem ser-
vices supply.

The cover, height and richness of woody species (in addition to the
percentage of bare soil, necromass and leaves) were the post-fire re-
generation variables of the understory community with the best predic-
tive capacity. Despite the heterogeneity of land cover still present in the
study area, the successful modeling of the understory community vari

ables could be explained by the high regeneration ability of most of the
understory species (Calvo et al., 2008) without the competitive effects
of trees, along with the high spatial resolution of the WorldView-2 im-
age. Wood et al. (2012) reported that the use of satellite imagery at
lower spatial resolution than that provided by WorldView-2 would not
allow the identification of land cover changes given the spatial vari-
ability of these heterogeneous systems. In addition, the use of moder-
ate spatial resolution sensors, such as Landsat, involve a sub-pixel mix-
ing question (Veraverbeke et al., 2012) and would require the appli-
cation of sub-pixel image analysis techniques (Quintano et al., 2012;
Fernández-Manso et al., 2016).

The model of the woody understory species cover calibrated from
first-order textures presents a predictive error of only 9%, both in the
entire study framework and under different recurrence-severity scenar-
ios. This is a relatively low error considering the difficulty in discrimi

11



UN
CO

RR
EC

TE
D

PR
OO

F

J.M. Fernández-Guisuraga et al. Forest Ecology and Management xxx (xxxx) xxx-xxx

Fig. 7. Spatial output of the number of Pinus pinaster living seedlings model built for the entire study framework (see Table 8). White areas were covered by clouds or their projected
shadows in the raw WorldView-2 image and, therefore, were masked at the processing stage.

nating covers from multispectral bands comparing to hyperspectral sen-
sors in large systems with high spatial heterogeneity (Yue et al., 2012).
The model predictors with the highest significance are the mean re-
flectance of both red and NIR-2 regions. The mean red reflectance is
inversely correlated with vegetation cover since pigments from photo-
synthetically active vegetation absorb a large part of this wavelength
radiation (Elvidge and Chen, 1995). Meanwhile, the mean of NIR-2 re-
gion has a direct correlation with the vegetation cover since the internal
structures of leaves actively reflect this radiation (Slaton et al., 2001).
The correlation of the NIR-2 data range with vegetation cover is inverse,
since a wider range of reflectance values in this region indicates the
presence of other covers along with the vegetation. The model output
could be used as a tool by land managers to define potential areas of
post-fire erosion with low vegetation recovery (Storey et al., 2016) and
to detect areas of high fuel continuity in case of the occurrence of a new
wildfire.

The richness of woody species was successfully modeled in terms of
the homogeneity and contrast of green and NIR-2 bands, respectively.
Vegetation patches with high species richness are more heterogeneous
than patches with a lower richness. Therefore, the spectral homogeneity
of the green band had an inverse correlation with species richness, while
the correlation of NIR-2 band contrast was direct. Viedma et al. (2012)
found the same patterns between species richness and textural features
in their study at several spatial scales with the QuickBird satellite.

The maximum height of the woody species model calibrated from
image texture data had a better predictive capacity than when cal-
ibrated from spectral data alone, as demonstrated by Ozdemir and
Karnieli (2011). The texture of the satellite imagery will be more uni-
form when the vegetation consists in short and small individuals (Petrou
et al., 2012; Petrou et al., 2015), which could explain the di
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rect and the inverse relationship of the coastal blue band entropy and
the NIR-1 band correlation, respectively, with the maximum height of
the woody species. For its part, the prediction error of the model was in
line with the study conducted by Kayitakire et al. (2006), in which the
top height of the canopy was modeled on the basis of texture features
extracted from high spatial resolution satellite imagery. Although the
accepted fact that optical sensors can only estimate vegetation height up
to the canopy closure (Donoghue and Watt, 2006), this concern was not
present in our study area because of the pine population seedlings and
the understory vegetation structure consists on a unique vertical layer.

Other spatially explicit models of the understory community, such
as necromass and bare soil cover, offer a relevant ecological basis for
post-fire decision management in situations of soil loss erosion and
accumulation of dead biomass, particularly in Mediterranean systems
(Shakesby, 2011). The WorldView Soil Index contribution to the model
of bare soil must be highlighted. Due to the lack of a shortwave in-
frared (SWIR) band in the sensor on-board WorldView-2 satellite, the
difference in reflectivity between the green and yellow region of the
spectrum allows this index to detect the bare soil signal (DigitalGlobe,
2010). Whelan (1995) pointed out that the dead plant material (necro-
mass) presents high flammability and, thus, its removal from the previ-
ously burnt area must be a post-fire management priority. We identified
a high correlation of dead plant material with the Burnt Area Index due
to the high charcoal content of these materials and the ability of this in-
dex to detect its signal (Chuvieco et al., 2002).

It should be noted that first and second order textures were particu-
larly relevant in all post-fire recovery models because of the great spa-
tial variation of the vegetation structure in the study area. Gómez et al.
(2011) and Pu and Cheng (2015) highlighted that the textures derived
from the visible region of the spectrum offer a better model performance
than those calculated from the red edge and near-infrared region to pre-
dict parameters such as vegetation cover or vegetation height. However,
several textures from both regions have offered a similar performance
in the present study.

The use of active sensors such as LiDAR together with optical satel-
lite imagery could improve the estimation of forest structural para-
meters over ecosystems with complex vegetation vertical structure
(Clawges et al., 2008). However, in a full stand replacing post-fire envi-
ronment with heterogeneous horizontal vegetation structure, high spa-
tial resolution satellite imagery alone has proven to be in this study a
useful tool in the estimation of post-fire vegetation structure. Moreover,
LiDAR data are not widely accessible for land managers as opposed to
satellite imagery (Wood et al., 2012) and their costs could be signifi-
cantly higher (Donoghue and Watt, 2006; Petrou et al., 2015; Fassnacht
et al., 2016).

5. Conclusions

1. The highest recovery of the Pinus pinaster population occurred in the
low fire recurrence scenario, while the understory community exhib-
ited a greatest recovery under high fire recurrence. Fire severity was
only related to the Pinus pinaster population recovery, exhibiting an
inverse relationship.

2. The spatial resolution of the WorldView-2 multispectral imagery was
appropriate for the quantitative analysis of the post-fire vegetation
structure in fire-prone Mediterranean ecosystems dominated by Pinus
pinaster.

3. At the Pinus pinaster population level, the number and cover of
seedlings were the best-modeled recovery structure variables. How-
ever, Pinus pinaster population structure models require a seedling
abundance large enough in the field plots to contribute at a large
extent to the overall plot reflectance. For the understory commu

nity, the woody species cover model presented the best predictive ca-
pacity.

4. Prediction models of post-fire vegetation recovery had the same per-
formance in general terms both for the entire study framework and
for each recurrence-severity scenario.

5. The combination of spectral indices, together with first or second or-
der textures, or textures alone as predictors, provided the best results
in all recovery models. Image texture from visible and infrared re-
gion of the spectrum offered a similar performance in this study.

6. The approach proposed in the present study could represent a fun-
damental tool for planning post-fire restoration actions given its po-
tential to identify areas where external intervention could be neces-
sary to promote the recovery of provisioning and regulating ecosys-
tem services supply.
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