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Abstract 

The aim of this paper is to estimate efficiently insert wear in metal machining and to improve tool replacement operations. Image 
processing and classification are used to automatize the decision making about the adequate time for tool replacement. 
Specifically, the shape descriptor aZIBO (absolute Zernike moments with Invariant Boundary Orientation) has been used to 
characterize insert wear and ensure its optimal usage.  
A dataset composed of 577 regions with different levels of wear has been created. Two different classification processes have 
been carried out: the first one using three different classes (Low, Medium and High wear -L, M and H, respectively-) and the 
second one with just two classes: Low (L) and High (H). Classification was carried out using on the one hand kNN with five 
different distances and five values of k and, on the second hand, a Support Vector Machine (SVM). 
aZIBO performance has been compared with classical shape descriptors such as Hu and Flusser moments. It outperforms them, 
obtaining success rates up to 91.33% for the L-H classification and 90.12% for the L-M-H classification. 
 
© 2016 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Nowadays, tool replacement operations are really important in terms of cost for the manufacturing industry. Tool 
wear is the gradual loss of tool material in the work piece. It is caused by many factors acting on the cutting edge of 
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the tool, e.g., chemical wear, abrasion, fatigue or a combination of two or more. Monitoring of tool wear is a critical 
task for the successful replacement. Monitoring can be performed manually or by means of automatic processes. 

In the recent years, several methods for tool wear monitoring have been proposed. An example is the work 
developed by Wang et al. [1] in which a tool wear monitoring system based on relevance vector machine (RVM) 
classifier is constructed to carry out a multi-category classification of tool wear status during milling process. In a 
different line, Sun Jie et al. [2] proposed the use of sensor signals and feature analysis to identify a feature set for 
effective tool condition monitoring. Some other interesting works focused also on automatic monitoring [3,4]. 

The main problem is that automatic tool wear monitoring is based, in most cases, on measuring direct variables 
such as cutting time or number of machined parts. However, these variables do not ensure an optimal usage of the 
tool, so they are not enough adequate for optimizing tool replacement. For this reason, it is proposed in this paper to 
estimate automatically the insert wear to decide the optimum time for tool replacement by means of computer 
vision. Specifically we propose the use of shape descriptors instead of using direct variables. 

There are three main ways to describe a shape: contour extraction [5-7], image based and skeleton based 
techniques [8,9]. There are also methods combining them. In [5], shapes are described based on contour points, 
resulting in a feature vector that is intrinsically invariant to rotation. Torres et al. [8] proposed two descriptors: 
multi-scale fractal dimension and contour saliences using a graph based approach called image foresting transform. 
Later, this method was improved introducing two new descriptors, called contour saliences and segment saliences, 
exploiting the resemblance between content-based image retrieval and image analysis [9]. 

There are other approaches that combine local and global descriptors such as the one developed by M.T García-
Ordás et al. [10]. This descriptor, called aZIBO, combines the advantages of using the module of Zernike moments 
and the edge features obtained from a partially rotation invariant version of the Edge Gradient Co-occurrence Matrix 
(EGCM) [11]. It was used to characterize images from Kimia-99, MPEG-7 and MPEG-2 datasets. In this paper, 
aZIBO is used to monitoring tool wear and to ensure inserts’ optimal usage. 

The rest of the paper is organized as follows. In section 2, the employed descriptor is briefly described. 
Thereafter, the dataset creation is explained in section 3. Finally, results and conclusions are presented in sections 4 
and 5. 

2. aZIBO descriptor 

The shape descriptor aZIBO (absolute Zernike moment with Invariant Boundary Orientation) was introduced in 
[10]. It is a concatenation of a global (Zernike moments module) and a local descriptor (partially invariant EGCM) 
and, therefore, it combines the advantages of both. 

In the next subsections, the description process is explained.  

2.1 Global descriptor 

Zernike moments, in particular the module of the first 36 coefficients up to the 10th order, have been used as a 
global shape descriptor. As it is proven in [10], the module of Zernike moments is rotationally invariant, which 
makes the global descriptor robust no matter what the image orientation is. Zernike is applied using binary images 
resized to 128 x 128 pixels. 

2.2 Local descriptor 

EGCM (Edge Gradient Coocurrence Matrix), proposed in [11], is used in this paper as a local descriptor. 
However, several changes were made in order to improve the results and make it partially invariant to rotation. The 
first step is to obtain the boundary points of the image. In this case, we used a Canny edge detector (see Figure 1). 
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Fig. 1. Original shape (left) and its corresponding boundary points, after the application of the Canny edge detector (right). 

Then, the orientation of the image gradient at each point is calculated following the expression (Eq. 1): 
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These gradient orientations are quantized to: East, Northeast, North, Northwest, West, Southwest, South and 
Southeast.  

Thereafter, the Edge Gradient Co-occurrence Matrix (EGCM) is built taking into account the orientations of the 
contour points inside a 3x3 neighborhood of each boundary point. See an example in Figures 2 and 3. 

 
 
 
 

 
 
 
 
 
 
 

Fig. 2. Gradient orientations of the boundary points in a 3x3 neighborhood centered at the point whose gradient is in orange. 

 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Example of the EGCM of the neighborhood shown in Figure 2. 
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The EGCM is filled in taking into account the co-occurrences of the orientations of the pixels in the 3x3 
neighborhood. This process is carried out for all the boundary points.  

In the original work [11], the local descriptor was the concatenation of the EGCM rows. Therefore, it was a 
vector of 64 elements, which was then normalized to the range [0, 1]. In this case, as well as in [10], the real values 
were preserved in order to obtain as much information as possible. 

Furthermore, this local descriptor is made partially invariant to rotation. Invariance to rotation is an important 
issue in shape retrieval, as it makes possible to avoid the previous step of rotating all the images of the dataset into a 
fixed orientation as Anuar et al. [11] did in their work. 

First of all, the dominant orientation ɸd of the image is calculated (Eq. 2): 
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12arctan
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where (x1,y1) and (x2,y2) are the coordinates of the most separate points on the contour, p1 and p2. Therefore, 
d is considered the orientation of the  vector. 
Thereafter, the eight orientations in the EGCM are shift so that this dominant orientation is placed in the first 

position in the matrix obtaining partially rotationally invariant EGCM (IEGCM) (Eq. 3): 

118 ,...,,...,, ddIEGCMIEGCM    (3) 

The same description is obtained for one image whatever its orientation is, as it is shown in the example on 
Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Invariant Edge Gradient Coocurrence Matrix construction example. 

Finally, the rows of the matrix are concatenated, so the 64-element invariant local descriptor is obtained. 
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3. Datasets 

The original dataset was composed by 53 inserts. An example is shown in Figure 5. The aim of this work is to 
evaluate the insert wear and, therefore, it is necessary to extract the wear regions from the original images. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. First inserts dataset example. 

In the first step, an edge dataset was created automatically. Each masked (i.e. with background pixels equal to 0) 
gray-scale images of the inserts are processed yielding four new images, one for each cutting edge in horizontal 
position.  

First of all, the central circle of the insert is removed, so its center and radius has to be determined. Therefore, the 
image is first binarized using an empirically determined threshold value of 0.01. Afterwards, the centroid of this 
binary area is considered as the center of the circle, and the radius is 1/5 of the length of the major diagonal of the 
insert.  

Thereafter the four edges of the tool are extracted. First, a vertical Sobel filter is applied on the grey-level image 
with the central circle masked out to detect the inserts contours. These contours are dilated, opened and projected 
onto the horizontal axis. The first non-zero element in this projection indicates the x coordinate of the image where 
the cutting edge starts. Afterwards, the image of the cutting edge is cropped from the starting position x position 
with a width of 100 pixels and the same height as the original image had. A parametric margin is added in order to 
increase the crop area, because experimental tests showed that some inserts lost some edge pixels due to too tight 
crops. This process is used to extract the left edge of the tool. The process for extracting the others is the same, but 
previously rotating the original image 90o, 180o and 270o. All these crops are rotated to a horizontal position. 

Following, the edges are rotated so that they are parallel to the horizontal axis. To carry out this operation, a 
horizontal Sobel followed by a morphological dilation is applied. Then, the resulting image is filtered to remove the 
smallest objects, so a binary image with only the cutting edge is left. This binary image is used to mask the cutting 
edge in grey level cropped image. Finally, the orientation of the major axis of the ellipse containing this edge is 
estimated, so the edge is rotated to compensate this orientation and leave it in horizontal position. 

In the end, a dataset composed by 212 images is obtained, i.e., 4 edges for each of the 53 inserts. An example 
with some images of this edge dataset is depicted in Figure 6. 

 
 
 
 
 
 
 
 

Fig. 6. Edge dataset example. 
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An edge image may contain regions with different levels of wear, which may make unreliable the classification 
using this dataset. Therefore, in a second step, a region dataset was created separating the vertical and horizontal 
wear edges (see Figure 7). In the end 577 regions with different wear levels compose the regions dataset. 

 
 
 
 
 
 
 
 
 

Fig. 7. Region dataset example. 

In this work, experts carried out two types of labeling: L-M-H (Low, Medium, High) wear and L-H (Low-High) 
wear. Note that the aZIBO is a shape descriptor, so images of the region dataset were binarized before computing it. 

 

4. Experiments and results  

Classification was carried out using: (a) kNN Leave One Out with five different distances: Cosine, Euclidean, 
Intersect, Chi-Square and CityBlock and (b) a Support Vector Machine (SVM) with a polynomial kernel of order 2 
and Least Square algorithm as training method.  

Two types of classification were carried out using the insert dataset: one considering three different levels of 
wear (low (L), medium (M) and high (H) wear) and the other considering two classes (low (L) and high (H) wear). 
kNN performance was assessed using k equals to 1,3,5,7 and 9, and the best results were achieved when k=5 in both 
cases. 

In this paper, the performance of aZIBO was compared with two classical shape descriptors: Hu and Flusser 
moments. 

In Table 1, performance for the L-H classification is shown. 

     Table 1. Inserts classification using aZIBO, Hu and Flusser descriptors for the two classes labeling (L-H). 

 aZIBO Hu Flusser 

kNN - Cosine 89.43% 80.07% 85.79% 

kNN - Euclidean 89.60% 85.44% 83.88% 

kNN - Intersect 89.08% 84.40% 81.46% 

kNN - ChiSquare 91.33% 83.71% 83.19% 

kNN - CityBlock 90.12% 85.10% 83.36% 

SVM 88.45% 84.48% 75.86%  
As it is shown in Table 1, the best results for the L-H classification are obtained using kNN with ChiSquare 

distance achieving an accuracy of 91.33%. Concerning the more challenging L-M-H classification, whose results are 
shown in Table 2, we have obtained a very interesting accuracy of 90.12% using the same configuration which 
achieved the best result with the binary classification, i.e. kNN with k=5 and ChiSquare distance. aZIBO 
outperforms in all cases Hu and Flusser. 
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     Table 2. Inserts classification using aZIBO, Hu and Flusser descriptors for the three classes labelling. 

 aZIBO Hu Flusser 

kNN - Cosine 88.39% 78.37% 84.75% 

kNN - Euclidean 88.73% 83.02% 82.32% 

kNN - Intersect 88.21% 82.32% 80.07% 

kNN - ChiSquare 90.12% 80.59% 82.50% 

kNN - CityBlock 89.08% 82.84% 81.98% 

SVM 85.52% 69.83% 53.28% 

 
Figure 8 depicts the results obtained by aZIBO, Hu and Flusser in the kNN classification for different values of k 

and ChiSquare distance. L-M-H classification obtains results very similar compared with the binary classification, in 
spite of being more challenging. It is very interesting for the industry because the more number of different levels of 
wear they can distinguish automatically, the better planning they can do. Also, it is noticeable that aZIBO 
outperforms classical descriptors in all cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. aZIBO, Hu and Flusser classification using k-NN with different values of k and CityBlock distance in the L-H classification (left) and the 
L-M-H classification (right). 

5. Conclusions  

In this paper, a new dataset formed by 577 images with different insert wear was evaluated using shape 
description methods in order to automatically estimate the optimum time for tool replacement.  Two well-known 
shape descriptors called Hu and Flusser moments were compared with aZIBO, a very recent method proposed by 
García-Ordás et al. [10]. Two different classifications, one binary and the other one ternary, were carried out using 
kNN with several distances and values of k. Results showed that aZIBO outperforms the classical descriptors in all 
the tests. In the binary problem, the best accuracy was 91.33% achieved with aZIBO, k=5 and ChiSquare distance. 
This hit rate improves the best results achieved by Hu and Flusser in 7.32% and 6.46%, respectively. In the Low-
Medium-High classification, aZIBO also obtains the best results (90.12%), which is very similar to the one obtained 
for binary classification. This fact is very interesting taking into account the higher complexity of the ternary 
classification. In this case, aZIBO outperforms the best results of Hu and Flusser in 8.79% and 6.34%, respectively. 
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