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Abstract 13 

Safe roads are a necessity for any society because of the high social costs of traffic accidents. This challenge 14 

is addressed by a novel methodology that allows us to evaluate road safety from Mobile LiDAR System 15 

data, taking advantage of the road alignment due to its influence on the accident rate. Automation is 16 

obtained through an inductive reasoning process based on a decision tree that provides a potential risk 17 

assessment. To achieve this, a 3D point cloud is classified by an iterative and incremental algorithm based 18 

on a 2.5D and 3D Delaunay triangulation, which apply different algorithms sequentially. Next, an automatic 19 

extraction process of road horizontal alignment parameters is developed to obtain geometric consistency 20 

indexes, based on a joint triple stability criterion. Likewise, this work aims to provide a powerful and 21 

effective preventive and/or predictive tool for road safety inspections. The proposed methodology was 22 

implemented on three stretches of Spanish roads, each with different traffic conditions that represent the 23 

most common road types. The developed methodology was successfully validated through as-built road 24 

projects, which were considered as “ground truth.”  25 

Key words: Road safety, decision tree, geometric design consistency, horizontal alignment parameters, 26 

Mobile LiDAR System.  27 

1. Introduction 28 

According to Camacho-Torregrosa et al., (2013), annually, 1.20 million people die and 29 

another 20-50 million people are injured in traffic accidents; furthermore, road crashes 30 

involve important and high social costs (da Costa et al., 2016). Although the influence of 31 
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the human factor is well known (Siskind et al., 2011), roadway design also contributes to 32 

the occurrence of accidents (Garach et al., 2016). It should be noted that approximately 33 

30% of road accidents are attributable to infrastructures, and this collision trend is focused 34 

on specific road segments (Camacho-Torregrosa et al., 2013; López et al., 2016). For that, 35 

the binomial human-road factor plays a crucial role (López et al., 2016). Thus, obtaining 36 

safe roads and reducing accidents are challenges that any society should address.  37 

In this framework, the European Union adopted the Directive 2008/96/EC, which is based 38 

on the principle of prevention (EU, 2008). This directive establishes different procedures 39 

with the final goal of detecting roadway deficiencies and reducing Trans-European 40 

Transport Network (TETN) crashes along all its phases: from planning and design to 41 

operation of the road infrastructure (Sitran et al., 2016). This directive introduces relevant 42 

aspects, such as (a) Road Safety Impact Assessments (RSIA), (b) Road Safety Audits 43 

(RSA), (c) Safety Ranking and Management (SRM) and (d) Road Safety Inspections 44 

(RSI). 45 

RSIA introduces road safety considerations in the initial planning stage. Through RSA, 46 

the road characteristics are checked in the design stage. These two procedures are carried 47 

out during the stage of planning. Already during the in-service road stage, SRM provides 48 

the ranking of high accident concentration sections and establishes the road infrastructure 49 

safety management; by means of RSI, road hazards and safety issues are detected. In this 50 

sense, RSI can be understood as an effective preventive tool for the road network. EU 51 

(2008) is mandatory on TETN; however, it can also be applied to any national road 52 

transport infrastructure as a “good practice guide.” 53 

Another approach to road safety, applicable to infrastructures already in service, is the 54 

one presented in the European Road Assessment Program (EuroRAP). In this program, a 55 

Risk Index (IR) of the road is obtained, based on the accident statistics and traffic intensity 56 

(Average Daily Traffic-ADT), which is complemented through an inspection protocol 57 

with images and a safety score using stars (EuroRAP, 2018). It should be noted that, in 58 

this EuroRAP approach, the geometrical aspects of the road are considered in a very 59 

generic manner. 60 

From a dual research-engineering perspective, the concept of geometric consistency in 61 

road design has a direct influence on road safety (Ng and Sayed, 2004). The studies 62 

developed have been based fundamentally on aspects such as purely geometric, models 63 
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of the speed of operation, vehicle stability and the workload of the driver (Andrasik and 64 

Bil, 2016, Eftekharzadeh and Khodabakhshi, 2014, Pérez-Zuriaga et al., 2013). However, 65 

we must highlight the works developed by Lamm et al., (1991, 1995, 1999, 2001) due to 66 

their proposal of the simultaneous triple criterion of stability: (i) in the design (Criterion 67 

I), (ii) in the speed of operation (Criterion II) and (iii) in the driving dynamics (Criterion 68 

III), which today continue to be a benchmark in the field of road safety. 69 

With respect to data acquisition, over the last few decades, geomatic advances in the 70 

Global Navigation Satellite System (GNSS), Light Detection and Ranging (LiDAR), the 71 

acquisition of radiometric information, and the hybridization between passive-active 72 

sensors, techniques and platforms have revolutionized the massive acquisition of survey 73 

data, as well as the inspection and monitoring techniques. A clear example of this is 74 

Mobile LiDAR System (MLS) (Bitenc et al., 2011; Gonzalez-Jorge et al., 2013; Mc 75 

Elhinney et al., 2010; Puente et al., 2013a). 76 

MLS is principally composed of a navigation system and one or more LiDAR sensors. In 77 

this manner, positional data and intensity information of the environment are acquired. 78 

Additionally, MLS can be completed by photographic systems (RGB digital cameras) 79 

and/or other sensors, such as thermal cameras, ground penetrating radar (GPR) and 80 

profilometers. A navigation system is integrated via a set of sensors, such as GNSS, 81 

Inertial Measurement Unit (IMU), and Distance Measuring Indicator (DMI) (Holgado-82 

Barco et al., 2015). Moreover, MLS is an accurate and efficient system for data 83 

acquisition in complex environments, such as urban and road corridors over large areas, 84 

which provides important time reduction for the collection and processing of data (Castro 85 

et al., 2016; Holgado-Barco et al., 2015; Varela-Gonzalez et al., 2014). 86 

In the civil engineering field, MLS is beginning to be consolidated among researchers 87 

and engineers. Recently, considerable efforts and progress have been mainly made in 88 

tasks such as point cloud segmentation, road alignment extraction and automatic object 89 

detection. Varela-Gonzalez et al., (2014) proposed a novel method to automatically 90 

remove vehicles from mobile LiDAR datasets. Holgado-Barco et al., (2015) developed a 91 

method based on segmentation, parameterization and filtering LiDAR point clouds from 92 

MLS to extract, semi-automatically, road centrelines and determine horizontal road 93 

parameters and their alignment (i.e., straight lines, circular arcs and clothoids). For their 94 

part, Riveiro et al., (2015) described an algorithm for the automatic detection of zebra 95 
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crossings by means of the standard Hough Transform, which is applied over intensity 96 

images. More recently, a cost-effective traffic sign inventory method was proposed in Ai 97 

and Tsai, (2015). In parallel, Cabo et al., (2016) applied an automatic algorithm to detect 98 

road asphalt edge limits for road maintenance and safety assessment. An adequate review 99 

of the scientific literature can be found in Yang et al., (2013). 100 

Alternatively, the automatic extraction of road alignment/markings and geometric design 101 

consistency are active research lines for traffic safety. In this sense, Marinelli et al., (2017) 102 

compared several methodologies and strategies to obtain the road alignment and 103 

geometric parameters of existing roads. Kumar et al., (2014) presented an automated 104 

algorithm for extracting road markings from MLS data sets. For their part, Kumar et al., 105 

(2013) provided a new approach to road edge extraction based on a parametric active 106 

contour model. In Camacho-Torregrosa et al., (2013), a new consistency model was 107 

presented based on continuous operating speed profiles, and Montella and Imbriani, 108 

(2015) clearly demonstrated the role that design inconsistencies play in road safety. In all 109 

these research fields, MLS has already produced significant contributions; however, due 110 

to its large research potential, still to be explored, the application of MLS could suppose 111 

a paradigm shift, especially over geometric assessment and road safety audits (Gargoum 112 

and El-Basyouny, 2017).  113 

On the other hand, it is also worth noting other approaches, applied to in the road field to 114 

extract road geometries, which do not employ fundamentally terrestrial LiDAR sensors 115 

to data acquisition. Hatger and Brenner (2003) showed, through the combination of 116 

existing databases with aerial laser scanner (ALS) data, that it was possible to derive 117 

geometrical properties of roads such as height, longitudinal and transversal slope, 118 

curvature, and width. In Clode et al., (2004) is presented an approach to extract roads 119 

from ALS point clouds with a point density of 1 point m-2, based on a progressive 120 

hierarchical classification technique using a digital terrain model created from the last 121 

pulse and intensity information of LiDAR. After that, in Clode et al., (2005) this approach 122 

to extract roads was improved by a building detection technique that also allowed the 123 

detection of existing bridges within the road network, improving the extraction of 124 

longitudinal and transverse road profiles. For its part, Alexander et al., (2010) suggested 125 

to apply backscatter coefficient versus discrete return data to classify roads from ALS 126 

data. In urban areas, Zhou and Vosselman (2012) addressed the problem of detection of 127 
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road edges by detecting curbstones in three steps. They found very similar values between 128 

ALS and MLS techniques. For instance, in Marinelli et al., (2017) it is shown a novel 129 

mobile mapping (MM) vehicle that integrated set of low-cost sensors (GNSS receivers, 130 

IMU system and high definition webcams), and where is found that reliability of 131 

terrestrial MM is highly dependent on the accuracy of GNSS sensors. For their part, 132 

Javanmardi et al., (2017) propose an automatic methodology to extract road features from 133 

high resolution airborne images using adaptive thresholding, and whose accuracy is 134 

decametric. In Azimi et al., (2018) a novel pixel-wise method is developed that 135 

semantically segments high resolution aerial images in order to detect lane markings. This 136 

was done through a combination of fully convolutional neural networks with discrete 137 

wavelet transform. The images were acquired by three low cost cameras Canon Eos 1Ds 138 

Mark III model, ground sampling distance was 13 cm approximately to a flight height of 139 

about 1,000 meters above ground level. This method reported high pixel classification 140 

accuracy, around 99%. Regarding high-resolution satellite images, recent studies have 141 

focused on road-centerline extraction. Sujatha and Selvathi, (2015) present an algorithm 142 

to segment and connect road region and remove non-road pixels using morphological 143 

operation, with a high average value of completeness-correctness-quality (90%, 96%, and 144 

87%, respectively). Alshehhi and Marpu, (2017) presented a new approach based on 145 

hierarchical graph-based image segmentation to extract roads, indicated in urban areas 146 

especially, which displayed over 90% effectiveness in road network detection.  147 

Last but not least, there are issues related to road safety and risks. Traditionally, safety 148 

studies have focused on factors such as the probability of crashes, types of drivers and 149 

roads, etc.; decision tree (DT) techniques have been successfully proved, individually or 150 

in combination with decision rules, either as predictive models or as a tool for searching 151 

patterns that can explain accident causes. This is also due to their simplicity, the 152 

hierarchical structure and the ease of interpretation of results (de Oña et al., 2013; López 153 

and de Oña, 2017). For that reason, DTs can be characterized as an effective and adequate 154 

tool for the decision-making process. Some examples are the studies developed by 155 

(Chang and Wang, 2006; Chang and Chien, 2013; Jung et al., 2016; Kwon et al., 2015; 156 

López et al., 2016). However, thus far, there are no studies that address how the road 157 

horizontal geometric alignment contributes to road safety by means of a categorization of 158 

its inherent geometric risk.  159 
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To this end, this work aims to provide a novel and efficient method to assess road safety 160 

by means of MLS and the estimation of a potential risk assessment (PRA). This PRA is 161 

exclusively derived from a coarse-to-fine approach using point clouds as input data: from 162 

the automatic segmentation of roads and the extraction of its horizontal alignment 163 

parameters; to the estimation of PRA and the road safety classification based on a decision 164 

tree that is an inductive reasoning applied for the first time on geometric parameters 165 

exclusively.  166 

The proposed methodology has been successfully implemented and validated on three 167 

road stretches that represent the most common types of existing roads in Spain and that 168 

present different traffic conditions.  169 

The remainder of this paper is organized as follows: after this introduction, a description 170 

of the study cases, the MLS technique and the proposed methodology to assess road risk 171 

are shown in Section 2. Section 3 presents the main experimental results drawn from the 172 

research. Lastly, in Section 4, the proposed algorithms and the decision support tool are 173 

discussed, and the general conclusions from the study are shown. 174 

2. Materials and Methods 175 

2.1 Case studies 176 

90% of Spanish roads are secondary roads (MFOM, 2018) which connect population 177 

centres of minor importance in urban and rural areas. These roads present a greater 178 

accident rate, despite their density of traffic being less than that of highways and multilane 179 

roads (DGT, 2017). For this reason, in this research, three of the four real case studies are 180 

secondary roads, whereas the other case is a main road. According with the current 181 

Spanish geometric design standards (MFOM, 2016), there are two road groups: (i) 182 

highways/multilane roads and (ii) other roads, classified as conventional roads. Within 183 

conventional roads, the difference between main and secondary roads refers to the 184 

importance of the population centres that the road crosses or connects.  185 

The first, second and fourth case studies are located on the road LU-722, which is situated 186 

in the northwest of Spain (Lugo province, in the region of Galicia). These non-187 

consecutive case studies comprise a horizontal sinuous stretch, between kilometre points 188 

4.0 and 121. Their lengths are 1,776.6, 3,160.6 m and 1,427.6 m, respectively. The 189 

average cross-section consists of a 6.50-m-wide roadway and a 0.75-m hard shoulder on 190 
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either side. The Average Annual Daily Traffic (AADT) is low at 918 vehicles per day 191 

(veh/d), (Xunta de Galicia, 2016).  192 

N-640 is the third case. This is also located in Lugo province, and it is characterized by a 193 

succession of linked curves. The stretch covers a distance of 2.6 km between kilometre 194 

points 84 and 86. The roadway has a single road with two 3.50-m lanes with outer hard 195 

shoulders of 1.00 m, roughly. AADT varies between 8,261 and 8,764 veh/d (MFOM, 196 

2017).  197 

By means of the first, second and third case studies will be carried out both the extraction 198 

of the horizontal geometric parameters and the training process of the inductive reasoning 199 

through a decision tree. The last case study will be applied to risk validation process 200 

exclusively. 201 

2.2 Mobile LiDAR System (MLS) and data sets 202 

Data acquisition was carried out by means of Lynx Mobile Mapper by Optech. This 203 

system acquires a LiDAR point cloud and RGB imagery simultaneously. The system is 204 

composed of two LiDAR sensors, four RGB cameras, a GNSS system, an IMU and a 205 

DMI. In this research it did not use camera data but only point clouds. A complete 206 

description of the platform and sensors applied is provided in (Holgado-Barco et al., 2015; 207 

Puente et al., 2013b). Table 1 shows the main technical characteristics. 208 

MLS sensors Parameter Value 
GNSS X,Y coordinates 0.020 m (1) 

Z coordinate 0.050 m (1) 

IMU Roll-Pitch 0.005 ° (1) 

Yaw 0.015 ° (1)  

LiDAR Measuring principle Time of Flight (ToF) 

Maximum range 200 m 

Precision range 8 mm (1σ) 
Ranging accuracy ± 10 mm (1σ) 

Laser measurement rate 75-500 kHz 

Measurement per laser 
 

Up to 4 simultaneous 

Scan frequency 80-200 Hz 

Laser wavelength 1,550 nm (near infrared) 

Angular resolution 0.001 ° (1) 

Table 1. Lynx Mobile Mapper Optech technical characteristics. Accuracy (1). 209 
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To avoid hiding areas, LiDAR sensors were set up at a 45° angle to the platform's 210 

trajectory. Regarding three data sets, Table 2 presents a summary of acquired point clouds 211 

of this research.  212 

Case study  Length (m) Point cloud / Point density 

LU-722. Stretch 1  ≈ 1,800 27,017,955 points / ≈ 121 points m-2 

LU-722. Stretch 2  ≈ 3,200 43,705,509 points / ≈ 110 points m-2 

N-640  ≈ 2,200 31,017,623 points / ≈ 35 points m-2 

LU-722. Stretch 3  ≈ 1,430 18,373,715 points / ≈ 185 points m-2 

Table 2. Point clouds data sets. 213 

2.3 Methodology 214 

The methodology developed comprises four main steps once the data have been acquired 215 

by MLS (Fig. 1). First, an alternative approach was implemented for Mobile LiDAR point 216 

cloud classification based on a hierarchical geometric and radiometric analysis of the 217 

original 3D MLS point cloud. Second, the horizontal alignment and its main road 218 

parameters were automatically extracted together with the computation of geometric 219 

design consistency indexes. Third, the Potential Risk Assessment of the road was 220 

estimated by a new predictive tool based on a tree induction algorithm. Fourth, the results 221 

obtained were compared and verified with those obtained through a road safety and 222 

surveyor expert, which were considered as “ground truth.” 223 
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Fig. 1. General methodology developed for the automatic evaluation of road safety based on the road 224 
alignment. Note: CS: Case study. 225 

2.3.1 Step 1. Point cloud classification 226 

The acquisition of information from MLS of a roadway is characterized as being highly 227 

dense; usually, methods are required to turn the original point cloud into a surface or 228 
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volume (Arranz Justel, 2013). Typically, this process has been approached fundamentally 229 

by means of: (i) taking advantage geometric criteria (based on thresholds for the scan 230 

angles of the laser sweep, or extracted points by height difference between trajectory data 231 

and road surface, among others) or (ii) from the radiometric characteristics of the points 232 

(fixed or adaptative thresholds for the intensity values) (Diaz-Vilarino et al., 2016; Yan 233 

et al., 2016; , Holgado-Barco et al., 2014, 2015; Kumar et al., 2014; Riveiro et al., 2015). 234 

However, this process is addressed here by an alternative, incremental and sequential 235 

algorithm (Arranz Justel, 2013; see Fig. 1 Step-1), following a threefold approach: (i) a 236 

first phase of detection of points belonging to the bare ground, (ii) a second phase where 237 

the road surface together with the road marks are determined from bare ground points and 238 

(iii) a third phase where all remaining elements around road surface and its environment 239 

(e.g. vertical signals, protection elements, vegetation, etc.) are classified. 240 

The first phase is essential because establishes the reference from which the road surface 241 

and road marks (phase 2), as well as its remaining elements (phase 3) are detected. In this 242 

first phase, a 2.5D Delaunay triangulation is used (Isenburg, 2006). Considering the huge 243 

number of points, the process is based on a sequential algorithm, the so-called “divide 244 

and conquer” strategy (Isenburg, 2006), where the cloud is divided by zones following a 245 

quadtree scheme, allowing an efficient use of the computer memory.   246 

The second phase determines which points, of those previously classified as bare ground, 247 

are considered as road surface and road marks. To determine the points belonging to the 248 

road surface, a geometrical approach based on slopes and height differences allows us to 249 

find the edges of the asphalt and thus to determine the road surface. Regarding road 250 

marks, a radiometric algorithm based on intensity values is applied to classify these 251 

features of the road surface.  252 

Finally, the third phase classifies the remaining points (e.g. protection elements, vertical 253 

signals, vegetation, etc.). In order to obtain optimal results and considering the complexity 254 

of the road environment, a 3D Delaunay triangulation (Cavendish, 1985) is used to 255 

classify these elements, since points having the same planimetric location could have 256 

different height. In particular, this 3D approach considers the 3D coordinates of a point 257 

and thus takes advantage of the geometric relationships of the objects in the space. 258 

It should be noted, that this third phase is not required for extracting road marks (see step 259 

1 in Fig.1); however we perform a whole classification of the road and its environment 260 
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for other road safety studies related with visibility and protection elements that goes 261 

beyond the scope of this paper. 262 

2.3.2 Step 2. Horizontal alignment and geometric consistency indexes 263 

Once the road marks were classified, an iterative procedure using central lines 264 

exclusively, based on the Random Sample Consensus algorithm (RANSAC) (Fischler 265 

and Bolles, 1981) is utilized to automatically extract the horizontal geometric road 266 

elements/parameters (i.e., curves, straight lines and clothoids). It should be noted that in 267 

the case of conventional roads the geometric road axis is defined by the central horizontal 268 

road mark, which delimits each driving direction (MFOM, 2016). 269 

Alternatively, a joint adaptive thresholding of the RANSAC algorithm is performed based 270 

on the geometric features of the road marks and the horizontal alignment parameters 271 

according to the type of road and the current regulation norm in Spain (MFOM 1987, 272 

2016). This parameterization process is performed in three sub-steps (Fig. 2), which are 273 

supported by an open source point cloud library (PCL) based on the C++ language. First, 274 

each circular arc is obtained. Second, every straight line is found, and lastly, the remaining 275 

elements are classified as clothoids. Finally, all parametric elements are connected 276 

sequentially.  277 

 

Fig. 2. Algorithm applied to extract the horizontal alignment parameters. 278 
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Regarding geometric parameters, the lack of consistency in road design has a negative 279 

direct impact on the increase in accident rate (Lamm, et al. 2001). In this sense, geometric 280 

consistency comprises three joint stability indexes that allow road safety to be assessed. 281 

These are (i) design consistency (Criterion I), (ii) operating speed consistency (Criterion 282 

II) and (iii) consistency in driving dynamics (Criterion III) (Lamm et al., 1999, 2001). 283 

Furthermore, considering that the risk of accidents increases when the radius (R) of the 284 

curve decreases (Rasdorf et al., 2012; You et al., 2012) and that the Curvature Change 285 

Rate (CCR) is a key parameter due to its influence in the operation speed (Lamm et al., 286 

2001), this study is focused on just circular alignments (Andrasik and Bil, 2016; Misaghi 287 

and Hassan, 2005). In this sense, it is noteworthy that the geometric consistency indexes 288 

are obtained exclusively from R and CCR parameters, highlighting the relevance that they 289 

have in road safety (Montella and Imbriani, 2015). 290 

First, according to the Spanish geometric design standard (MFOM, 2016), the geometric 291 

consistency indexes are determined individually for each curve (Eq. (1)), as well as 292 

globally for the entire stretch analysed, excluding those straight lines (Eq. (2)) (Criterion 293 

I):  294 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 =
400𝑔𝑔

2 ∙ 𝜋𝜋 ∙ 𝐶𝐶𝑖𝑖
=

63.6620
𝐶𝐶𝑖𝑖

[𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚⁄ ] ≈
63,700
𝐶𝐶𝑖𝑖

[𝑔𝑔𝑔𝑔𝑔𝑔 𝑘𝑘𝑚𝑚⁄ ] 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 =
63,700
𝐶𝐶𝑖𝑖

 (1) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆������� =
∑ (𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ∙ 𝐿𝐿𝑖𝑖)𝑛𝑛
𝑖𝑖=1
∑ 𝐿𝐿𝑖𝑖𝑛𝑛
𝑖𝑖=1

 (2) 

where CCRi is the curvature change rate corresponding to the i curve and expressed in 295 

gons/km, Ri is the radius of the i curve in metres, and Li is the length of the element 296 

analysed in metres. CCRS is the global curvature change rate (in gons/km) as a function 297 

of the weighted average of the elements considered. It should be noted that CCR = 0 in 298 

straight lines because R = ∞ (Lamm et al., 1999). 299 

Next, the operating speed of each curve is estimated (Eq. (3) and Eq. (4)) via the eighty-300 

fifth percentile of the speed (V85) (Criterion II). This parameter represents the speed at 301 

which 85% of the drivers operate on a road in service, which is internationally accepted 302 

as a suitable measure of the operating speed (Fitzpatrick et al., 2000): 303 

𝑉𝑉85 = 𝑒𝑒(4.561−0.0058∙𝐷𝐷𝐷𝐷𝑖𝑖) (3) 

𝐷𝐷𝐶𝐶𝑖𝑖 =
360°

2 ∙ 𝜋𝜋 ∙ 𝐶𝐶
=

57.295
𝐶𝐶

≈
5730
𝐶𝐶

[° 100 𝑚𝑚⁄ ] (4) 
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yielding V85 in km/h (Morrall and Talarico, 1994), with DCi being the degree of curvature 304 

expressed in degrees for every 100 metres. 305 

Frequently, the value of the design speed (VD) is unknown. For this reason, VD has been 306 

estimated (Eq. (5)) according to the procedure described in (Lamm et al., 1999) for roads 307 

in service.  308 

𝑉𝑉𝐷𝐷 ≈ 𝑉𝑉85𝐷𝐷𝐷𝐷𝐶𝐶𝑆𝑆�������� =
106

8270 + 8.01 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆������� (5) 

with VD expressed in km/h. 309 

Finally, the coefficients of lateral friction (Montella and Imbriani, 2015) considered in 310 

the design step (fRA) (Eq. (6) and Eq. (7)) and demanded (fRD) (Eq. (8)) according to the 311 

operating speed V85 (Lamm et al., 2001) are calculated (Criterion III): 312 

𝑓𝑓𝐶𝐶𝑅𝑅 = 0.925 ∙ 𝑔𝑔 ∙ 𝑓𝑓𝑇𝑇 (6) 

𝑓𝑓𝑇𝑇 = 0.59 − 4.85 ∙ 10−3 ∙ 𝑉𝑉𝐷𝐷 + 1.51 ∙ 10−5 ∙ (𝑉𝑉𝐷𝐷)2 (7) 

𝑓𝑓𝐶𝐶𝐷𝐷 =
𝑉𝑉852

127 ∙ 𝐶𝐶
− 𝑒𝑒 (8) 

where 0.925 is a reduction coefficient related to tires, n is the utilizing factor (0.60 for 313 

roads in service), fT is the tangential friction factor, and e is the superelevation  expressed 314 

in %/100 (Lamm et al., 2001); in this case, the theoretical superelevation  is considered 315 

according to the Spanish regulation norm (MFOM, 2016). Table 3 shows the three 316 

stability criteria considered together with their thresholds.  317 

Criterion I. Stability in designs 

𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺������� (𝒈𝒈𝒈𝒈𝒈𝒈 𝒌𝒌𝒌𝒌⁄ ) ∆𝑽𝑽(𝒌𝒌𝒌𝒌 𝒉𝒉⁄ )  Feature 

|𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆�������| ≤ 180 �𝑉𝑉85(𝑖𝑖) − 𝑉𝑉𝐷𝐷� ≤ 10 Correct 

180 < |𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆�������| ≤ 360 10 < �𝑉𝑉85(𝑖𝑖) − 𝑉𝑉𝐷𝐷� ≤ 20 Acceptable 

360 < |𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆�������| �𝑉𝑉85(𝑖𝑖) − 𝑉𝑉𝐷𝐷� > 20 Incorrect 

Criterion II. Stability in operating speed 

𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺������� (𝒈𝒈𝒈𝒈𝒈𝒈 𝒌𝒌𝒌𝒌⁄ ) ∆𝑽𝑽(𝒌𝒌𝒌𝒌 𝒉𝒉⁄ )  Feature 

|𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆�������| ≤ 180 �𝑉𝑉85(𝑖𝑖) − 𝑉𝑉85(𝑖𝑖+1)� ≤ 10 Correct 

180 < |𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆�������| ≤ 360 10 < �𝑉𝑉85(𝑖𝑖) − 𝑉𝑉85(𝑖𝑖+1)� ≤ 20 Acceptable 

360 < |𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆�������| �𝑉𝑉85(𝑖𝑖) − 𝑉𝑉85(𝑖𝑖+1)� > 20 Incorrect 

Criterion III. Stability in driving dynamics 

𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺������� (𝒈𝒈𝒈𝒈𝒈𝒈 𝒌𝒌𝒌𝒌⁄ ) ∆𝒇𝒇𝑪𝑪 = 𝒇𝒇𝑪𝑪𝑹𝑹 − 𝒇𝒇𝑪𝑪𝑹𝑹 Feature 

|𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆�������| ≤ 180 ∆𝑓𝑓𝐶𝐶 ≥ +0.01 Correct 

180 < |𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆�������| ≤ 360 +0.01 > ∆𝑓𝑓𝐶𝐶 ≥ −0.04 Acceptable 

360 < |𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆�������| ∆𝑓𝑓𝐶𝐶 < −0.04 Incorrect 
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Table 3. Road safety based on horizontal geometry consistency. Applied Criteria. V85(i) for an individual 318 
element. V85(i) - V85(i+1) between consecutive elements. 319 

For a better understanding of the geometrical parameters considered, the reader is referred 320 

to Fig. 3. 321 

 
Fig. 3. Parameterization scheme considered for the formulation. 322 

2.3.3 Step 3. Potential Risk Assessment by decision tree 323 

This step is crucial in the proposed methodology. The potential risk assessment (PRA) of 324 

the road stretch is determined by means of a triple stability criterion because of the 325 

influence that the lack of consistency has on the increase in the accident rate on roads 326 

(Lamm et al., 2001). This triple criterion comprises geometric consistency indexes that 327 

will define the three attributes/variables of inductive process. To achieve this, a data 328 

mining process is performed based on geometrical parameters exclusively, which is 329 

supported by the decision tree (DT) inductive algorithm. 330 

DTs, also known as identification trees, are among the nonparametric methods more 331 

widely applied to supervise inductive learning (Soler Flores, 2014). Moreover, the 332 

implementation of an approach by DT has the advantage that it does not require prior 333 

probabilistic knowledge of the study phenomena (de Oña et al., 2013). In this case and 334 

according to Information Theory (Quinlan, 1996), a process for categorizing the analysed 335 

attributes/variables is performed. 336 
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In this framework, the key is to establish a classification model that minimizes the 337 

uncertainty regarding the risk predictions. To this end, the uncertainty for the information 338 

content of a discrete and random variable X, or self-information, can be adequately 339 

measured by the entropy function H(X), as an appropriate indicator of the associated 340 

average uncertainty of a process (Cover and Thomas, 1991; Molina et al., 2016; Pearl, 341 

1988), which is expressed as: 342 

𝐻𝐻(𝑋𝑋) = −�𝑝𝑝(𝑥𝑥) ∙ 𝑙𝑙𝑔𝑔𝑔𝑔2𝑝𝑝(𝑥𝑥)
𝑥𝑥

 (9) 

where P is the probability mass function of X. The entropy measure enables an assessment 343 

of the additional information required to specify a particular alternative (Barton et al., 344 

2008), and therefore, reducing H(X) by acquiring information is interpreted as reducing 345 

the uncertainty regarding X (Molina and Zazo, 2018; Molina et al., 2016). 346 

On the other hand, to build a DT, it is necessary: (i) to establish a node sequences using 347 

attributes/variables (Oña et al., 2013), in this case the three stability criterion and (ii) a 348 

node splitting criterion to form a tree. This latter condition leads on the one hand, to 349 

reduce complexity through removing the sections that provide little power to classify 350 

instances (Galathiya et al., 2012), and on the other hand to reduce classification errors, 351 

due to specialization in the training set (Körting, 2006). In this manner, node uncertainties 352 

are reduced (Singh and Gupta, 2014), overfitting phenomenon is avoided (Breiman et al., 353 

2017; Kang and Choi, 2000) and a better predictions are achieved (Galathiya et al., 2012).  354 

Overfitting the training data is a negative phenomenon of machine learning process as 355 

consequence of an excessive adaptation of the algorithm to the training data (Chicco, 356 

2017; Domingos, 2012). This leads to erroneous classifications on unseen data, although 357 

DT may correctly perform on the training data (Kang and Choi, 2000). Here, as splitting 358 

or pruning criteria, it is essentially applied information gain, which is defined by the 359 

difference between the entropy of the node before (parent) and after (child) splitting 360 

respectively (de Oña et al., 2013; Singh and Gupta, 2014). It is worth highlighting that 361 

the highest information gain involves the highest reduction in entropy (Zhang et al., 362 

2004). 363 

In essence, this general framework (based on node sequences and splitting criterion) 364 

define the decision rules by which a DT, by itself and automatically, decides data split 365 

and draws its boundaries. For a complete background on DT theoretical construction 366 
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process, please refer to benchmark works such as Breiman et al., (2017) and Quinlan 367 

(1993). 368 

Alternatively, the inductive reasoning process is performed by open-source freeware 369 

WEKA data mining through the iterative J4.8 algorithm (de Oña et al., 2013; WEKA, 370 

2018; Witten and Frank, 2005). J4.8 is WEKA’s implementation of a decision tree learner 371 

(Witten and Frank, 2005), which is based on C4.5 algorithm (Al-Turaiki et al., 2016; 372 

Quinlan, 1993). Please note that these algorithms are inspired by entropy (de Oña et al., 373 

2013), and the gain ratio “normalizes” the information gain (Quinlan, 1993), and besides, 374 

the overfitting is avoided by post-pruning process after the tree-creation, because of this 375 

is more effective method than pre-pruning to address overfitting problems; in this way 376 

the training data are suitably classified (Kang and Choi, 2000). J4.8 algorithm divides the 377 

dataset according to the best informative attribute/variable, selecting in every iteration the 378 

attribute/variable with the maximum gain ratio or highest reduction in entropy (Al-379 

Turaiki et al., 2016; de Oña et al., 2013; Witten and Frank, 2005). This classification 380 

approach has easily interpretable results and comparable accuracy to other classification 381 

models as its main advantages (Al-Turaiki et al., 2016; Quinlan, 1993).  382 

Finally, the inductive process of DT is exclusively trained with the circular alignments of 383 

the first three case studies (please see section 3.3; Fig. 6). Previously, these circular 384 

alignments were categorized by a road safety expert into three level risks (high, medium 385 

and low). It is worth to highlight that safety expert provides the reference data that will 386 

be used into the DT training. 387 

2.3.4 Step 4. Verification of results 388 

A twofold process of verification, both in terms of geometric results and road safety is 389 

carried out. First geometrically through “as-built” horizontal alignment and secondly by 390 

risk validation, both provided by an expert road surveyor using manual delineation and 391 

design works from airborne images. Note the use of term “as-built”, because it is very 392 

common that some changes can affect the original road design project during the 393 

construction phase (e.g. unpredicted and specific terrain conditions, etc.). 394 

Therefore, we evaluate the accuracy of the geometry by comparing the horizontal 395 

alignment detected by the RANSAC algorithm in this work with the as-built horizontal 396 

alignment obtained manually by an expert road surveyor. 397 
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Secondly, risk validation is performed via a road safety expert, who also discretizes the 398 

risk levels of the circular alignments of fourth case study according to three levels (high, 399 

medium, low). In order to validate the achieved risk levels through the DT inductive 400 

process they will be compared with the safety expert ground truth.  401 

On the other hand, DT process verification is carried out by means of: (1) Overall 402 

Accuracy (OA) and (2) Kappa concordance coefficient (K). OA is defined as the 403 

probability that an instance will be correctly classified according to the following 404 

expression: 405 

𝑂𝑂𝑂𝑂(%) = �
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇
� ∙ 100 (10) 

where TP and TN and the true positives and true negatives respectively, and N is the total 406 

number of instances considered. For its part, K coefficient is a statistic that measures 407 

pairwise agreement between a set of categorized data, correcting for expected chance 408 

agreement (Carletta, 1996; Garcia-Rodenas et al., 2017). The kappa coefficient is 409 

expressed as: 410 

𝐾𝐾 =
𝑇𝑇(𝑂𝑂) − 𝑇𝑇(𝐸𝐸)

1 − 𝑇𝑇(𝐸𝐸)
 (11) 

where P(A) is the observed concordance proportion and P(E) is the expected concordance 411 

proportion. In this equation, the numerator is the observed proportion, while the 412 

denominator is the maximum value that the numerator can take. K is defined in the range 413 

[-1, 1]. K=1 is produced only when there exists concordance in 100% of the observations. 414 

K = 0 implies no agreement. Negative values indicate no agreement, but they are unlikely 415 

in practice. 416 

This final step provides a full comprehensive reliability assessment, for both the defined 417 

geometric algorithms and the methodology developed as the decision-making process on 418 

road safety.  419 

3. Results 420 

3.1 Road segmentation 421 

The effectiveness of the developed algorithm for the classification of the data acquired 422 

by MLS is shown in Table 4 and Fig. 4. The high level of reduction obtained from the 423 

original 3D point cloud acquired (indicated in points m-2) can be observed. In particular, 424 
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a first classification of 2D points (expressed in points per metre or spacing m-1) 425 

corresponding to road marks is obtained, which represents approximately 1% of the 426 

original 3D point cloud. Next, a second classification applied over road marks is applied 427 

to extract only the road axis that represents between 4.8% and 8.7% of the road mark 428 

points with a spacing between points of 10 cm. As commented in section 2.3.1, to increase 429 

the quality of classification process an outliers filter is applied to the point cloud, in this 430 

case Statistical Outlier Removal (SOR) filter (PCL, 2018). The SOR parameters were a 431 

20 points neighbourhood and a standard deviation multiplier threshold of 1.0. These 432 

values were determined on the basis of empirical tests. The high spacing achieved in the 433 

classification of points has allowed a more efficient development of the subsequent 434 

process of automatic extraction of the route (Fig. 2). This road classification approach has 435 

allowed us to apply a more efficient process in the automatic extraction of the horizontal 436 

alignment (Fig. 2). 437 

Case study 
3D Initial Point cloud 2D Road mark 

clasification Road axis 

Points  Density 
(point m-2) Points (%) Points  Spacing 

(point m-1) (%) 

LU-722. Stretch 1 27,017,955 ≈ 121 320,858 1.2 17,782 ≈ 10 5.5 
LU-722. Stretch 2 43,705,509 ≈ 110 447,295 1.0 31,624 ≈ 10 7.1 

N-640 31,017,623 ≈ 35 216,546 0.7 18,894 ≈ 9 8.7 
LU-722. Stretch 3 18,373,715 ≈ 185 297,913 1.6 14,293 ≈ 10 4.8 

Table 4. Summary of road axis segmentation. 438 
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Fig. 4. Scheme resulting from the process of classification using the algorithm developed.  439 

3.2. Geometric verification 440 

This step involves the first verification of the proposed methodology by as-built road 441 

projects, which were considered as “ground truth.” Applying Eq. (1) to Eq. (8) (see Step 442 

2.3.2), the geometric consistency indexes and values of three joint criteria are calculated. 443 

The following tables (Tables 5 through 7) and Fig. 5 summarize the main results obtained, 444 

which are strictly focused on circular alignments. 445 

Ground truth 
General Geometric parameters 

Obtained values by the RANSAC algorithm 
General Geometric parameters 

Length: 1,776.60 m Length: 1,776.35 m 
Maximum/Minimum radius: 177.40 / 29.08 (m) 
Number of curves: 14 

Maximum/Minimum radius: 180.32 / 29.78 (m) 
Number of curves: 14 

𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺:�������� 789 (gon/km) 𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺:�������� 788 (gon/km) 
VD: 68.5 ≈ 70 km/h VD: 68.6 ≈ 70 km/h 

Horizontal alignment. Circular arc Horizontal alignment. Circular arc 
Curve GC (2) Indexes Curve GC (2) Indexes 

R (3) / Ω (4) CCRi DCi V85 R (3)/ Ω (4) CCRi DCi V85 
91.45 / 33.19 697 63 66 91.67 / 39.56 695 63 66 
127.64 / 70.18 499 45 74 127.81 / 73.65 498 45 74 
115.50 / 33.86 552 50 72 120.19 / 26.47 530 48 72 
69.99 / 51.86 1044 94 56 75.72 / 56.30 841 76 62 
115.00 / 35.01 554 50 72 174.75 / 13.84 365 33 79 
170.00 / 79.39 375 34 79 170.84 / 83.43 373 34 79 
31.50 / 59.69 2022 182 33 29.78 / 55.49 2139 192 31 
109.00 / 74.78 584 53 70 109.89 / 74.09 580 52 71 
29.08 / 58.44 2191 197 31 30.17 / 73.72 2111 190 32 
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29.92 / 140.84 2129 192 31 29.94 / 152.75 2128 191 32 
41.84 / 20.34 1522 137 43 41.22 / 32.37 1545 139 43 
49.56 / 75.17 1285 116 49 49.77 / 79.21 1280 115 49 
29.60 / 90.41 2152 194 31 30.04 / 124.70 2120 191 32 
177.40 / 69.17 359 32 80 180.32 / 88.22 353 32 79 

Table 5. Geometric verification. LU-722 stretch 1 (Case study 1). (2) GC: Geometric consistency. (3) R: 446 
Absolute value of radius (m). (4) Ω: Central angle (gon). Please note that central angle refers to the 447 

azimuth variation between the ends of the circular alignment exclusively.  448 

 449 

 450 

 451 

Ground truth 
General Geometric parameters 

Obtained values by the RANSAC algorithm 
General Geometric parameters 

Length: 3,160.62 m Length: 3,160.73 m 
Maximum/Minimum radius: 852.60 / 30.00 (m) 
Number of curves: 23 

Maximum/Minimum radius: 947.42 / 30.25 (m) 
Number of curves: 23 

𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺:�������� 713 (gon/km) 𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺:�������� 737 (gon/km) 
VD: 71.5 ≈ 70 km/h VD: 70.6 ≈ 70 km/h 

Horizontal alignment. Circular arc Horizontal alignment. Circular arc 
Curve GC (2) Indexes Curve GC (2) Indexes 

R (3) / Ω (4) CCRi DCi V85 R (3)/ Ω (4) CCRi DCi V85 
367.60 / 10.37 156 16 87 385.38 / 11.05 165 15 88 
40.30 / 14.65 1422 142 42 45.21 / 29.57 1409 127 46 
309.90 / 18.74 185 18 86 310.53 / 23.57 205 18 86 
30.00 / 97.42 1910 191 32 30.25 / 128.21 2106 189 32 
852.60 / 5.11 67 7 92 947.92 / 5.57 67 6 92 
81.25 / 23.50 705 71 63 82.70 / 23.08 770 69 64 
43.93 / 102.45 1304 130 45 44.02 / 119.92 1447 130 45 
178.00 / 30.84 322 32 79 177.44 / 43.04 359 32 79 
798.50 / 8.64 72 7 92 900.44 / 7.92 71 6 92 
150.60 / 61.83 380 38 77 151.00 / 60.70 422 38 77 
99.30 / 32.87 577 58 68 103.31 / 38.81 617 55 70 
51.50 / 84.92 1113 111 50 51.41 / 94.67 1239 111 50 
66.39 / 37.04 863 86 58 62.16 / 33.28 1025 92 56 
113.05 / 34.53 507 51 71 98.89 / 40.54 644 58 68 
73.64 / 27.99 778 78 61 75.02 / 28.84 849 76 62 
40.45 / 43.75 1417 142 42 42.13 / 51.35 1512 136 43 
59.80 / 24.37 958 96 55 60.22 / 42.26 1058 95 55 
44.57 / 38.17 1286 129 45 45.63 / 78.09 1396 126 46 
217.14 / 15.59 264 26 82 246.63/ 16.77 258 23 84 
45.00 / 21.68 1273 127 46 40.36 / 23.64 1578 142 42 
30.40 / 63.97 1885 188 32 33.11 / 71.03 1924 173 35 
56.60 / 55.75 1012 101 53 56.29 / 85.90 1132 102 53 
104.38 / 21.09 549 55 70 105.08 / 30.89 606 55 70 

Table 6. Geometric verification. LU-722 stretch 2 (Case study 2). 452 

Ground truth 
General Geometric parameters 

Obtained values by the RANSAC algorithm 
General Geometric parameters 

Length: 2,149.41 m Length: 2,149.55 m 
Maximum/Minimum radius: 599.33 / 171.27 (m) 
Number of curves: 3 

Maximum/Minimum radius: 601.20 / 171.49 (m) 
Number of curves: 3 

𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺:�������� 183 (gon/km) 𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺:�������� 181 (gon/km) 
VD: 102.7 ≈ 100 km/h VD: 102.9 ≈ 100 km/h 

Horizontal alignment. Circular arc Horizontal alignment. Circular arc 
Curve GC (2) Indexes Curve GC (2) Indexes 

R (3) / Ω (4) CCRi DCi V85 R (3)/ Ω (4) CCRi DCi V85 
368.51 / 45.18 173 16 87 367.07 / 56.09 174 16 87 
171.27 / 36.61 372 33 79 171.49 / 35.20 371 33 79 
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599.33 / 22.12 106 10 90 601.20 / 22.53 106 10 90 

Table 7. Geometric verification. N-640 (Case study 3). 453 
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Fig. 5. Stability Criteria. Ground truth versus algorithm developed. 454 
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Generally, the main geometric parameters (R and CCRi), did not present significant 455 

discrepancies, exhibiting discrepancies of approximately 3.6% and 4.9%, respectively. 456 

From a quantitative point of view, these discrepancies are the average absolute value of 457 

the percentage of variation of the analysed geometrical parameter with respect to the 458 

ground truth (in these cases as-built projects). In this sense, it is worth mentioning that 459 

the minimum absolute discrepancies obtained for the lengths of the sections were between 460 

0.11 m and 0.25 m, for a total of 7,086.6 m, as well as a practical coincidence for the 461 

global parameter 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆������� (Tables 5 and 7). In addition, the correct identification of the total 462 

number of circular alignments for each study case should be noted. 463 

Alternatively, the maximum radius (Rmax) and the minimum radius (Rmin) exhibit values 464 

similar to those obtained during the verification, with relative discrepancies of 4% for 465 

Rmax and 1% for Rmin, and with absolute discrepancies between 1.87 m and 2.92 m for 466 

Rmax and between 0.22 m and 0.70 m for Rmin. Although an absolute maximum 467 

discrepancy between radiuses of 94.82 m was observed (852.60 m versus 947.42 m), this 468 

type of discrepancy is common in the case of circular alignments with central angles 469 

lower than 6 gons (MFOM, 2016). In addition, this absolute difference has not provided 470 

significant changes in the geometric consistency indexes and thus in the stability criteria, 471 

as seen in Table 6. It is also necessary to outline the correct detection of the different 472 

circular curves and even circular curves linked consecutively. 473 

In more detail and from a statistical point of view, for a maximum relative discrepancy 474 

of 10%, the success rates for the geometric parameters R, CCRi and DCi were 89%, 78% 475 

and 87%, respectively; even if the admissible relative discrepancy is reduced by up to 476 

5%, the success rates for each parameter could be perfectly acceptable, reaching success 477 

rates of 81%, 67% and 78%, respectively. In contrast, if the maximum relative 478 

discrepancy is fixed at 15%, the success rates increase to 98%, 91% and 95%, 479 

respectively. In particular, analysed parameter success rate was calculated as the average 480 

percentage of the values that comply with the fixed threshold discrepancy. 481 

3.3. Risk validation 482 

To establish the relationships, thresholds and hierarchy among the different criteria 483 

established, as well as the expert classification, an inductive learning process based on a 484 

decision tree was applied, as described in subsection 2.3.3. Forty (40) instances were used 485 
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to train the DT (total number of circular alignments for the first three case studies 486 

considered). Fig. 6 shows the results obtained.  487 

 
Fig. 6. Decision Tree. Hierarchical structure developed. K = 0.946. Note: (A) number format indicates the 488 

total number of instances that reached the leaf. In the (A/B) format case, B is the total number of 489 
misclassified instances. 490 

The DT automatically establishes the discretization of attributes/variables (in this case 491 

the three stability criterion) based on the highest information gain (highest reduction in 492 

entropy) as a node splitting criterion to form a tree. In particular, determining the 493 

information gain and according to the gain ratio "normalizes," Criterion I of stability was 494 

identified as the most determining of the three criteria considered (gain = 0.415 bits). This 495 

criterion is the one that provides more information about the process and therefore the 496 

central node (root node) of the tree. 497 

From the identified central node (Criterion I), the instances are split into child nodes, and 498 

recursively in each iteration, the attribute/variable with the maximum gain ratio is selected 499 

as node splitting criterion. It should be noted that, in the next levels, both criteria II and 500 

III are applied, which implies that there is not a significant entropy improvement between 501 

them. Alternatively, the final tree may not necessarily be symmetric because of the 502 

application of pruning algorithms that reduce the complexity of the tree, keeping the final 503 

accuracy. By the post-pruning process the tree subsections that do not improve the 504 

classification results are removed. In this sense, it is worth to highlight that a tree 505 

subsection is reconverted to a leaf, whose output is defined only if this operation does not 506 

get worsen the prediction accuracy. In the case of J4.8 algorithm this is done in post-507 

CRITERION I

CRITERION III CRITERION II

CRITERION II CRITERION III
MEDIUM (15.0) MEDIUM (4.0)

HIGH (10.0/1.0) MEDIUM (2.0)LOW (3.0) MEDIUM (6.0)

<= 20 > 20

<= -0.06 > -0.06 <= 9 > 9

<= 13 > 13
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processing, once the final structure has been obtained, the full training data is back-fitted 508 

against the structure. 509 

The final kappa coefficient obtained from the trained DT was 0.946, which entails a high 510 

degree of agreement. Then, this trained DT was applied to circular alignments of fourth 511 

case study, as a form of validating the classification obtained through the DT. The 512 

achieved overall accuracy (OA) and kappa coefficient (K) were 90.9% and 0.8553 513 

respectively. These values show a high degree of agreement, and they validate the DT 514 

and its geometrical risk classification results. Table 8 shows confusion matrix results 515 

achieved. In this sense, the DT provided a suitable parameterization of the expert informal 516 

knowledge for road safety inspections based on the geometric parameters obtained. 517 

 Classification (DT process) 

Low Medium High 

Ground truth 
(Road safety expert) 

Low 2 0 0 
Medium 1 5 0 

High 0 0 3 

Table 8. Risk validation results. LU-722 (Case study 4). 518 

Fig. 7 shows the evaluation risk resulting from the DT and corresponding to each one of 519 

the circular elements that define the horizontal alignment. It should be noted that the 520 

transition curves were categorized according to the risk level resulting from the circular 521 

elements that compose these curves. 522 
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Fig. 7. Risk mapping for the different geometric elements of the horizontal alignment. Case study 1 LU-523 

722 Stretch 1. Red line: High risk. Orange line: Medium risk. Green line: Low risk. 524 
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4. Discussion and Conclusions 525 

The main contribution of this research, related to remote sensing, is to show the 526 

application possibilities that the MLS technology can offer to road infrastructure risk 527 

assessment by means of: (i) an automatic risk mapping of the road based on geometrical 528 

consistency indexes and (ii) accurate stability criteria derived from these indexes. This is 529 

done through the integral approach presented, which combines geometry and risk, using 530 

3D MLS point clouds. This approach represents a novel method of evaluating security in 531 

roads for the engineering community and/or road managers. 532 

Even though the achieved quality by the alternative approaches to MLS outlined in the 533 

introduction (e.g. airborne laser scanner or aerial imagery) is highly promising (around 534 

90% and above), these quality values are not yet comparable with those values required 535 

in road projects (centimetric accuracy). Therefore, datasets coming from MLS are the 536 

suitable source for obtaining the horizontal road alignment from which to derive the 537 

geometric consistency indices. 538 

Ultimately, a high degree of reliability was obtained in the extraction of the geometrical 539 

elements of the road horizontal alignment. This is evident considering the total number 540 

of circular elements detected, as well as the low discrepancies obtained for the main 541 

geometric parameters (R and CCRi). The minimum differences observed in the geometric 542 

consistency indexes and in the stability criteria are also noteworthy. 543 

The methodology presented in this paper for the evaluation of road safety, through the 544 

twofold approach (geometry plus risk) and supported by artificial intelligence techniques 545 

(inductive process through a decision tree), can suitably complement other safety 546 

approaches, such as EuroRAP, which is based on a statistical-qualitative approach, 547 

sensitive to the distorting effect of road accidents. In this sense, the methodology 548 

developed allows us to objectify the intrinsic risk that the geometric design confers to the 549 

road. Furthermore, the scalability of this approach is also a significant and additional 550 

advantage, since it could be applied to other road typologies or countries by means of 551 

adapting the formulations and the specific models to the road design standards in each 552 

country.  553 

On the other hand, the majority of studies based on road safety are focused on external 554 

causes to the road geometry, such as probability of crashes, types of drivers, level of use 555 



 

28 

 

and existing conditions of the pavement surface, among others, or searching patterns that 556 

can explain accident causes in a particular section of the road. However, the inherent risk 557 

that the geometric parameters themselves provide have received less attention. In this 558 

sense, it is worth to highlight that the exposed approach in this paper represents a novelty 559 

regarding the manner to assess road safety from MLS data and supported by an inductive 560 

reasoning process, based on a decision tree, which provides a potential risk assessment 561 

based on geometric parameters exclusively. 562 

In future research, an extension of the categorization and evaluation of the road risk by 563 

DT would be desirable, incorporating those geometric constraints related to the vertical 564 

alignment (vertical agreement, Kv parameter and real superelevation) and completing it 565 

with the available sight distance. Furthermore, the idea of this approach is to offer a future 566 

alternative to those roads where road marks are not available (situation that can exist in 567 

Spanish secondary roads) or roads with road marks in bad state or partially removed.  568 

Finally, and in the framework of prevention and roadway deficiency detection, the 569 

exposed methodology together with the data acquisition from MLS can be an adequate 570 

and effective tool for road safety inspections. Through this approach, and taking into 571 

account the service life of road infrastructures, it would be possible to have a complete 572 

risk evolution according to the changes that may have been necessary to make to the 573 

original designs. 574 
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