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Abstract

In this paper we describe a procedure to visit all feed-
back classes of locally Brunovsky linear system over
fixed R = C(S') the ring of real continuos functions
defined on the unit circle. Furthermore, we give the

exact number of such classes throughout partitions of

integers, binary strings and colored Ferrers diagrams.
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1 Introduction

Let R be a commutative ring with unit elemeht~ 0.
A linear system overR is given by a linear rule (or
right hand side) on the form* = Az + Bu where

x € X are statesy € U are inputs, and™ is the time-
derivative or time-shift in the sequential case. Sets of
statesX and of inputsU are R-modules while maps
A and B are R-linear maps. In this way, we say that
a linear systent (see figure 1) and other analogous
linear system>’ are said to be Feedback Equivalent
if we can bring one of them into the another by a fi-
nite composition of the following Basic Feedback Ac-
tions: Isomorphismsg) : U — U’ in the input mod-
ule, isomorphisms® : X — X’ in the state module
and feedback actions' : X — U which transforms
(A, B) to system(P(A + BF)P~', PBQ). In gen-
eral, the theory of linear control systems over a com-
mutative ringR goes back to the models of [Morse,
1976] for delay models. See [Brewer, Bunce and Van-
Vleck, 1986], [Carriegos and Sanchez-Giralda, 2001]
and [Hermida-Alonso, Lopez-Cabeceira and Trobajo,
2005]to do general reading about equivalent linear sys-
tems over commutative rings.

On the other hand, it is a known that partial reachabil-
ity linear map given by

or =(BAB--- A7'B):U¥ — X (1)
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Figure 1. (A, B) Linear System

is a feedback invariant, up to equivalence, associated to
Y (see [Carriegos, 2003] and [Hermida-Alonso, Pérez

and Sanchez-Giralda, 1996]). So, we have a main set
of feedback invariants, up to up to isomorphism, asso-

ciated to syster, itis, quotient moduled’’; , /N> =

Im(B, AB, ..., A'B)/Im(B, AB, ..., Ai"1B). (2)

Furthermore, in the case of reachable linear systems
over a field, or in the more general framework of
projective-free rings, we known that if alt-modules

NZ /N are free, then there is a complete set of in-
variants verifying

X=N'@&NJ/Ny & ---&NZ/NZ,. (3)
Thus, once we have fixed a projective-free riRgand

the dimensionsn = dimU andn = dimX, all feed-
back classes afi-input n-dimensional linear systems
are in one to one correspondence with the set of par-
titions of integern in decreasing sequences, equiva-
lently, all the Ferrers diagrams of intege(see [Knuth,

2004] to get a complete reading about partitions of in-
teger subject).

This paper is organized as it follows: In section
2, our study is focused over continuos real functions
R = C(K) defined in a topological spack (see
[Brunovsky, 1970]), in particular is given necessary
and sufficient conditions for classifying linear systems
over R = C(S') by Ferrers diagrams (see [Carriegos
and Sanchez-Giralda, 2001] and [Ferrer, Garcia-Planas
and Puerta, 1997] to do a previous reading). In sec-
tion 3, we obtain the enumeration and the number of
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all feedback classes of reachable linear systems over

the freeR = C(S')-module of ranka. In section 4, we

design a procedure to obtain and enumerate all such
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Figure 2. Equation 5

classes. In section 5, we extend feedback classes study

of reachable linear systems ovér= C(S')-modules.

2 The Unit Circle and Colored Ferrer's Diagrams

In this section, we strongly use next result (see [Car-
riegos and Sanchez-Giralda, 2001jhe classification
problem (in the case of projective invariants) is actually
equivalent to the problem of characterization of all pos-
sible decompositions of finitely generat®dmodules
U and X on the form

U=F &P

X-PePe &P “)

where P, represents a solution fdfer(B) and P; rep-
resents a solution foN;* /N> ;. Thus, the only restric-
tion to solve the system of equations is tiat; must
be a direct summand d¥; for all 3.

In order to above theorem, to give the complete clas-
sification of locally Brunovsky systems is needed to
know exactly the monoidProj(R), ) of isomor-
phism classes of finitely generatg®tmodules with
the direct sum as internal operation. The full descrip-
tion of the monoid(Proj(R), $) is a great task. Of
course, if finitely generated projective are free, then
(Proj(R), ®) is isomorphic tdNU{0}, +), butin gen-
eral this is not the case. R = C(K) is the ring of
continuos functions defined on a compact topological
spaceK, then(Proj(R), ®) = (Vect(K), @) depend,
of course, on the topology df (see [Swan, 1962]).

Our paper is devoted to study &f = S' the real unit
circumference. In this caséProj(R = C(S!)), @) is
the commutative monoid generated by the symbols
(representing trivial vector bundles) aftd(represent-
ing the Mobius Strip) modulo the relation

P®P=R®R=R> (5)

Consequently, there is only two isomorphism classesmion N

of rankr projective R-modules:R" (the free one) and
R™—1 @ P. Thus, we may characterize the feedback
class of a locally Brunovsky linear system overby

a colored Ferrer's diagram: Becaud@roj(R),®) is
the commutative monoid generated by the symldols
and P, then every building block is a rankprojective
module, and there are two classes depicted by

] N

for R andP respectively. Observe that we have the rule
(5), itis figure 2.

So, locally Brunovsky linear systems over the finitely
generated modul&” of rankn would be describe by
a colored Ferrer’s diagram with exactly building
blocks (white or grey) where the following four

(1
(.
Figure 3. Example 2.1

restrictions apply:

i) There is at most one grey block on each row (by
equation (5)).

i) Parity condition: ifX = R™, then there are an even
number of grey blocks in the whole diagram.

iii) Thesth row is at most as long as the-¢ 1)th row
(by decreasing ranks in the sequence (4)).

iv) If two rows have the same length then they are
equal (byR" is not a direct summand @t"~! & P nor
the converse).

Example 2.1.In figure 3, we can see the feed-
back class of locally Brunovsky linear systems over
X=(R®RaP)®(R®P)® (R)freeR=C(S)-
module of ranka = 6.

3 Number of Locally Brunovsky Linear Systems
Over the Free R = C(S')-module of Rankn

Let's denote by r(n) the number of non-isomorphic
decompositions o™, while pr(n) denotes the num-
ber of non-isomorphic decompositiodg® = P; @

-+ @ Ps with P, ; direct summand of;. Note that, if
R is projectively trivial, therpr(n) = pr(n) = p(n)
is the number of partitions of integer, but in general
Br(n) < pr(n).

So, the number of feedback classes of locally
Brunovsky linear systems over the frég = C(S')-
module of rankn is pr(n). Thus, in order to give all
feedback classes equivalence we have to visit all par-
titions = of n and to determinate that colored Ferrer’s
diagrams verifying the above four conditions on par-
If we denote bypr(x) the number of such
diagrams, then

(6)

It is known a procedure to obtain all partitions of a
given integern in inverse lexicographic order. Thus, let
x be a fixed partition of.. First, conditioni) is direct
because inverse lexicographic order. Second, in order
to control conditioriv) we writex = z7*, 252, ..., )"
wheren = c1x1 + coxo + ... + cprp andz; > 41
for all 7. In this way, by conditioriv), we can define
thesth-row-block, of the Ferrers diagram, as the block
of ¢; rows (each row of length;) associated ta*
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The key is denote the colored Ferrer’s diagrams, asso-| .—e: (T w=2
ciated to a given sequence (4) with partitioof n, as pr(@)=2""1=1
a binary stringv = wy ws ... wy, Wherew; = 0if and sl 11 w=00 wel1
only if the ith-row-block associated te* is white. o %DDDD - QDDDI -
Finally, by conditioni), theith-row-block associated pR(z)=2""1=2
to ;" affect conditionii) if and only if ¢; is an odd ex- emitot [T w=2 [Tl w=i!
ponent. Let,. be first odd exponentin the way. > x; 1 - Cl -
for all z; such that; is an odd number, then following Pr()=2""1=2
computing sentences are equivalent to condiiipn o—dl 12 T »=o [T »-u
1. (sum,wf[i]c[i],i,1,h) = 0 mod(2) ] =
2. if (c[i] odd number) then Pr(w)=2"—1=2
(sum,w[ilc[i],i,1,h) = 0 mod(2) . — —
3. if (i not r and c[i] odd number) then ’ %%% ’ %%= '
(sum,w[ilc[i],i,1,h) = 1 mod(2) pr(z)=2"=2
4. if (inot r and c[i] odd number) then gl 2l 11 w—000 w=101
(sum,w[i],i,1,h) = 1 mod(2) st ;H e %%. -
In this way, in order to verify above four conditions, _ o Conr
observe that; exponents are free for all # » and %g. = %ED =
only ¢, control the parity conditioni), i.e. parity is H ]
controlled by the bitw, throughout the equality pr(z)=2h"1=4
e=sld [T ] w=00 [ ]l w=1t
Wy + Z w; = 0 mod2, @) ] =
i L] ]
PRr(x)=2""1=2
wherew; bits are free for ali # r. So, we have next z=23 [T] w=2
result: =%
o pr(z)=2""1=1
z=22,12 ] w= w=
Theorem 3.1. Let R = C(S;) be the ring of real con- o i% ” %% o
tinuos functions defined on the unit circle. The number L =
of all feedback classes of locally Brunovsky linear sys- —
tems over the fre& = C(S')-module of rank. is given [ w=10 [W w=1
b [ L
y m O
L] [
~ _ i PR(z)=2h=4
Pr(n) = ZPR(JU) = 22 ;
T T z=21,14 :D w=00 DD w=01
=
where, if x is a partition denoted byxr = ] B
o, x5?, .-+, xy, thenk = hif not exists an odd ex- L | iy
ponente; in partition 2, andk = h — 1 in other case. Prn=2 =
Proof. It is known that the set of all feedback classes | “~"  H 7 = o
of locally Brunovsky linear systems over the frBe= [ ]
C(S')-module of rankn is the disjoint union, in par- = =
titions of n, of sets of all feedback classes of locally ] [ |
Brunovsky linear systems over the frég = C(S')- Pr(w)=2h=2

module of rank: throughout a given partition. Thus,
pr(n) =3, Pr().

On the other hand, in particular case= 7' with

c¢1 odd number we have only a colored Ferrers di-

Figure 4. Feedback classes of Example 3.2

agram (all building blocks are white) and it verifies k&, wherek = h if not exists an odd exponentin par-
pr(r) = 2"=1 = 1. In other cases, by sentences 1, tition z, andk = h — 1 in other case. Sgir(z) = 2F.
2, 3, 4 and equation (7), it is clear that all feedback

classes of locally Brunovsky linear systems over the
free R = C(S')-module of rankn throughout a given ~ Example 3.2. All pr(n) feedback classes of locally
partitionz = z{',25?,--- ,a}" are in one-to-one cor-  Brunovsky linear systems over the frBe= C(S')-

respondence with the set of all binary strings of length module of rankn = 6, are listed in figure 4. We con-
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clude that there exigir(n) = >, pr(z) = 24 feed-
back classes of locally Brunovsky linear systems over
the freeR = C(S')-module of rank. = 6. Observe
that, inside each binary stringy of each partitionz

we have mark (if possible) parity control hit,. with
double underline.

4 Procedure

It is known an algorithm to obtain all partitions of a
given integem (see [Knuth, 2004]). We include it for
a complete study of our subject:

input(n}
m=1, h=1, x[1]=n;
for i=2 to n do x[i]=1;
output(x[1]);
while(x[1] not 1)dq
if(x[h]==2)then{
m=m+1, x[h]=1, x[m]=1, h=h-1
telse
r=x[h]+1, t=m-h+1, x[h]=r,
while(t>=r)do{h=h+1, x[h]=r, t=t-#
if(t==0)then{m=h
telsglm=h+1, if(t>1)then{ h=h+1, x[h]=t }
youtput(x[m])} }

Next, we give our procedure to give all col-
ored Ferrers diagram®, associated to a partition
r = i, x3?, .-+, x;", verifying conditions), ii), iii)

andiv).

input(x[1].x[2].- - - x[h],c[1].c[2],- - - ,c[h]){
r=0, k=h, boolean cont=true;
for i=1 to h do if(c[iimod2==1cont)theq
r=i, k=h-1, cont=fals¢
for i=0 to pow(2,k)-1 dg
aux=integerf[i].toBinaryString.ofLength[k]
forj=1to hdo
if(j <r)then wlj]=aux[j]
elseif(j>r) then w[j]=aux[j-1]
w[r]l=sum(aux[j]c[jl,j,1,h,j not r)mod2
output(w[1].w[2]; - - w[h])}}
input(w[1]w(2], - - ,w[h]){
D =g,
fori=1to h dof
if(w[i]=0)then {
add toD a building white block with c[i]
rows and x[i] columns
telse
add toD a building grey block with c[i]
rows and x[i] columng

}output(D)}

Example 4.1. Enumerate allpr(n) feedback classes
of locally Brunovsky linear systems over the fiee=
C(S')-module of rankn = 50 associated to partition
x = 92,63, 3% 2! of n. We haveh = 4 row-blocks in
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HEN [ HEEN
HEN | HEEE
|
|
|
0—000 1—001
w=0000 EEE w=0101
L] [
| HEEN HEN
| HEEE HEN
|
|
EEEEN | L]
LI L
L L
Bl | 2010 Bl | 3—011
O w=0110 O w=0011
L] [
1 [
[N ol
||
|
||
4—100 5—101
w—l;OO L] w:lQOl
L] L=
[ |
ol N
|
|
L] ENEEN |
LI L
L L
L1 6—110 L1 7111
O w=1010 O w=1111
L] [
Figure 5. Feedback classes of Example 4.1

each diagramD, » = 2 position of control bit andc =

h —1 = 3 free bits, then there exigf feedback classes
of locally Brunovsky linear systems over the fige=
C(S')-module of rank: = 380 associated to partition
x=92,63,3% 2 ofn:

0 1 2 3 4 5 6 7
2w, |O O OO 1 1 1 1
65w, [0 1 1 0 1 0 O 1 pcb
3wy |0 0 12 1 0 0 1 1
2wy |0 1 01 0 1 0 1

pcb:parity control bit

with colored Ferrers diagrams of figure 5

5 Number of Locally Brunovsky Linear Systems
Over X = R"~1 @ P an R = C(S')-module
Analogously to section 3, locally Brunovsky lin-
ear systems over the finitely generated modkile=
R"~1 @ P would be describe by a colored Ferrer’s di-
agram with exactlyn building blocks (white or grey)



e=et M w=2
PRr(z)=2"—1=1
e=st1t [ M »=1° [ »=2
L] [
pRr(z)=2"h—"1=2
e=itzt [T »=20 [l w1
L] [
PR(z)=2"—1=2
s=atiz [T w=20 @ »=1
L |
L] [
PR(z)=2"—1=2
e=31,21,11 [ Jil] »=100 [ ][] w=001
L] L]
jDD w=010 DDD w=111
[N EE
L]
pPr(z)=2"—"1=4
s=3t19 [T w=l0 ] =0
] |
L] |
L] [
PR(z)=2"—1=2
e
[N
[
pr(z)=2h—1=1
z=21,14 [l w=10 (Ol w=11
] |
L] |
] |
L] [
pRr(z)=2"h—"1=2
Figure 6. Feedback classes of Example 3.2

where it changes parity conditioi) Parity condition:

if X = R"~! @ P, then there are an odd number of
grey blocks in the whole diagram. So, in this case we
haveif (i not r and c[i] odd number) then (sum,w([i],i,1,h) =0
mod(2) Observe that, in order to write a procedure we
have to replace the computing line

w[r]J=sum(aux[j]c[jl.j,1,h,j not r)+1 mod2.

Theorem 5.1. Let R = C(S;) be the ring of real con-
tinuos functions defined on the unit circle. The num-
berpr(n) of all feedback classes of locally Brunovsky
linear systems oveX = R"™' & P aR = C(S')-
module is given by sum @fz(z) on z, where, ifz

is a partition denoted by = «7*,z5?,--- ,z}", then
pr(x) = 0 if not exists an odd exponestin partition

z, andpr(x) = 2"~ in other case.

Example 5.2. All pr(n) feedback classes of locally
Brunovsky linear systems ov&f = R° @ PanR =
C(S')-module, are listed in figure 6. Note that parti-
tionsz = 32, x = 22,12 andz = 16 verify pr(z) = 0,
so this partitions do not math feedback classes.
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6 Conclusion

In this paper, we design computing procedure for ob-
taining feedback equivalent classes of linear systems
under determined conditions. In this way, our blow-
up relation from integers partitions to feedback classes
lead to suppose that it is possible to design computing
procedures over other similar rings.
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