Estimación de elasticidades de sustitución de Armington: una aplicación para España (1995-2018)

Realizado por el alumno Sergio Domínguez Miguez
Tutelado por el Profesor Don Luis Enrique Pedauga

En León, a 6 de julio de 2019
Tabla de contenido

1. Introducción... 6

2. Objetivos del trabajo... 7
 2.1 Objetivos generales... 7
 2.2 Objetivos específicos... 7
 2.2.1 Objetivos teóricos... 7
 2.2.2 Objetivos prácticos.. 7

3. Metodología... 9

4. Revisión de la literatura o marco teórico... 10
 4.1 Elasticidad de sustitución constante... 10
 4.2 Elasticidad de Armington... 12

5. Método econométrico... 15
 5.1 Especificaciones del metodo .. 15
 5.1.1 El problema de la estacionariedad... 16
 5.1.2 El modelo ARIMA... 17
 5.2 Selección del método econométrico... 18
 5.2.1 Ambas series estacionarias I (0)... 18
 5.2.2 Ambas series integradas I (1) y cointegradas.. 18
 5.2.3 Series no cointegradas o una de ellas distinta de I (1)................................. 19

6. Base de datos ... 20

7. Resultados.. 21
 7.1 Elasticidad de las importaciones industriales... 22
 7.1.1 Prueba Dickey-Fuller para la ratio de producción....................................... 23
 7.1.2 Prueba Dickey-Fuller para la ratio de precios.. 23
 7.1.3 Cointegración de las variables... 23
 7.1.4 Valor de la Elasticidad de Armington... 24
7.2 Elasticidad de las importaciones de servicios... 26
 7.2.1 Prueba Dickey-Fuller para la ratio de producción................................. 27
 7.2.2 Prueba Dickey-Fuller para la ratio de precios 27
 7.2.3 Cointegración de las variables.. 27
 7.2.4 Valor de la Elasticidad de Armington .. 28
7.3 Elasticidad de las exportaciones industriales... 30
 7.3.1 Prueba Dickey-Fuller para la ratio de producción................................. 31
 7.3.2 Prueba Dickey-Fuller para la ratio entre precios y producción total....... 31
 7.3.3 Cointegración de las variables.. 31
 7.3.4 Valor de la Elasticidad de Armington .. 32
7.4 Elasticidad de las exportaciones de servicios 34
 7.4.1 Prueba Dickey-Fuller para la ratio de producción................................. 35
 7.4.2 Prueba Dickey-Fuller para la ratio entre precios y producción total....... 35
 7.4.3 Valor de la Elasticidad de Armington .. 36
8. Conclusiones.. 38
9. Referencias bibliográficas ... 40
10. Anexos.. 43
Índice de Tablas
Tabla 7.1 Estimaciones de la elasticidad de corto y largo plazo España (1995-2018). 21

Índice de Figuras
Figura 7.1 Ratio de producción de bienes importados España (1995-2018)................. 22
Figura 7.2 Ratio de precios de bienes importados España (1995-2018)....................... 22
Figura 7.3 Autocorrelación simple y parcial para la ratio de la primera diferencia de producciones de bienes importados España (1995-2018)................................. 24
Figura 7.4 Ratio de producción de servicios importados España (1995-2018).............. 26
Figura 7.5 Ratio de precios de servicios importados España (1995-2018)..................... 26
Figura 7.6 Autocorrelación simple y parcial para la ratio de la primera diferencia de producciones de servicios importados España (1995-2018)................................. 28
Figura 7.7 Ratio de producción de bienes exportados España (1995-2018)............... 30
Figura 7.8 Ratio de precios y producciones totales de bienes exportados España (1995-
2018)... 30
Figura 7.9 Autocorrelación simple y parcial para la ratio de la primera diferencia de producciones de bienes exportados España (1995-2018)................................. 32
Figura 7.10 Ratio de producción de servicios exportados España (1995-2018)........ 34
Figura 7.11 Ratio de precios y producciones totales de servicios exportados España (1995-2018).. 34
Figura 7.12 Autocorrelación simple y parcial para la ratio de la primera diferencia de producciones de servicios exportados España (1995-2018)................................. 36
Índice de Cuadros

Cuadro 7.1 Regresión del modelo de bienes importados \(\Delta y_t = a_0 + a_1 \Delta x_t + a_2 y_{t-1} + a_3 x_{t-1} + u_t \) ... 25

Cuadro 7.2 Regresión del modelo de servicios importados \(\Delta y_t = a_0 + a_1 \Delta x_t + a_2 y_{t-1} + a_3 x_{t-1} + u_t \) ... 29

Cuadro 7.2 Regresión del modelo de bienes exportados \(\Delta y_t = a_0 + a_1 \Delta x_t + a_2 y_{t-1} + a_3 x_{t-1} + u_t \) ... 33

Cuadro 7.2 Regresión del modelo de bienes exportados \(\Delta y_t = a_0 + a_1 \Delta x_t + u_t \) 37
RESUMEN

La elasticidad de Armington es un concepto ampliamente extendido en teoría económica internacional, y presenta un papel clave en los modelos de equilibrio general computable. Este trabajo presenta dos enfoques diferenciados. En primer lugar, un enfoque teórico a través del cual se lleva a cabo una revisión bibliográfica con la intención de derivar la forma de la elasticidad de Armington. En segundo lugar, un enfoque practico, en el que se utilizaran series temporales para poder estimar el valor de la elasticidad de Armington. Combinando ambos enfoques, el objetivo de este trabajo será estimar dicha elasticidad para el sector industrial y el sector de servicios en España entre los años 1995 y 2018.

Palabras clave: elasticidad de Armington, derivar la elasticidad de Armington, estimar elasticidad de Armington en España.

ABSTRACT

The Armington elasticity is a widely extended concept in international economic theory and presents a key role in computable general equilibrium models. This work is presented with two different approaches. First, a theoretical approach through which a bibliographic review is carried out with the intention of deriving the shape of the Armington elasticity. Second, a practical approach, in which time series were used to estimate the value of the Armington elasticity. Combining both approaches, the objective of this work will be to estimate this elasticity for the industrial and service sector in Spain between 1995 and 2018.

Keywords: Armington elasticity, deriving Armington elasticity, estimating Armington elasticity for Spain.
1. INTRODUCCIÓN

Los modelos económicos que se usan para evaluar los efectos de las políticas económicas generalmente utilizan las variaciones en los precios para identificar como una determinada política se espera que afecte a la producción final, al empleo, a los flujos económicos, así como a otras variables de interés. La magnitud de una política económica generalmente dependerá del tamaño del “shock” producido, así como del comportamiento de las relaciones entre los diferentes agentes.

Este comportamiento en las relaciones de los agentes en la mayor parte de las situaciones toma la forma de elasticidades, las cuales reflejan la medida en que un conjunto de variables se verá afectada por un cambio en un segundo conjunto de variables. En este sentido la elasticidad de Armington representaría el grado de sustitución entre bienes importados y domésticos ante cambios en los precios relativos de ambos bienes (Gallaway, McDaniel, y Rivera, 2003; Pedauga, Sáez, y Velázquez, 2012).

La elasticidad de Armington es un componente esencial en política económica internacional, pues permite ponderar la eficacia de determinadas políticas en el ambiente de comercio internacional que se presenta en el mundo actual. Además, la elasticidad de Armington tiene un papel clave en determinados modelos de comercio internacional como el “border effect” que defiende que las fronteras tienen un efecto negativo sobre el comercio internacional cuya magnitud depende de la sustitución entre bienes domésticos e importados (Gallaway et al., 2003).

Por último, los modelos de equilibrio general computable también dependen en gran medida de los valores de la elasticidad de Armington puesto que las políticas de los diferentes países pueden afectar en mayor o menor medida al equilibrio estimado en función de la elasticidad usada en el modelo.
2. **OBJETIVOS DEL TRABAJO**

2.1 **OBJETIVOS GENERALES**

El objetivo general de este trabajo es estimar la elasticidad de Armington para España para la oferta y la demanda de bienes y servicios. Para realizar la estimación se llevará a cabo un estudio econométrico en base a los datos disponibles, y utilizando la literatura existente para determinar las especificaciones econométricas.

2.2 **OBJETIVOS ESPECÍFICOS**

Para alcanzar este objetivo general, hay que ir siguiendo determinados objetivos específicos que desglosaremos a continuación en objetivos a nivel teórico y objetivos a nivel práctico.

2.2.1 **Objetivos teóricos:**

i. Realizar una revisión de la literatura existente con referencia la elasticidad de Armington, así como a la elasticidad de sustitución constante (CES) de la que se deriva.

ii. Identificar la relación entre la CES y la elasticidad de Armington para poder comprender y trabajar con la misma.

iii. Realizar otra revisión de la literatura existente con respecto a los métodos y especificaciones econométricas que van a ser utilizadas durante la estimación.

iv. Recopilar todos los datos necesarios para llevar a cabo la estimación.

2.2.2 **Objetivos prácticos:**

v. Aplicar el tratamiento metodológico a los datos para transformarlos en series temporales que puedan ser estudiadas por el modelo.

vi. Identificar las especificaciones econométricas que se usaran en el modelo.

vii. Comprobar la estacionariedad y cointegración de las series temporales a través de pruebas Dickey-Fuller para escoger la especificación econométrica que se adapta a los datos.
viii. Estimar el valor de la elasticidad de Armington para bienes y servicios en el corto y largo plazo cuando sea posible mediante el modelo ARIMA especificado en cada caso.

ix. Evaluar los resultados de la estimación mediante las deferentes medidas de bondad de ajuste.

x. Explicar los resultados obtenidos.
3. METODOLOGÍA

En su libro, Mario Bunge (1961) explica que la metodología de un trabajo es el conjunto de procedimientos que otorgan validez a las conclusiones del mismo. La metodología de este trabajo se puede dividir en tres etapas diferenciadas: recopilación de información, estudio de los datos y estimación de la elasticidad de Armington.

La primera etapa, de recopilación de información se llevó a cabo mediante una revisión bibliográfica sobre la CES y sobre la elasticidad de Armington. En esta revisión se exponen los fundamentos teóricos en los que se basa el concepto de elasticidad de Armington. Esta información se obtuvo de bases de datos académicas como Scholar Google, Dialnet o el Catálogo de la biblioteca de la Universidad de León. También se aplicó esta revisión bibliográfica a las especificaciones econométricas del modelo.

En segundo lugar, se recopilaron los datos necesarios para la estimación. Los datos se obtuvieron a través de los informes realizados por el Instituto Nacional de Estadística. Los datos han tenido que ser tratados para homogeneizarlos y que puedan ser comparados. Este tratamiento se llevó mediante la construcción de base de datos utilizando un programa basado en hojas de cálculos para tal fin.

Por último, se utilizó el programa R-studio para el proceso econométrico del trabajo. Esta es la parte central del trabajo, en la que se responde a los objetivos generales del mismo. Para el estudio econométrico se utilizaron pruebas de Dickey-Fuller para comprobar la estacionariedad y la cointegración de las series temporales, que se utilizaran para determinar las especificaciones econométricas del modelo. Una vez conocidas las mismas, se creará el modelo econométrico y se procera a la estimación de la elasticidad de Armington.
4. **REVISIÓN DE LA LITERATURA O MARCO TEÓRICO**

La elasticidad de Armington se deriva de una situación especial de la elasticidad de sustitución constante, o CES por sus siglas en inglés. De este modo debemos comprender primero en que consiste esta CES antes de proceder a explicar la elasticidad de Armington propiamente dicha.

4.1 **ELASTICIDAD DE SUSTITUCIÓN CONSTANTE**

Para comprender la intuición detrás del concepto de elasticidad de sustitución, debemos pensar en una función de utilidad cóncava y dos veces diferenciable, en la que la utilidad total depende de dos o más inputs del modo $U(M, D)$, donde U sería la función de utilidad, M y D las variables independientes de las que dependerá U. En este caso estas variables pueden representar cualquier clase de producción, sin embargo, de aquí en adelante M corresponderá con los bienes importados o producción exterior, mientras que D hará referencia a la producción doméstica, puesto que esto simplificará el proceso de derivar la elasticidad de Armington más adelante. Así, la elasticidad de sustitución representará en que porcentaje responde la utilidad marginal de ambos factores ante un cambio en la ratio de dichos factores (Arrow, Chenery, Minhas, y Solow, 1961).

De este modo, el valor de la elasticidad de sustitución (σ) será igual a:

$$\sigma = \frac{\partial (M/D)}{\partial RMS}$$ (1)

Donde RMS es la relación marginal de sustitución entre ambos factores.

Si tomamos la ecuación $U(M, D) = A(\alpha M^{-\rho} + \beta D^{-\rho})^{-\gamma/\rho}$, para la que α, β, γ, son constantes, y ρ es una variable de modo que $\rho \neq 0$ y $\rho > -1$, podemos hallar las utilidades marginales de ambos factores:

$$UM_M = \frac{\partial U(M, D)}{\partial \alpha_M} = -\frac{\gamma}{\rho} A(\alpha M^{-\rho} + \beta D^{-\rho})^{-\gamma/\rho} \frac{-\gamma - \rho}{\rho} (-\rho)\alpha M^{-\rho - 1}$$ (2)

$$UM_D = \frac{\partial U(M, D)}{\partial \beta_D} = -\frac{\gamma}{\rho} A(\alpha M^{-\rho} + \beta D^{-\rho})^{-\gamma/\rho} \frac{-\gamma - \rho}{\rho} (-\rho)\beta D^{-\rho - 1}$$ (3)
A partir de estos resultados es fácil derivar sus RMS:

\[
RMS = \frac{-\gamma A(\alpha M^{-\rho} + \beta D^{-\rho})}{\beta A(\alpha M^{-\rho} + \beta D^{-\rho})} (-\rho)\alpha M^{-\rho-1} = \frac{\alpha M^{-\rho-1}}{\beta D^{-\rho-1}}
\] (4)

Tras aplicar ciertas transformaciones al resultado:

\[
RMS = \frac{\alpha}{\beta} (\frac{D}{M})^{\rho+1}
\] (5)

Ahora que ya conocemos el valor de la RMS, podemos sustituir en la ecuación (1), de modo que:

\[
\sigma = \frac{\Delta(D/M)}{RMS} = \frac{\Delta(D/M) (D/M)}{\Delta RMS} = \frac{d(D/M) (D/M)}{dRMS}
\] (6)

Tras resolver la derivada parcial de la ecuación (6) utilizando la ecuación (5):

\[
\frac{dRMS}{d(D/M)} = (\rho + 1) \frac{\alpha}{\beta} (\frac{D}{M})^{\rho}
\] (7)

Sustituimos el valor obtenido de la ecuación (7) en (6):

\[
\sigma = \frac{1}{(\rho+1)} \frac{\alpha}{\beta} (\frac{D}{M})^{\rho+1} = \frac{\alpha}{(\rho+1)} (\frac{D}{M})^{\rho+1} = \frac{1}{\rho+1}
\] (8)

De esta manera se puede deducir de la ecuación (8) que el valor de \(\sigma\) dependerá únicamente del valor de \(\rho\), que es constante. De modo que, si podemos estimar el valor de dicho parámetro, es posible hallar la elasticidad de sustitución para cualquier mercado.
4.2 ELASTICIDAD DE ARMINGTON

Partiendo de la ecuación de la elasticidad de sustitución constante, debemos asumir que los consumidores pueden tomar diferentes decisiones de consumo en función del lugar de procedencia de los bienes. Los productos no son diferenciados únicamente por sus características, sino también por donde han sido producidos (Feenstra, Luck, Obstfeld, y Russ, 2014). Esta diferenciación ha sido probada en múltiples ocasiones, por lo que no resulta para nada descabellada (Harberger, 1957; MacDougall, 1975). En su trabajo, McDougal (1975) descubrió una relación positiva entre la relevancia en un mercado en los Estados Unidos o en Reino Unido y la productividad del trabajo en dicho mercado de cada país.

Sin embargo, hay que tener en cuenta que la elasticidad de Armington existe tanto en las importaciones como en las exportaciones, así como también existe una elasticidad para la demanda y una elasticidad para la oferta. Esto significa que para un mismo país podemos hallar hasta 4 elasticidades de Armington diferentes: Oferta de bienes exportados, oferta de bienes importados, demanda de bienes exportados y demanda de bienes importados. Por lo tanto, necesitaremos derivar más de una ecuación diferente (Ruhl, 2008; Saito, 2004).

Para la demanda de bienes importados, podemos crear una CES que compare los bienes importados M, y los bienes domésticos D. En los modelos de demanda tradicionales se asume que la elasticidad entre ambos tipos de bienes es infinita y que la ratio de precios es constante. Sin embargo, resulta razonable pensar que en una economía lo suficientemente grande la elasticidad entre ambos sea significativa (Armington, 1969).

Al aplicar este supuesto a la ecuación CES nos quedamos con una ecuación de la forma (Reinert y Roland-Holst, 1992; Welsch, 2006):

\[U(M, D) = \left(\beta M^{(\sigma - 1)/\sigma} + (1 - \beta)D^{(\sigma - 1)/\sigma} \right)^{\sigma/(1 - \sigma)} \]

(9)
Ecuación muy similar a la utilizada anteriormente. En este caso σ representaría la elasticidad de Armington y es el parámetro que estimar, y β es una constante. Como ya sabemos, la ecuación CES nos permite obtener σ sin la necesidad de estimar ninguna otra variable. Esta ecuación nos presenta un problema de optimización tal que (Pedauga et al., 2012; Simonovska y Waugh, 2011):

$$\max: OB = (\beta M^{(\sigma-1)/\sigma} + (1 - \beta)D^{(\sigma-1)/\sigma})^{\sigma/(1-\sigma)} \tag{10}$$

Sujeto a la condición de primer orden:

$$OB \cdot p = D \cdot p_d + M \cdot p_m \tag{11}$$

Donde OB es la demanda total de bienes, p es el precio total de los bienes y $p_d y p_m$ son los precios de los bienes domésticos e importados. Al resolver el problema de optimización llegamos a:

$$\frac{M}{D} = \left[\frac{\beta}{1 - \beta} \frac{p_d}{p_m} \right]^\sigma \tag{12}$$

Que se pueda linealizar tomando logaritmos sobre la ecuación (Blonigen y Wilson, 1999):

$$\ln \left(\frac{M}{D} \right) = \sigma \ln \left(\frac{\beta}{1 - \beta} \right) + \sigma \ln \left(\frac{p_d}{p_m} \right) \tag{13}$$

Para la demanda de bienes exportados el problema de optimización tiene la misma forma, pero usando las exportaciones (X) y su precio (p_x) con respecto a la producción total en el exterior (E) y el precio en el exterior (p_e). Así la ecuación final quedaría de la forma:

$$\ln \left(\frac{X}{E} \right) = \sigma \ln \left(\frac{\beta}{1 - \beta} \right) + \sigma \ln \left(\frac{p_e}{p_x} \right) \tag{14}$$
Cuando tratamos de obtener la oferta de bienes exportados, la ecuación a maximizar cambia, pues ahora esta depende de las empresas. Así el problema de optimización sería (Pedauga et al., 2012):

\[\text{max}: PB \cdot p = D \cdot p_d + X \cdot p_x\] \hspace{1cm} (15)

Sujeto a:

\[PB = \left(\beta X^{(\sigma - 1)/\sigma} + (1 - \beta)D^{(\sigma - 1)/\sigma} \right)^{\sigma/(1-\sigma)}\] \hspace{1cm} (16)

Donde PB se refiere a la producción total. Al igual que antes, resolvemos el problema de optimización:

\[
\frac{D}{X} = \left[\frac{p_d \beta}{PB \cdot (1 - \beta)} \right]^\sigma \hspace{1cm} (17)
\]

La ecuación (17) se linealiza de nuevo tomando logaritmos:

\[
\ln\left(\frac{D}{X} \right) = \sigma \ln \left(\frac{\beta}{1 - \beta} \right) + \sigma \ln \left(\frac{p_d}{PB} \right) \hspace{1cm} (18)
\]

Por último, la oferta de importaciones presenta vuelve a presentar el mismo problema de optimización que la oferta de exportaciones, pero comparando E y \(p_e \) con M y \(p_m \). Que al resolver queda:

\[
\ln\left(\frac{E}{M} \right) = \sigma \ln \left(\frac{\beta}{1 - \beta} \right) + \sigma \ln \left(\frac{p_e}{PB} \right) \hspace{1cm} (19)
\]
5. MÉTODO ECONOMÉTRICO
5.1 ESPECIFICACIONES DEL MÉTODO

En los modelos económicos es normal asumir que los mercados responden de forma instantánea ante cualquier cambio o desajuste. Sin embargo, la realidad puede mostrar un comportamiento de los agentes diferente al esperado, debido a la diferencia temporal que puede existir entre el momento en el que se produce el cambio y el momento en él se produce la respuesta de los agentes (Gallaway et al., 2003). Por esto resulta más adecuado llevar a cabo un estudio de series temporales que nos permita tener en cuenta estas distorsiones. La ecuación (13) también puede ser expresada como:

\[y = a_0 + a_1 x + y_1 y_{t-1} \]

(20)

Donde \(y = \ln(M/D) \), \(a_0 = \sigma \ln(\beta / 1 - \beta) \), \(a_1 \) representa la elasticidad de sustitución, y \(x = \ln(p_d/p_m) \) (De Melo y Robinson, 1989).

La misma transformación puede ser aplicada para la ecuación (18), donde \(y = \ln(D/X) \) y \(x = \ln(p_d/PB) \). Todas las iteraciones que se aplican sobre la ecuación (20) a continuación se aplican del mismo modo para este supuesto. Las ecuaciones (14) y (19) también pueden ser expresadas de la misma manera. Sin embargo, por las características de las mismas estas no serán tratadas al no poder acceder a los datos necesarios para estimarlas.

Esta ecuación puede volverse a transformar para ajustarla al largo plazo si se introduce una variable atrasada en un periodo en la ecuación (11):

\[\ln \left(\frac{M_t}{D_t} \right) = \alpha_1 \ln \left(\frac{M_{t-1}}{D_{t-1}} \right) + \sigma \ln \left(\frac{\beta}{1-\beta} \right) + \sigma \ln \left(\frac{p_d}{p_m} \right) + \epsilon_t \]

(21)

La ecuación (13) nos permite entonces estimar la elasticidad de Armington a largo plazo a través de la elasticidad a corto plazo (Németh, Szabó, y Ciscar, 2011):

\[\sigma_L = \frac{\sigma}{1-\alpha_1} \]

(22)
5.1.1 El problema de la estacionariedad

El uso de series temporales simplifica de forma significativa el análisis, pero hay que tener cuidado, dado que las ecuaciones $y = \ln(M/D)$ y $x = \ln(p_d/p_m)$ pueden estar constituidas por series temporales que son no estacionarias. Cuando las series son no estacionarias, el análisis de estas nos puede llevar a conclusiones incorrectas en las que el valor de σ aparece como estadísticamente significativo, pero no tiene ninguna significación económica. En otras palabras se trataría de un resultado espurio (Welsch, 2006).

El problema de la estacionariedad puede ser evitado si se lleva a cabo un estudio de integración sobre los datos. El orden de integración mide el número de veces que es necesario integrar los datos para llegar a la situación estacionaria (DeJong, Nankervis, Savin, y Whiteman, 1992; Lai y Cheung, 1995). De este modo, un orden de integración 0 representaría una serie temporal completamente estacionaria. El orden 1, una serie que ha sido integrada una vez para alcanzar la estacionariedad. El orden 2, una serie que ha sido integrada dos veces. Y así sucesivamente. Se representa de la forma $I(n)$, donde n es el orden de integración de la serie temporal.

El orden de integración de una serie temporal puede ser estimada a través de la prueba desarrollada por Dickey y Fuller (1979). La prueba Dickey-Fuller es una prueba estadística que compara una serie temporal con un paseo aleatorio para poder determinar la estacionariedad de la misma. Para ello se apoya en la estimación de la raíz unitaria de la serie temporal. Cuanto más cercano sea la raíz al valor que mostraría en un paseo aleatorio, más cercana a la estacionariedad se encontrara la serie temporal. Se plantea como hipótesis nula que la serie temporal es estacionaria y se la identifica como $I(0)$, y como hipótesis alterna que la serie es no estacionaria, y por lo tanto está integrada $I(1)$. Normalmente un T-estadístico con una significancia del 5% es suficiente para declarar una serie como estacionaria (Dickey y Fuller, 1979; Diebold y Rudebusch, 1991).
5.1.1.1 Cointegración

Un grupo de series temporales están cointegradas si se puede encontrar una combinación lineal de las mismas que presenta un estado de estacionariedad (Enders, 2010; Engle y Granger, 1987). Para que la cointegración sea posible ambas series deben ser integradas del mismo orden. Sin embargo, esta es una condición necesaria, pero no suficiente. Es imprescindible comprobar la cointegración, aunque la condición se cumpla.

Para comprobar la cointegración, se lleva a cabo una estimación con los residuos del modelo que contiene a ambas series. Si los residuos son estacionarios eso significa que las series están cointegradas (Enders, 2010).

5.1.2 El modelo ARIMA

El modelo ARIMA (Auto Regressive Integrated Moving Average) es un modelo de estimación para series estocásticas, que se basa en asunción de que, en las series temporales, el valor de la variable en un determinado momento del tiempo depende del valor de dicha variable en un tiempo anterior. Por lo tanto, el modelo ARIMA puede identificar dicha relación y usarla, para llevar a cabo una estimación del valor de la variable en el futuro, suponiendo que dicha relación se mantuviere constante (Contreras, Espínola, Nogales, y Conejo, 2003; Pindyck y Rubinfeld, 1998).

5.1.2.1 Metodología Box-Jenkins

Box-Jenkins es un método de trabajo que se aplica a los modelos ARIMA y que consta de 4 de pasos. En primer lugar, identificar la estacionariedad, así como la estacionalidad si existiera y la estimar el orden de integración. El segundo paso es analizar las autocorrelaciones simple y parcial para proponer posibles modelos ARIMA que se adecuen a los datos. En el tercer paso se estiman los modelos propuestos. Por último, se juzgan los modelos estimados para escoger el que mejor se adecua a los datos a estimar. (Aznar y Trivez, 1993; Hipel, McLeod, y Lennox, 1977).

Este método nos aporta un marco formal para el estudio econométrico, sirviendo de guía para el proceso, lo que previene de conclusiones espurias y otorga validez a las mismas.
5.2 SELECCIÓN DEL MÉTODO ECONOMETRICO

En su trabajo, Gallaway et al. (2003) resuelve la especificación econometrisca de la ecuación (20) de tres formas distintas en función de las propiedades de las series temporales de proporciones entre cantidades y proporciones entre precios. La existencia de cointegración provoca la necesidad de corregir los errores en la estimación. Por lo tanto, es necesario conocer el orden de integración de las series, y si las mismas están cointegradas para determinar las especificaciones de la estimación (Gallaway et al., 2003; Mc Daniel y Balisterri, 2003; Pedauga et al., 2012). Las tres especificaciones mencionadas son explicadas en los puntos 4.2.1, 4.2.2 y 4.2.3.

5.2.1 Ambas series estacionarias I (0)

Cuando ambas series son integradas de orden cero, la ecuación (20) se resuelve de la forma:

\[y_t = a_0 + a_1 x_t + a_2 y_{t-1} + u_t \] \hspace{1cm} (23)

Donde \(y \) es la ratio entre los bienes, \(x \) es la ratio entre los precios y \(u_t \) representa el error. Esta especificación puede estimar la elasticidad a largo plazo como \(a_1/(1 - a_2) \) siempre que \(0 < a_2 < 1 \). Si no, la elasticidad de Armington será \(a_1 \).

5.2.2 Ambas series integradas I (1) y cointegradas

Cuando ambas series están cointegradas, Gallaway et al. (2003) especifican una única ecuación para estimar la elasticidad de Armington:

\[\Delta y_t = a_0 + a_1 \Delta x_t + a_2 y_{t-1} + a_3 x_{t-1} + u_t \] \hspace{1cm} (24)

Donde \(\Delta y = y_t - y_{t-1} \), \(y_t \) y \(u_t \) representan el error. Este modelo permite estimar completamente la elasticidad en el corto plazo, así como en el largo. La estimación en el corto plazo será \(a_1 \) y en el largo plazo \(-a_3/a_2\).
5.2.3 Series no cointegradas o una de ellas distinta de I (1)

Si las series no comparten orden de integración, o no están cointegradas, no es posible hacer una estimación en el largo plazo. Por lo tanto, el modelo quedaría de la forma:

\[\Delta y_t = a_0 + a_1 \Delta x_t + u_t \] \hspace{1cm} (25)

En este caso el valor de la elasticidad de Armington es \(a_1 \).
6. BASE DE DATOS

Los datos utilizados en el estudio han sido obtenidos a través del Instituto Nacional de Estadística (INE). Los datos que he utilizado han sido los valores trimestrales desde 1995 hasta 2018 de las importaciones, las exportaciones, y de la producción total doméstica, así como de los precios domésticos y de las importaciones.

Para realizar la estimación eran necesarios los valores de la cantidad demandada y producida domésticamente, y en el exterior, y de los precios domésticos y en el exterior. He utilizado la oferta y la demanda industrial en España. También he utilizado los datos referentes al sector servicios. Para el valor total de la producción he sumado el valor de la producción doméstica a las exportaciones.

La base de datos del INE solo proporcionaba datos desactualizados, de periodos temporales distintos (1995-2010, 2010-2018) por lo que fue necesario ajustarlos a un año base (2010) en primer lugar para poder crear una serie temporal. Para llevar a cabo este ajuste se coloco a los datos en forma de índice encadenado (valor nominal), lo que no me permitía crear una serie temporal ni compararlos entre sí. Para poder estandarizarlos, utilizando el año base utilizado por los datos (2010), he ajustado los precios valiéndome del valor conocido del año anterior o siguiente y de la variación interanual que también aporta el INE. Mediante una fórmula sencilla:

\[
\text{Inflación}_{t\pm1} \cdot \frac{\text{Valor Encadenado}}{\text{Inflación}_t} = \text{Valor Real}
\]

En la que se utiliza la inflación del año anterior si nos encontramos en un año posterior al año base y viceversa. Por lo tanto, es necesario conocer el valor de la inflación para poder calcular el valor real de la producción en cada año.

Los datos los he editado utilizando el programa Excel, lo que me ha permitido organizarlos y editarlos de forma rápida y efectiva. Una vez ordenados y estandarizados me he valido del programa R-studio, y a través del paquete “tseries” he transformado las cadenas de datos en series temporales.
7. RESULTADOS

Para responder a el objetivo general de este trabajo, han sido estimadas diferentes elasticidades referentes a España. La tabla 7.1 muestra los resultados de las elasticidades estimadas. Los mismos serán explicados a lo largo de los apartados de este capítulo.

Tabla 7.1 Estimaciones de la elasticidad de corto y largo plazo

España (1995-2018)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Ecuación</th>
<th>Corto Plazo</th>
<th>Largo Plazo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Elasticidad</td>
<td>Significación</td>
</tr>
<tr>
<td>Bienes</td>
<td>(24)</td>
<td>1,780</td>
<td>0%</td>
</tr>
<tr>
<td>Exportaciones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servicios</td>
<td>(24)</td>
<td>4,124</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bienes</td>
<td>(24)</td>
<td>-0,954</td>
<td>0%</td>
</tr>
<tr>
<td>Importaciones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servicios</td>
<td>(25)</td>
<td>-1,041</td>
<td>0%</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia.
7.1 ELASTICIDAD DE LAS IMPORTACIONES INDUSTRIALES

En primer lugar, creo las series temporales \(y = \ln(M/D) \), \(x = \ln(p_d/p_m) \) siguiendo la ecuación (20). Estas son las series temporales que utilizare para estimar la elasticidad. Las figuras 7.1.1 y 7.1.2 muestran su progresión a lo largo del tiempo.

Figura 7.1 Ratio de producción de bienes importados
España (1995-2018)

![Gráfico de producción de bienes importados](image1)

Fuente: elaboración propia.

Figura 7.2 Ratio de precios de bienes importados
España (1995-2018)

![Gráfico de precios de bienes importados](image2)

Fuente: elaboración propia.

En primer lugar, hay que comprobar la estacionariedad de ambas series para identificar la especificación econométrica y evitar resultados espurios. Para ello, se lleva a cabo la prueba Dickey-Fuller sobre las dos series temporales.
7.1.1 Prueba Dickey-Fuller para la ratio de producción

Para la serie temporal sobre la ratio de producción, la primera prueba se lleva a cabo con una regresión con tendencia y 1 retardo. El resultado nos muestra un t-estadístico de -2.6441 que se encuentra por encima de los valores críticos, por lo que se rechaza la hipótesis nula. Esto significa que la serie no puede ser I (0).

Por lo tanto, hay que comprobar la primera diferencia. Al aplicar la prueba de regresión sin tendencia ni deriva y 1 retardo a la primera diferencia, el t-estadístico -5.8619 en este caso sí que se encuentra por debajo de los valores críticos, por lo que podemos afirmar que la serie es I (1) al 1% de significancia.

7.1.2 Prueba Dickey-Fuller para la ratio de precios

La primera prueba se realiza mediante una regresión con deriva y 5 retardos, la cual arroja un t-estadístico de -2.0951 que sobrepasa a los valores críticos, lo que nos indica que la serie no puede ser I (0) porque se rechaza la hipótesis nula.

La prueba sobre la primera diferencia la llevo a cabo con una regresión sin tendencia ni deriva y con 1 retardo. El resultado es un t-estadístico de -5.2269 que está dentro de los valores críticos, con lo que se puede asumir que la serie también es I (1).

7.1.3 Cointegración de las variables

Como ambas series son integrales del mismo orden es necesario estudiar la cointegración. Para ello en primer lugar compruebo la autocorrelación simple y parcial de la primera diferencia de la variable, tal y como se aprecia en la figura 7.1.3.
Estudiando la forma de las autocorrelaciones, concluyo que el modelo que sigue en un ARMA (1,1,1). A continuación, creo el modelo que contenga las dos variables, del que extraigo los residuos. Como ya expliqué, si los residuos son estacionarios, entonces las series están cointegradas. Por lo que aplico la prueba de Dickey-Fuller a los residuos.

Los resultados de la prueba sin tendencia y deriva y 1 retardo es un t-estadístico de -5.862, que es suficiente para confirmar la hipótesis nula. Por lo tanto, las series están cointegradas.

7.1.4 Valor de la Elasticidad de Armington

Como se explicó en el punto 5.2.2, cuando ambas series están cointegradas la ecuación (24) especifica las condiciones del modelo. De este modo, la regresión del modelo queda resumida en cuadro 7.1:
Cuadro 7.1 Regresión del modelo de bienes importados

\[\Delta y_t = a_0 + a_1 \Delta x_t + a_2 y_{t-1} + a_3 x_{t-1} + u_t \]

Fuente: elaboración propia.

Así podemos observar como \(a_1 = -0.953806 \) con una significancia próxima a 0%. Esto significa que la elasticidad de Armington para las importaciones industriales en el corto plazo es igual a -0.954.

Por otro lado, los valores \(a_2 = -0.023228 \) y \(a_3 = 0.016031 \) reportan unos valores de significación muy alejados del 0%. Tras comprobar la significación cointegrada de ambos valores, podemos concluir que el valor de la elasticidad de Armington en el largo plazo es igual a -0.69 con una significancia del 20%.
7.2 ELASTICIDAD DE LAS IMPORTACIONES DE SERVICIOS

Las series temporales \(y = \ln(M/D) \), \(y = \ln(p_d/p_m) \) mantienen las mismas características que en el apartado 7.1, pero en este caso con los datos referentes al sector servicios. Podemos ver la progresión temporal de las series mediante las figuras 7.2.1 y 7.2.2.

Figura 7.4 Ratio de producción de servicios importados

España (1995-2018)

![Gráfica 7.4 Ratio de producción de servicios importados](image1)

Fuente: elaboración propia.

Figura 7.5 Ratio de precios de servicios importados

España (1995-2018)

![Gráfica 7.5 Ratio de precios de servicios importados](image2)

Fuente: elaboración propia.

De nuevo, es necesario comprobar la estacionariedad de las dos series las dos series temporales a través de la prueba Dickey-Fuller.
7.2.1 Prueba Dickey-Fuller para la ratio de producción

La primera prueba en la serie se realiza a través de una regresión sin tendencia y sin deriva y con 1 retardo. La prueba mostraba un t-estadístico de -0.9965 que estaría por encima de los valores críticos, con lo que podemos rechazar la hipótesis nula. Esto demuestra que la serie no es I (0).

Como la serie no es estacionaria, hay que comprobar la primera diferencia. Se utiliza la prueba con una regresión sin tendencia ni deriva y 3 retardos de la primera diferencia de la serie. El t-estadístico que es -3.2701 es inferior a los valores críticos, aceptando la hipótesis nula con un 1% de significancia. Podemos afirmar por lo tanto que, para la ratio de producción, la serie es I (1).

7.2.2 Prueba Dickey-Fuller para la ratio de precios

La prueba Dickey-Fuller es llevada a cabo mediante una regresión con tendencia y deriva y 1 retardo. El resultado del t-estadístico para esta prueba es -1.0592 que vuelve a encontrarse por encima de los valores críticos, rechazando la hipótesis nula. Esto significa que la variable sin diferenciar no es estacionaria.

Para probar la primera diferencia se utilizó una regresión con tendencia ni deriva y con 1 retardo. Con un t-estadístico de -6.9276 como resultado. Se puede afirmar al 1% de significancia que la serie también es I (1), dado que el t-estadístico se encuentra dentro de los valores críticos.

7.2.3 Cointegración de las variables

Al igual que en el apartado 7.1, ambas series son integradas del mismo orden. Por esta razón debemos estudiar la cointegración de la serie referente a la ratio de producción, en primer lugar, comprobando la autocorrelación simple y parcial de la primera diferencia de la variable. La figura 7.2.3, nos muestra la forma de las autocorrelaciones para poder estudiarlas.
Al estudiar las autocorrelaciones, estimo que el modelo se asemeja de nuevo a un modelo ARMA (1,1,1). Siguiendo el mismo proceso, a continuación, creo un modelo en el que estén contenidas las dos variables, del cual voy a estudiar los residuos. A continuación, aplico la prueba de Dickey-Fuller a los residuos, los cuales deben ser estacionarios para poder afirmar que existe cointegración.

La prueba a los residuos utilizando una regresión sin tendencia ni deriva y 1 retardo muestra un t-estadístico de -8.0103, muy inferior a los valores críticos. Por lo tanto, los residuos son estacionarios, lo que confirma que ambas series están cointegradas al igual que en el apartado 7.1.

7.2.4 Valor de la Elasticidad de Armington

Utilizando las especificaciones ya conocidas cuando ambas series están cointegradas, estimo los valores a_1, a_2, y a_3 en el cuadro 7.2:
Cuadro 7.2 Regresión del modelo de servicios importados

$$\Delta y_t = a_0 + a_1 \Delta x_t + a_2 y_{t-1} + a_3 x_{t-1} + u_t$$

<table>
<thead>
<tr>
<th>Residuos:</th>
<th>Min</th>
<th>1Q</th>
<th>Media</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.102342</td>
<td>-0.009985</td>
<td>0.000675</td>
<td>0.013632</td>
<td>0.061667</td>
</tr>
</tbody>
</table>

| Coeficientes: | Estimación | Error estándar | T-Valor | Pr(>|t|) |
|---------------|-------------|----------------|---------|----------|
| Intercepto | 0.015555 | 0.06308 | 1.672 | 0.09795 .|
| dfx.s | -1.04068 | 0.17469 | -5.957 | 4.77e-08 *** |
| Ly.s | 0.04523 | 0.02505 | 1.806 | 0.07424 .|
| Lx.s | -0.11730 | 0.03979 | -2.948 | 0.00406 ** |

Codigos de significación: 0 '***', 0.001 '**', 0.01 '*', 0.05,'.', 0.1 ' ' 0 '***', 0.001 '**', 0.01 '*', 0.05,'.', 0.1 ' '

Residuos del error estándar: 0.02436 con 91 grados de libertad
Multiplos del R-Cuadrado : 0.3557, R-Cuadrado ajustado: 0.3345
P-valor: 9.572 e-09

Fuente: elaboración propia.

El valor $a_1 = -1.04068$ tiene una significancia próxima a 0%. Partiendo de este valor, podemos afirmar de forma segura que el valor de la elasticidad de Armington en el corto plazo para las importaciones de servicios será igual a -1.041.

En cuanto al largo plazo, los valores estimados $a_2 = 0.04523$ y $a_3 = -0.11730$ mantienen una significación mucho más cercana al 0% que en el apartado 7.1. Además, al comprobar la significación cointegrada entre ambos valores, la significancia de esta es del 7.8%. Con todo esto, la elasticidad de Armington en el largo plazo para las importaciones de servicios es de -2.607 con una significancia inferior al 10%, lo que otorga mucha seguridad a el resultado.
7.3 ELASTICIDAD DE LAS EXPORTACIONES INDUSTRIALES

En este caso, las series temporales se formarán a través de la ecuación (18), que al igual que en los apartados anteriores es explicada a partir de la ecuación (20). Los valores de las variables serán \(y = \ln(D/X) \) y \(x = \ln(p_d/PB) \). La progresión temporal de las series es mostrada a través de las figuras 7.3.1 y 7.3.2.

Figura 7.7 Ratio de producción de bienes exportados
España (1995-2018)

![Gráfica de producción de bienes exportados](image1)

Fuente: elaboración propia.

Figura 7.8 Ratio de precios y producciones totales de bienes exportados
España (1995-2018)

![Gráfica de precios y producciones](image2)

Fuente: elaboración propia.

Aunque la formulación de las series haya cambiado, es imprescindible realizar la prueba de estacionalidad para asegurar que los resultados obtenidos son válidos, así como para escoger las especificaciones econométricas del modelo.
7.3.1 Prueba Dickey-Fuller para la ratio de producción

A partir de una regresión con tendencia y 3 retardos, la prueba de Dickey-Fuller muestra un t-estadístico igual a -3.068, el cual se encuentra cercano a los valores críticos. Sin embargo, al tener un valor mayor que estos debemos rechazar la hipótesis nula. La serie no es estacionaria.

Por lo tanto, se vuelve a realizar la prueba sobre la primera diferencia de la serie, en este caso sobre una regresión sin tendencia ni deriva y de nuevo con 3 retardos. La cual nos aporta un t-estadístico de -3.1368, que en este caso sí que se encuentra incluido por los valores críticos. Por ello la variable es integrada de primer orden I (0), con una significancia del 1%.

7.3.2 Prueba Dickey-Fuller para la ratio entre precios y producción total

Para realizar la prueba sobre la variable, utilizo una regresión con tendencia y 5 retardos. Para esta prueba, el t-estadístico es -3.1655, que de nuevo se aproxima a los valores críticos, pero sin estar incluido en ellos. Con esto se puede concluir que la serie no es I (0).

Una nueva prueba sobre la primera diferencia es llevada a cabo mediante una regresión sin tendencia ni deriva, y con 4 retardos. En esta prueba el t-estadístico es -3.598, que es inferior a los valores críticos, confirmando que la variable es I (1), también con una significación del 1%.

7.3.3 Cointegración de las variables

De nuevo, las dos series son integradas de orden 1. Con lo que el mismo proceso para estudiar la cointegración es llevado a cabo. En primer lugar, se identifican las autocorrelaciones simple y parcial de la primera diferencia de la ratio de producciones mediante la figura 7.3.3.
El estudio de las autocorrelaciones sugiere un modelo ARIMA (3,1,0) para la primera diferencia de la variable. Tras crear el modelo que contiene las dos variables, pasamos a estudiar los residuos, para determinar si las series están cointegradas.

La prueba de Dickey-Fuller sobre los residuos mediante una regresión sin tendencia ni deriva y 3 retardos nos da un t-estadístico de -2.8002, inferior a los valores críticos. Con esto, podemos concluir que los residuos son estacionarios, y que las dos series están cointegradas al igual que en los apartados 7.1 y 7.2.

7.3.4 Valor de la Elasticidad de Armington

Las especificaciones del modelo vuelven a ser las mismas que en los dos apartados anteriores. De nuevo resumo la regresión del modelo en el cuadro 7.3:
Cuadro 7.3 Regresión del modelo de bienes exportados

\[\Delta y_t = a_0 + a_1 \Delta x_t + a_2 y_{t-1} + a_3 x_{t-1} + u_t \]

| \[\text{formula} = \text{dy.b} - \text{dx.b} + \text{Ly.b} + \text{Lx.b}\] |
|-----------------|-----------------|------------------|-----------------|-----------------|
| **Min** | **1Q** | **Media** | **3Q** | **Max** |
| -0.137976 | -0.014333 | 0.001741 | 0.017243 | 0.048910 |

Coeficientes:

| | Estimación | Error estándar | T-Valor | Pr(>|t|) |
|--------------------|------------|----------------|---------|----------|
| Interceo | 0.057834 | 0.228211 | 0.253 | 0.801 |
| dfx.b | 1.780438 | 0.068488 | 25.996 | <2e-16 *** |
| Ly.b | 0.011749 | 0.031009 | 0.379 | 0.706 |
| Lx.b | 0.007453 | 0.034183 | 0.218 | 0.828 |

Residuos:

<table>
<thead>
<tr>
<th>Min</th>
<th>1Q</th>
<th>Media</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.137976</td>
<td>-0.014333</td>
<td>0.001741</td>
<td>0.017243</td>
<td>0.048910</td>
</tr>
</tbody>
</table>

Codigos de significación: 0 '***', 0.001 '**', 0.01 '*', 0.05, '.', 0.1 ' '.

Residuos del error estándar: 0.02815 con 91 grados de libertad
Multiplos del R-Cuadrado: 0.8903, R-Cuadrado ajustado: 0.8867
P-valor: < 2.2e-16

Para \(a_1\) obtenemos un valor \(a_1 = 1.780438\) cuya significancia es prácticamente 0%. Apoyándonos en el valor de la significación, el valor de la elasticidad de Armington en el corto plazo para las exportaciones industriales es igual 1.78 y su significancia será del 0%.

Para el valor de la elasticidad a largo plazo, obtenemos los resultados \(a_2 = 0.011749\) y \(a_3 = 0.007453\). Sin embargo, los niveles de significación de ambos resultados son superiores al 70%. La significación tampoco se reduce cuando comprobamos el valor de la misma de ambos resultados relacionados. Por esto, el valor de la elasticidad de Armington en el largo plazo igual a 0.634 no es confiable, pues su significación es del 70%.
7.4 ELASTICIDAD DE LAS EXPORTACIONES DE SERVICIOS

Al igual que en el apartado 7.3 las series temporales se forman a partir de las variables
\[y = \ln\left(\frac{D}{X}\right) \quad y \quad x = \ln\left(\frac{p_{d}}{PB}\right), \]
especificadas en la ecuación (18). Tomando en este caso los datos del sector servicios al igual que hice en el apartado 7.2, para llevar a cabo la estimación. Mediante las figuras 7.3.1 y 7.3.2 podemos ver la progresión de ambas series a lo largo del tiempo.

Figura 7.10 Ratio de producción de servicios exportados
España (1995-2018)

Fuente: elaboración propia.

Figura 7.11 Ratio de precios y producciones totales de servicios exportados
España (1995-2018)

Fuente: elaboración propia.
La necesidad de probar la estacionariedad se mantiene, al igual que en los apartados anteriores. Esta misma se lleva a cabo a través de el mismo proceso mediante la prueba de Dickey-Fuller.

7.4.1 Prueba Dickey-Fuller para la ratio de producción

Sobre la variable sin diferenciar se realiza una prueba de Dickey-Fuller a través de una regresión con deriva y 4 retardos. El t-estadístico de la prueba es -2.428, el cual es superior a los valores críticos, con lo que la hipótesis nula se declara como rechazada, indicando que la serie no es I (0).

Al volver a realizar la prueba, en esta ocasión sobre la primera diferencia mediante una regresión sin tendencia ni deriva, y con 3 retardos, obtenemos un t-estadístico igual a -2.743, que es inferior a los valores críticos, con lo que la serie es declarada como estacionaria de orden 1.

7.4.2 Prueba Dickey-Fuller para la ratio entre precios y producción total

La prueba se realiza con una regresión con tendencia y 5 retardos, con un t-estadístico igual a -2.3269. Este valor es muy superior a los valores críticos, por lo que una vez más hay que rechazar la hipótesis nula y declarar a la serie como no estacionaria, y por lo tanto como no integrada de orden 0.

Se lleva a cabo una segunda prueba, esta vez con la primera diferencia de la serie. La prueba utiliza una regresión sin tendencia ni deriva, y con 4 retardos. El t-estadístico en esta ocasión es -1.2906, el cual es superior a los valores críticos. En esta ocasión, la primera diferencia de la serie también es declarada como no estacionaria, por lo que la serie tampoco será I (1).

Como la primera diferencia no es estacionaria, debemos hacer la prueba sobre la segunda diferencia. En esta segunda prueba, la regresión vuelve a ser sin tendencia ni deriva, y con 3 retardos. El t-estadístico para esta prueba es -6.1372, que esta vez, si es inferior a los valores críticos, con lo que confirmamos la hipótesis nula al 1% de significancia, declarando la serie como I (2).
7.4.3 Valor de la Elasticidad de Armington

Como las series presentan diferentes ordenes de integración, la cointegración de las mismas resulta imposible. Al estudiar la autocorrelación simple y parcial de la segunda diferencia de la serie mediante la figura 7.4.3, podemos identificar al modelo como un ARIMA (2,2,0).

![Gráfico de autocorrelación simple y parcial](image)

Fuente: elaboración propia.

Para especificar el modelo, me baso en la ecuación (25), expuesta en el apartado 5.2.3. Sin embargo, esta especificación solo nos permite estimar el valor de la elasticidad en el corto plazo, el cual será igual al valor de a_1 en nuestra estimación. La regresión toma la forma presentada en el cuadro 7.4:
Cuadro 7.2 Regresión del modelo de bienes exportados

\[\Delta y_t = a_0 + a_1 \Delta x_t + u_t \]

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Media</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuos</td>
<td>-0.21125</td>
<td>-0.10788</td>
<td>-0.01378</td>
<td>0.08522</td>
<td>0.29437</td>
</tr>
</tbody>
</table>

Coeficientes:

| | Estimación | Error estándar | T-Valor | Pr(>|t|) |
|------------|------------|----------------|---------|----------|
| Intercepto | -0.006644 | 0.014222 | -0.467 | 0.641 |
| dfx.s | 4.123884 | 0.400863 | 10.288 | <2e-16 ***|

Codigos de significación: 0 '***', 0.001 '**', 0.01 '*', 0.05, '.', 0.1 ' '

Residuos del error estándar: 0.1379 con 92 grados de libertad
Multiplos del R-Cuadrado : 0.535, R-Cuadrado ajustado: 0.5299
P-valor: <2.2e-16

Fuente: elaboración propia.

Al llevar a cabo la estimación, obtenemos que \(a_1 = 4.123884 \) y que su significación es muy próxima al 0%. Por lo tanto, el valor de la elasticidad de Armington en el corto plazo para las exportaciones de servicios es igual a 4.124.

Como ya se comentó en el párrafo anterior, no es posible calcular la elasticidad en el largo plazo, debido a las características de las especificaciones econométricas en el modelo escogido.
8. CONCLUSIONES

Tras llevar a cabo las estimaciones de las diferentes elasticidades en el corto y largo plazo, resulta oportuno aportar ciertas conclusiones a los resultados obtenidos.

Los resultados para las elasticidades en el corto plazo presentan todos ellos significancias cercanas al 0%. Esto otorga una gran confianza en los valores obtenidos a través de las estimaciones. Sin embargo, los resultados obtenidos en el largo plazo se presentan con niveles de significancia muy diferentes para cada uno de ellos.

Para las importaciones de bienes, la significancia en el largo plazo es del 20%. Esto significa que el valor estimado se encuentra muy lejos de ser confiable. Sin embargo, esta estimación sí que nos permite suponer que el valor final de la elasticidad en el largo plazo será cercano al valor obtenido en la estimación.

En cuanto a las importaciones de servicios, la significancia es del 8%, con lo que el resultado obtenido se encontrara muy cercano al valor real de la elasticidad. Para las exportaciones de bienes la significancia era del 70%. Con un valor tan alto el resultado obtenido no puede declararse como significativo, con lo que no es posible estudiar esta elasticidad en el largo plazo. Para las exportaciones de servicios las especificaciones econométricas ni siquiera permitían llevar a cabo la estimación en el largo plazo.

Aunque en algún caso la significancia resultaba los suficientemente buena para que la estimación fuera significativa, por lo general esto no se mantuvo. Para mejorar estos resultados, sería necesario aumentar el número de muestras en la base de datos, recogiéndolos de años anteriores, para que la estimación pueda proporcionar un resultado lo suficientemente confiable para que pueda ser significativo.

Por otro lado, el valor de las estimaciones nos muestra resultados cercanos a -1 en las importaciones tanto de bienes como de servicios en el corto plazo. Para las exportaciones de bienes y de servicios en el corto plazo el resultado es muy superior a 1, especialmente para los servicios. Todas estas estimaciones tan alejadas de 0 nos demuestran que tanto los bienes como los servicios estudiados están muy lejos de poder ser declarados como sustitutivos perfectos.
Por último, en mi opinión personal, sería interesante llevar a cabo esta estimación sobre los datos de bienes y servicios desagregados, lo que nos permitiría obtener elasticidades específicas para cada mercado, lo que sería muy útil a la hora de plantear políticas internacionales. También debería de llevarse a cabo con una muestra de mayor tamaño, pues como ya comenté antes, esto permitiría mejorar la significancia de las estimaciones y llevar a cabo estimaciones eficaces en el largo plazo.
9. REFERENCIAS BIBLIOGRÁFICAS

10. ANEXOS

Anexo 1. Script R-studio para estimación elasticidad de Armington para importaciones de bienes.

```r
# Importaciones de Bienes#

#1. Cargo los paquetes que voy necesarios para trabajar#

rm(list=ls())
library(readxl)
library(forecast)
library(TSPred)
library(tseries)
library(urca)
library(CADFtest)
library(car)
library(nlWaldTest)
windowsFonts(A = windowsFont("Times New Roman"))

#2. Cargo los datos#


#3. Transformo los datos en series temporales para poder trabajar con ellos#

x.b <- ts(Datos.B$x, start = c(1995,1), end = c(2018,4), frequency = 4)
y.b <- ts(Datos.B$y, start = c(1995,1), end = c(2018,4), frequency = 4)
plot(x.b, family = "A", ylab = ("Ratio de precios") , xlab = ("Tiempo"))
plot(y.b, family = "A", ylab = ("Ratio de producción") , xlab = ("Tiempo"))

#4. Mediante la prueba Dickey-Furer compruebo el orden de integrecion de la serie y para saber que especificaciones aplicar#

df.yb = ur.df(y.b, type = "trend" , lags = 1)
summary(df.yb)

#Como no es estacionaria de orden 0, compruebo la primera diferencia#

df.dyb = ur.df(diff(y.b, lag = 1),type = "none", lags = 1)
```
summary(df.dyb)

#La serie "y" es integrada de orden 1: I(1)#

#5. Ahora aplico Dickey-Furer a la serie "x"#

df.xb= ur.df(x.b, type = "drift", lags = 5)
summary(df.xb)

#Igual que antes, busco la primera diferencia al no ser I(0)#

df.dxb = ur.df(diff(x.b, lag = 1),type = "none", lags = 1)
summary(df.dxb)

La variable "x" tambien es integrada de orden 1: I(1)#

6. Como ambas series son integradas del mismo orden ahora debemos comprobar la
cointegracion de las mismas#

tsdisplay(diff(y.b), lag.max = 20, family = "A")
plot (diff(y.b))

Primero contruyo las variables con 1 diferencia, pues son las que presentan
comportamiento estacionario#

dfy.b = diff(y.b, lag = 1)
dfx.b = diff(x.b, lag = 1)
Ly.b <- lag(ts(Datos.B$y, start = c(1995,1), end = c(2018,4), frequency = 4))
Lx.b <- lag(ts(Datos.B$x, start = c(1995,1), end = c(2018,4), frequency = 4))

Aplico el test de cointegracion, que me arroja unos unos errores. Si los errores
son estacionarios, la serie esta cointegrada#

Ly.b <- window(Ly.b,start = c(1995,1), end = c(2018,4))
Lx.b <- window(Lx.b,start = c(1995,1), end = c(2018,4))

modelo.b = lm (dfy.b ~ dfx.b + Ly.b + Lx.b)
residual.b = residuals(modelo.b)

df.res = ur.df(residual.b, type = "none", lags = 1)
summary(df.res)
modelo.b

#Los residuos son estacionarios por lo tanto las series estan cointegradas#

#7. Estimo el modelo y el valor de la elasticidad#

summary(modelo.b)

linearHypothesis(modelo.b, "dfx.b = 0")
nlWaldtest(modelo.b, "b[2]/b[3]=0")

(0.016031/(-0.023228))

#El valor de la elasticidad a corto plazo es -0.953806#
#El valor de la elasticidad a largo plazo es -0.69 con una significancia del 20%#

#***#
#***#