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Abstract. The optimization of the lift distribution is an essential anal-
ysis in the wing design segment of every aircraft project. Although it has
been demonstrated that the optimal solution follows an elliptic distri-
bution, there is no known relation between the parameters that define
this distribution and its similarity to the elliptical one. Therefore, there
is no direct approach for obtaining an exact solution, existing method-
ologies such as CFD simulations which require of a considerable amount
of time and resources to offer accurate results. The methodology fol-
lowed throughout this paper involves the application of metaheuristic
techniques, such as genetic algorithms, in order to optimize the lift dis-
tribution obtained through the Prandtl lifting-line theory. Results show
that the genetic algorithm proposed is able to obtain a satisfactory solu-
tion within a reasonable time.

Keywords: Genetic algorithm · Lift distribution · Wing design ·
Elliptical lift distribution

1 Introduction

Wing design stands as one of the most crucial analysis in every aircraft project,
being the main contributor to the force that lifts the aircraft as well as playing a
decisive role in the efficiency of the plane. Hence, it is critical that the wings pro-
vide the amount of lift required without deriving in other negative effects such as
aerodynamic resistance, stall inception and lesser fuel capacity among others.

Therefore, companies undergoing the development of a new aircraft invest a
substantial amount of resources for the R+D+i of the wing design especially the
long-range models. Besides, due to the concurrent engineering fundamentals [1],
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the delay of a specific section of a project, such as wing design, may cause major
consequences in other departments to the point of a complete setback of the
project.

Moreover, the research and development of a specific airfoil is a rather
demanding project, requiring severe research in both CFD (Computer Fluid
Dynamics) simulations [2] and empirical experiments like wind tunnel testing
[3]. Requiring these simulations of an extensive amount of time and resources to
execute.

One of the most decisive analysis of the wing design is the optimization
of the lift distribution. In an ordinary wing, the lift output usually does not
remain constant and it varies from the distance from the root of the wing, due
to the existence of variables such as the taper ratio λ, torsion angle αt and
the wing incidence αset [4]. Hence, the lift output of every section of the wing
varies, creating a lift distribution. It is concluded from multiple investigations
that the optimal lift distribution is the elliptic one [5,6], and every deviation
from this distribution result in negative consequences such as an increase in
fuel consumption, or even develop the stall phenomenon [7] and its undesired
consequences.

However, the optimization of this desired result is not easily achieved, being
no known relation that could be drawn between the parameters that define
the lift distribution of a wing and its similarity to an elliptical distribution.
As a consequence, there is no direct approach available that could be used for
obtaining an exact solution for this problem.

Nonetheless, the aeronautic industry have developed a series of methodologies
[8,9] that could potentially obtain an exact solution. However, these techniques
rely heavily on CFD simulations, which require of a considerable amount of
resources when searching for a precise solution.

On the other hand, there are other techniques which do not require of CFD
simulations and offer an approximated result [10], implementing numerical meth-
ods. However, the results of these methodologies may vary depending on the
initial conditions of the problem.

In the endeavor to pursue a finer solution, we propose the application of
metaheuristic techniques, such as genetic algorithms, as for finding a solution of
this problem that does not rely on expensive simulations.

In the previous years, we have observed the rise of these methodologies over
various disciplines, from economics and decision making [11] to driving optimiza-
tion [12], positioning systems [13,14] and even aerodynamics in other aspects of
wing design [15]. Hence, we propose the application of this algorithm in this
particular problem with the intent of obtaining the combinations of parameters
that optimizes the lift distribution of our wing in a reasonable time.

2 Description of the Problem

The wings are the main source of lift in an aircraft, this force is generated from
the pressure difference from the static pressure in between the upper and lower
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surfaces of the airfoil as air flows through it, thus generating a force that pushes
the wing upwards. The amount of force generated is heavily dependent on the
geometry of the airfoil and does not remain constant along the chord or length
of the airfoil.

When analysing the performance of an airfoil, it is preferred the term of lift
coefficient of the airfoil Cl over its force of lift, which allow us to exclude all the
environmental parameters out of the equation and adimensionalizate it by the
airfoil’s chord. This lift coefficient can be calculated in empirical test such as
wind tunnels.

Cl =
l

qc
(1)

where l is the lift force, q is the dynamic pressure and c is the chord of the airfoil.
The Eq. (1) provide the lift coefficient of an airfoil, a section of the wing,

so in order to obtain the total lift coefficient of the wing CL, more additional
parameters are required as rarely the airfoil of a wing remains constant.

Therefore, given the airfoil in the root of the wing, in this case the NACA
23024, it is possible to define the shape of our wing as a function of a series of
parameters, such as the wing surface S, the aspect ratio AR, the taper ratio λ,
the twist angle αt and the wing incidence αset.

The aspect ratio, along the wing surface, provides the scope of the wing, and
it is defined as the wingspan of the wing squared divided by the wing surface.

The taper ratio indicates the narrowing of the wing from root to tip. This
narrowing serves multiple motives but mainly structural ones. Although its value
depends on the project’s specifications, we can obtain its value by dividing the
chord’s length at the tip by the chord’s length at the root.

As for the twist angle, this parameter indicates the deviation of the angle of
attack along the wingspan. The angle of attack of a wing is the angle formed
between the mean aerodynamic chord of an airfoil and the incident flow. There
is a direct relation between the angle of attack and the lift generated, however,
over a certain value which depends on the airfoil, the airfoil no longer generates
lift, knowing this phenomenon as stall [16]. The twist angle serves as a way to
prevent this event from happening as well as adjusting the lift distribution to
obtain its optimized value.

Finally, the wing incidence is the angle formed between the fuselage center
line and the main aerodynamic chord. This parameter allows the wing to have
a higher angle of attack above all, increasing the lift budget but compromising
the stall of the wing.

All these parameters are the responsible for causing an irregular lift distribu-
tion along the wingspan, which usually tends to decrease from the distance from
the root, mainly for structural purposes. Although there are multiple method-
ologies for obtaining this lift distribution, one of the most expanded and well
rounded techniques is the Prandtl Lifting-Line Theory [17] from which we can
obtain the value of the wing distribution. Despite being a traditional theory, it
is still being used and codified in CFD simulations [18].
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In conclusion, thanks to Prandtl’s theory, it is possible to obtain the lift
distribution of a wing as a function of the wing surface S, the aspect ratio AR,
the taper ratio λ, the twist angle αt and the wing incidence αset as well as other
aerodynamic parameters linked to the airfoil selected.

CLα
=

4b μ

c
(2)

μ =
1

α0 − α
·

N∑

n=1

An sin (nθ)
(

1 +
μn

sin (θ)

)
(3)

where b is the wingspan, c is the main aerodynamic chord, θ the polar coordi-
nates, n the discretization, α the segment’s angle of attack, α0 the zero-lift angle
of attack and An the coefficients of each point.

Following the Eqs. (2, 3) obtained from Prandtl’s theory, it is possible to plot
the lift distribution of a certain wing. As multiple studies have proved before
[19], the optimal lift distribution of any sub-sonic wing design is always the
elliptic distribution. Any deviation from this optimal distribution shall derive in
undesired consequences such as an increase in the aerodynamic resistance, thus
an increase in fuel consumption [20].

Nonetheless, there is no direct relation which could be drawn between these
aerodynamic parameters and the likeness of the lift coefficient function to the
ellipse distribution. Likewise, the most expanded methodology [8,9] to confront
this problem relies on assumptions such as incompressible flow which is only
valid on considerable low speed scenario. Besides, these approximations usually
require a great deal of simulations in CFD software and real life experiments
such as wind tunnels, increasing the global cost of the project.

Hence, we propose a different approach, relying on the application of heuristic
algorithms such as genetic algorithms, as a way to achieve a more adequate
solution than traditional methods.

3 Genetic Algorithm

Therefore, as a consequence of the lack of a viable exact solution that does
not require the assumption of unfeasible conditions or the execution of labori-
ous CFD simulations, we propose to approach this problem with metaheuristic
methodologies. Although there are multiple algorithms that could prove suitable
for this problematic situation, we propose the application of genetic algorithms
as a result of their exploration and solution intensifying capabilities.

We have also observed the rise of genetic algorithms optimizations over the
last years in a variety of disciplines, from economics and decision making [11],
to optimizing driving routes [12], positioning [14] and even aerodynamic designs
[15]. Therefore, their application to this problems seems feasible.

The genetic algorithm we propose will carry the parameters that defines the
lift distribution, being these the aspect ratio, the taper ratio, the twist angle and
the wing incidence. However, in this paper we are studying the lift distribution
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of a low range subsonic aircraft [21], hence not every value of these parameters
can be considered acceptable. We can determinate from the design specifications
as well as other similar projects that the parameters must be within a certain
region, showed in Table 1.

Table 1. Parameters from the wing design

GA wing parameters Aerodynamic constants

Parameter Max value Min value Parameter Value

AR 13 11 S 6.22 m2

λ 0.7 0.3 α0* −1.25 rad

αt −3◦ −1◦ α2π* 2π rad

αset 3◦ 0◦

*Values obtained from airfoil NACA 23024

Furthermore, the proposed algorithm would carry all these variables in each
and every individual of the population, coded in binary. From the difference in
the range of these parameters we have created different length arrays for each
variable, with a criteria for separating the digits from the whole number to the
decimal part, as well as if it has a negative or positive value.

αset = 1︸︷︷︸
sign

010︸︷︷︸
whole number

0110101101︸ ︷︷ ︸
decimal number

= 2.419◦

These parameters define the lift distribution, hence, in order to optimize this
distribution we must search the combination of parameters that generates the
most likeness to the elliptical one. As a result, we can build a fitness function
based on the difference of the lift distribution generated from these parameters
and the optimal ellipse. It is possible to compute this difference with the MAE
(Mean Absolute Error) or the RMSE (Root Mean Square Error).

The MAE is considered among some authors as generally the best method
for evaluating a model performance [22,23], being the preferred methodology
for evaluating uniform error distributions, nonetheless is a well rounded valid
method.

On the other hand, the RMSE proves a better performance in normal error
distributions, however, the bigger difference from the MAE is that the RMSE
penalizes heavily large errors that deviate from the standard value [24].

Although both methodologies would prove suitable for this problem, the best
approach is the RMSE, for a large singular error deviation may be less desirable
than a low uniformed error distribution.

However, certain parameters such as the aspect ratio AR or surface of the
wing S will define the dimensions of the wing, thus the scope of the lift distri-
bution. Hence, the scope of the ellipse used to measure the elliptical likeness of
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the current lift distribution shall display similar dimensions with it. As a con-
sequence, a new ellipse will be generated with each individual of the genetic
algorithm.

Thence, it is possible to obtain the coordinates of the ellipse desired by
adapting the ellipse equation so that it contains the lift coefficients at the root
and the wingspan of the wing as they represent the intersection of the ellipse
with the 2-D axis.

yEllipse =

√(
1 − x2

C2
Lroot

)
b2

2
(4)

where x is the discretization of the wing, b is the wingspan and CLroot the value
of the lift coefficient at the root of the wing.

Nonetheless, following this approach, a more sizeable lift distribution might
present a bigger RMSE than a smaller one due to its actual dimensions, even
if it presents a much more suited likeness to the proposed ellipse. Still, this
impediment could be easily arranged by adimensionalizating the RMSE, dividing
it by the maximum value of the ellipse.

Furthermore, it is important to clarify that not every combination of these
aerodynamic parameters is acceptable. Depending on the specifications of the
aircraft project, these parameters should stay within certain limits. As a solution
for this issue, we have created a correction factor κ which is a function of all these
parameters, being its value bigger the farthest a variable stray from its expected
value and null when it stays within the range specified in Table 1. Hence, the final
value of κ would be added to the RMSE of the likeness of the lift distribution
in order to penalize extreme and unfeasible combinations.

For the calculation of κ, we propose the following equations:

κAR = max
(

1,
|AR − ARmax|

|ARmax − ARmin| ,
|AR − ARmin|

|ARmax − ARmin|
)

(5)

...

κ = (4 − κAR − κλ − καt
− καset) · ε (6)

where ARmax and ARmin are the maximum and minimum values of the interval
AR specified in Table 1, and ε is the coefficient whose purpose is to determine
the intensity of the κ penalization

Therefore, we can propose the following fitness functions, with MAE and
RMSE error evaluation.

ffRMSE =
1

CLroot

√∑n
i=1(yCLα

− yEllipse)2

n
+ κ (7)

ffMAE =
1

CLroot

∑n
i=1 |yCLα

− yEllipse|
n

+ κ (8)
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Lastly, the algorithm shall rely on tournament based selection methodology
[25] with 3 competing individuals. On the other hand, for the crossover methodol-
ogy, we have implemented a multipoint based crossover. Likewise, the algorithms
shall operate with small percentages of elitism and mutation, deduced in base
of the results of previous simulations (Table 2).

Table 2. Genetic algorithm configuration

GA Selection

Population size 60

Selection technique Tournament 3

Elitism 5%

Crossover Multi-point

Mutation 3%

Convergence criteria 50 generations or 80% individual equals

ε data validation 5 · 10−3

4 Results

Once set up and executed in the Python programming language, the algorithm
showed a rapid convergence to an acceptable solution in a short interval of time.
Due to the circumstances of this problem, a limited population had sufficed to
reach the desired solution in an adequate number of generations, proving that
this method could be considered as a viable alternative over long and resource-
heavy CFD simulations. Therefore, the genetic algorithm proposed have obtained
the following solution:

Fig. 1. Lift Distribution provided by GA. The blue curve represents the lift distribu-
tion through the wingspan (meters), provided by the RMSE variation of the genetic
algorithm
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As shown in Fig. 1, the lift distribution provided by the genetic algorithm
proves a convenient likeness to the elliptical distribution desired, proving the
suitability of this methodology.

Figure 2 shows the evolution of the RMSE along generations, thus we can
appreciate the accelerated convergence to the final solution within a couple gen-
erations (Table 3).

Fig. 2. Genetic Algorithm’s lowest error for every generation with RMSE and MAE
adaptations. The RMSE variation converged in generation 11 unlike the MAE where
the convergence criteria was fulfilled in generation 26

Table 3. Results of the Genetic Algorithm

RMSE variation MAE variation

AR 11.5 10.8

αt −1.738◦ −1.684◦

αset 0.403◦ 0.234◦

λ 0.817 0.832

Lowest error 4.949 · 10−4 3.88 · 10−4

Both variations of the genetic algorithm have proven to be satisfactory. The
MAE variation showed a lower error in the best individual but the RMSE was
rather stable and had a faster convergence.

5 Conclusion

Wing design represents a substantial analysis in every aircraft project, being one
of the fields with the largest amount of resources invested in. One of the most
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important steps of the wing design is the optimization of the lift distribution,
as the airfoil of the wing usually suffer a deviation from its original form in the
root. It is concluded that the optimized lift distribution is the elliptical one, thus
every deviation from this ideal distribution will result in undesired consequences
such as an increase in fuel consumption.

However, there is no know relation between the aerodynamic parameters that
define the wing and the likeness of the lift distribution to an ellipse. This problem
has been confronted by numerous methodologies, from CFD computer simula-
tions that could provide an exact solution, thought requiring of a considerable
amount of time and resources to execute, to numerical methods that offer a close
approximation.

In this paper we have proposed the application of metaheuristic techniques
such as genetic algorithms to confront this problem in the pursue of an acceptable
solution that does not require of any laborious simulations. We have discussed
the different approaches for constructing the genetic algorithms with multiple
fitness functions and we have made the adjustments required.

Results show that the genetic algorithm proposed is able to reach a robust
solution in a reasonable time with both fitness functions designed, being thus
fulfilled the main objective of this paper.
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