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Abstract: Local Positioning Systems are collecting high research interest over the last few years.
Its accurate application in high-demanded difficult scenarios has revealed its stability and robustness
for autonomous navigation. In this paper, we develop a new sensor deployment methodology to
guarantee the system availability in case of a sensor failure of a five-node Time Difference of Arrival
(TDOA) localization method. We solve the ambiguity of two possible solutions in the four-sensor
TDOA problem in each combination of four nodes of the system by maximizing the distance between
the two possible solutions in every target possible location. In addition, we perform a Genetic
Algorithm Optimization in order to find an optimized node location with a trade-off between the
system behavior under failure and its normal operating condition by means of the Cramer Rao Lower
Bound derivation in each possible target location. Results show that the optimization considering
sensor failure enhances the average values of the convergence region size and the location accuracy
by 31% and 22%, respectively, in case of some malfunction sensors regarding to the non-failure
optimization, only suffering a reduction in accuracy of less than 5% under normal operating conditions.

Keywords: cramer rao lower bound; localization; LPS; multi-objective optimization; sensor failure;
wireless sensor networks

1. Introduction

Autonomous navigation has meant a challenge for scientific development over the last few years.
The high accuracy required has entailed the interest in Local Positioning Systems (LPS) where the
positioning signal paths are reduced between targets and architecture sensors. This fact significantly
reduces noise and uncertainties by minimizing the global architecture errors with respect to Global
Navigation Satellite Systems (GNSS).

GNSS provide global coverage but the distortion of their signals in their travel affects the stability
and the accuracy of the localization over time. In addition, GNSS navigation is denied in indoor
environments, where Automatic Ground Vehicles (AGVs) mostly operate, as signals deteriorate
crossing large buildings. This causes Non-Line-of-Sight (NLOS) connections between satellites and
targets which makes position determination impractical. The application of also GNSS has limitations
in outdoor environments such as low-altitude flights in Unmanned Aerial Vehicles (UAVs) due to the
higher uncertainty in the vertical coordinate of the global systems. It is a consequence of the similar
altitude of the satellites in their constellations.

These reasons have promoted this new localization concept based on LPS especially for high
accuracy automated navigation [1,2]. LPS require the deployment of architecture sensors in a defined
and known space where the capabilities of the system are maximized. The characteristics of the LPS
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for a defined space rely on the measurement of the physical magnitude used for the determination of
the target location: time [3], power [4], frequency [5], angle [6], phase [7] or combinations of them [8].

Among these systems, the most extended are time-based models due to their reliability, stability,
robustness and easy-to-implement hardware architectures. Time-based positioning has two main
systems that differ in time measurements computed: Time of Arrival (TOA) [9] and Time Difference of
Arrival (TDOA) [10] systems.

TOA systems measure the total time of flight of a positioning signal from an emitter to a receiver.
It requires the synchronization of the clocks of all the system elements (i.e. targets and sensors).
This leads to the generation of a sphere of possible locations in the 3-D space for each received
signal in a different architecture sensor. The intersection of spheres determines the target location.
Mathematical standards show that the unequivocal target location is achieved in TOA systems with at
least four sensors.

TDOA systems compute the relative time between the reception of the positioning signal in
two different architecture sensors. The synchronization of these systems is optional considering
asynchronous TDOA architectures in which the time differences are computed in a single clock of a
coordinator sensor [11] and synchronous TDOA where all architecture sensors must be synchronized.
Time relative measurements lead to hyperboloid surfaces of possible location of targets. A hyperboloid
equation is obtained every two architecture sensors while only (n-1) independent equations can be
processed from n different sensors [12]. The required number of sensors to determine unequivocally
the target location is five sensors for 3-D positioning in these methodologies.

However, the intersection of three different spheres -3 architecture sensors- in TOA systems and
three different hyperboloids -4 architecture sensors- in TDOA systems leads to two different potential
solutions. Nevertheless, these solutions are not able to be discarded from a mathematical point of view.

In one of our previous works [13], we have demonstrated that a reliable unique solution to the
intersection of three hyperboloids or spheres can be obtained through the maximization of the distance
between the two potential solutions in a defined environment by means of Genetic Algorithms (GA).
We achieve this result by applying Taylor-based algorithms [14] from an initial iteration point which
must be close enough to the final solution. Results show that the node deployment has a direct impact
in this finding.

The sensor distribution also has relation with the global accuracy of the LPS. Traditionally,
the Position Dilution of Precision (PDOP) has been used to determine the achievable accuracy of
time-based positioning systems in GNSS [15] by considering satellite location with respect to target
nodes. This methodology considers the homoscedasticity of the satellite signals as they actually
travel similar distances from satellites to target nodes. This consideration is impractical for LPS
since the paths traveled can significantly differ from one architecture sensor to another producing the
heteroscedasticity in the time measurements [16].

This fact promotes the use of Cramer Rao Lower Bound (CRLB) [17,18] derivations to characterize
the White Gaussian Noise (WGN) present in the time measurements. In practice, CRLB determines
the minimum achievable error in positioning systems [19]. We have computed these derivations for
asynchronous and synchronous TDOA positioning methodologies in our recent works [20,21] in order
to define the beauty of a node deployment in terms of accuracy. This has allowed us to perform the
node deployment optimization in TDOA systems by means of GA. The reason of the use of heuristic
techniques relies on the NP-Hard problem solution of the 3D sensor deployment in LPS and it is widely
considered in the literature [22–27].

However, any of the approaches presented considers a possible sensor failure during the node
distribution optimization addressed. This means that in these sensor deployments a sensor fault will
cause the unavailability of TOA architectures with 4 sensors and TDOA architectures with 5 sensors.
However, our finding in [13] has determined that an unequivocal solution for these systems with a
possible sensor failure -3 sensors in TOA and 4 sensors in TDOA- can be achieved under an optimized
node localization. As a consequence, an optimized sensor distribution can guarantee the availability of
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the system in sensor failure conditions through the consideration of a methodology to enhance the
system properties in these situations.

In this paper, we propose for the first time a GA optimization for the 3D node deployment in a
TDOA system with five architecture sensors with failure consideration, maximizing the performance
during regular operation and in any possible sensor malfunction (see Figure 1). For that purpose,
we performed a multi-objective optimization in which we looked for a trade-off between the global
accuracy of the system with five sensors and every combination of four nodes in a defined environment
of an LPS. Additionally, we ensured the unequivocal position determination for every distribution of
four sensors by maximizing the distance between the two possible mathematical solutions of the target
location [11]. Based on [19] a 3D sensor distribution in irregular environments is provided, enabling the
application of this failure-consideration approach to outdoor and indoor scenarios. This methodology
will also ensure the availability of the system with acceptable accuracy in case of a sensor failure in any
of the architecture nodes.

The scenario of the simulations. Node Location 
Environment (NLE) and Target Location 
Environment (TLE) regions are respectively 
shown in orange and purple colors. 

Accuracy

Convergence

Genetic Algorithm Optimization

Failure Conditions with 
random node deployment 

Failure Conditions with 
optimized node deployment 

Figure 1. Graphical Abstract.

The remainder of the paper is organized as follows: the algorithm for the target unequivocal
location determination is presented in Section 2, the CRLB modeling is introduced in Section 3, the GA
and the fitness function are presented in Sections 4 and 5 and Section 6 show the results and conclusions
of the presented paper.

2. Taylor-Based Positioning Algorithm in Time Difference of Arrival (TDOA) Systems

Relative time measurements in TDOA systems lead to hyperboloid equations of possible target
locations. These equations are non-linear so numerical methods are required to solve the intersection
of the hyperboloids. The algorithms used have been classified in two main categories: closed-form
algorithms and iterative methods.

Closed-form algorithms [28,29] provide a direct final solution by solving a linearization of the
hyperboloid equations. Iterative methods perform a gradient descent to achieve the solution through
Taylor-Based linearization. These methods start from an initial position which must be closed enough
to the final solution [30] to iteratively converge to the target location. The convergence of the algorithm
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depends on the initial position -usually the last known position of the target- which promotes a constant
updating of the target location.

The position calculation with four architecture sensors in TDOA systems provides two possible
ambiguous target localizations. The achievement of an unequivocal position cannot be determined
according to mathematical standards. As a consequence, the position determination by means of
iterative methods provides a unique solution that it might not match with the real target location.
Nevertheless, we have shown in [13] that the optimal solution can be achieved by maximizing the
radius of convergence of the initial iteration point which forces the iterative method to converge to the
real solution in a high confidence interval. It has been demonstrated that this fact coincides with the
maximization of the distance between the two possible solutions in LPS. This allows us to solve the 3-D
TDOA problem with 4 nodes through Taylor-Based positioning algorithms with enough confidence
under the optimization proposed.

This finding enables LPS architectures of 5 sensors -minimum number of sensors to supply
unequivocal target location- to provide stable and accurate service in case of sensor failure or temporal
unavailability of one of the architecture nodes.

Taylor-Based algorithms in TDOA systems are linearizations of the equation of the time difference
of arrival:

Ri j = di j = dEi −dEj = c ti j = c
(
ti − t j

)
=

√
(xE − xi)

2 + (yE − yi)
2 + (zE − zi)

2

−

√(
xE − x j

)2
+

(
yE − y j

)2
+

(
zE − z j

)2

(1)

where Ri j and di j represent the distance difference of the signal travel from the emitter to sensors i and
j, dEi and dEj are total distance from the emitter (E) to sensors i and j, c is the speed of the radioelectric
waves, ti j is the time difference of arrival measured in the architecture sensors, ti and t j is the total
time of flight of the positioning signal from emitter to receivers i and j respectively and (xE , yE , zE),
(xi , yi , zi) and

(
x j , y j , z j

)
are the Cartesian coordinates of the target and the sensors i and j.

Taylor approximation truncated on first order is applied in Equation (1) to linearize the equation
from an initial iteration point (x0 , y0 , z0):

Ri j = cti j = Ri j0 +
∂Ri j

∂x
∆x +

∂Ri j

∂y
∆y +

∂Ri j

∂z
∆z (2)

where Ri j0 is the range difference of arrival in the initial iteration point,
∂Ri j
∂x ,

∂Ri j
∂y and

∂Ri j
∂z are the partial

derivatives of the range differences measured in the i and j architecture sensors particularized in the
initial iteration point.

The application of this process to sensors k and l to complete the four-sensor 3D TDOA problem
solution in [13] generates the range difference matrix (∆R):

∆R =
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∆x
∆y
∆z

 = H∆P (3)

where H is the partial derivative matrix, usually known as the visibility matrix, and ∆P represents
the coordinate variances in each space direction which is the unknown of the equation. The previous
equation is solved and iterated until no changes in coordinate variances are appreciated by means of
the least squares method as follows:

∆P =
(
HtH

)−1
Ht∆R =


∆x
∆y
∆z

 (4)
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3. Cramer Rao Lower Bound (CRLB) Modeling in TDOA Systems

CRLB is an unbiased estimator of the lowest variance of a parameter. Its usage in the localization
field is widespread [31–33] since it allows us to determine the minimum achievable error by the
system analyzed.

It characterizes the WGN present in the time measurements of the time-based positioning systems.
The uncertainties introduced in the measurements depend on the distance traveled by the positioning
signal from the emitter to the architecture sensors in a heteroscedastic noise consideration. Recent
studies [18] developed a matrix form of the CRLB considering heteroscedasticity in time measurements:

FIMmn =
(
∂h(TS)
∂TSm

)T
R−1(TS)

(
∂h(TS)
∂TSn

)
+ 1

2 tr
{
R−1(TS)

(
∂R(TS)
∂TS

)
R−1(TS)

(
∂R(TS)
∂TSn

)} (5)

where FIM indicates the Fisher Information Matrix, m and n are the sub-indexes of the estimated
parameters in FIM, TS is the target sensor Cartesian coordinates, h(TS) is a vector that contains the
travel of the signal in the TDOA architecture to compute a time measurement:

hTDOAi = ‖TS−CSi‖ − ‖TS−CS j‖

i = 1, . . . , NCS
j = 1, . . . , NCS

(6)

being CSi and CS j the coordinates of the architecture sensors i and j and NCS the number of sensors
involved in the position determination. R(TS) is the covariance matrix of the time measurements in
the architecture sensors. The covariance matrix is built with a heteroscedastic noise consideration
in the sensors modeled by a Log-normal path loss propagation model [21] obtaining the following
variances:

σTDOAij
2 = c2

B2
(

PT
Pn

)PL(d0)[( dEi
d0

)n
+

(
dEj
d0

)n]
i = 1, . . . , NCS j = 1, . . . , NCS where i , j

(7)

where B is the signal bandwidth, PT is the transmission power, Pn is the mean noise level determined
through the Johnson-Nyquist equation, n is the path loss exponent, d0 is the reference distance from
which the path loss propagation model is applied and PL(d0) is the path-loss in the reference distance.

The inverse of the Fisher Information Matrix (J) provides in its diagonal the uncertainties associated
with each variable to estimate, i.e. the three Cartesian coordinates of the target for a 3D positioning.
The location accuracy is directly evaluated through the Root Mean Squared Error (RMSE), which is
computed based on the trace of the J matrix.

RMSE =
√

J11 + J22 + J33 =
√
σx2 + σy2 + σz2 (8)

This model will be applied in the GA optimization with five sensors and each distribution of
four sensors in any possible target location in the defined scenario in order to compare the beauty of
different node deployments.

4. Genetic Algorithm (GA) Optimization

The strong influence of the sensor placement in the LPS performance enables the maximization of
their capabilities through the optimization of their sensor distribution. This approach is especially
suitable in complex 3D environments, where the most important source of positioning error is promoted
by the sensor distribution.
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In this work, we developed an optimization methodology to locate the positioning sensors of
a five-sensor TDOA system with the consideration of an eventual failure in some of the system
nodes. This procedure must guarantee the convergence of the iterative algorithm with all the possible
combinations of four nodes in every target location under coverage. Furthermore, the achievement of
an optimized node distribution for the normal operating conditions with five system nodes must be
accomplished. This leads to a multi-objective optimization which considers both normal and failure
operating conditions.

In our previous works [21], a GA for optimizing sensor distributions in 3D irregular environments
is presented. The proposed methodology allows a free definition of the optimization region and the
reference surface for locating the sensors of the positioning architecture. In addition, the procedure
is modular, allowing the election of different selection techniques, percentage of elitism, crossover
methodologies, mutation types, and convergence criteria.

After the choice of the optimization method, the next step is the definition of the fitness function.
In this case, a multi-objective optimization is carried out for maximizing the accuracy of the TDOA
architecture when the minimum number of sensors for positioning is available, i.e. when some of the
architecture sensors fail. Accordingly, the methodology proposed in [13] guarantees the attainment of
a unique location in TDOA architectures with 4 sensors by the Taylor-based positioning algorithm
described in Section 2, based on an initial iteration point closed to the target estimation. The region
where this procedure converges to the final solution depends on the geometric properties of the target
and the architecture sensors, i.e. the sensor placement in the environment. Based on this relation,
the regions of convergence can be maximized through the optimization of the sensor distribution [13].

Consequently, the goal of the multi-objective optimization is the combined maximization of
the TDOA system accuracy in 3D environments when the whole architecture is available and when
only four sensors are accessible, limited by the size of the convergence regions that allow the correct
execution of the Taylor-based positioning algorithm. The fulfillment of these objectives guarantees
the robustness of the TDOA architectures in adverse conditions of operation. The fitness function is
detailed hereafter:

f f =
Comb∑

1

{ C1
NT

∑ 1−

[(
1

RMSEre f

)
−

(
1

RMSE4sensors

)]2

(
1

RMSEre f

)2


+ C2
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1
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)
−( 1

D )
]2

(
1
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RMSEre f

−( 1
RMSENcs

)2 1
RMSEre f

2


NT −C4

∑NCS
i=1 BLi
NCS

(9)

where Comb is the number of groups of four sensors which are obtainable based on the total number
of architecture sensors, NT is the number of analyzed points, RMSEre f is the reference accuracy,
RMSE4sensors is the vector that contains the CRLB evaluation for each point at analysis with each
combination of 4 sensors, Dre f indicates the reference distance for the convergence criteria, D represents
the vector that specifies the convergence evaluation in terms of the distance between the two possible
solutions (combinations of 4 sensors) for each point at study, RMSENcs is the vector that contains
the CRLB analysis for each point at study when all architecture sensors are available, C1, C2, C3 and
C4, are coefficients for calibration of the individual summands of the fitness function, and BLi is the
penalization factor associated with the existence of sensors in banned regions (if they exist).

The implemented fitness function presents two important characteristics: the individual summands
of the function are confined in the interval (0,1], enabling different ponderations for the optimization;
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and the RMSEre f and Dre f magnitudes are adaptive to the problem characteristics, facilitating the
diversification and intensification phases of the GA in complex environments.

5. Results

In this section, the results of the optimization for sensor failure in TDOA architectures are
presented. Initially, a 3D complex scenario was designed for carrying out the optimization, proving
the adaptability of the proposed methodology in any environment. For this purpose, an irregular
scenario of simulation was designed by considering any possible target location and extensive available
zones for positioning the architecture sensors in the environment of simulations. This fact ensures the
versatility of the procedure for its application to indoor and outdoor environments.

In Figure 2, the term TLE represents the Target Location Environment which defines the region
where targets are possible to be located. For this simulation, the TLE region extends from 0.5 to 15 m of
elevation from the base surface, emulating the operating conditions for a positioning system in the
proximity of the ground. TLE region is spatially discretized based on a division of 20 m in x and y
coordinates, and 2 m in z coordinate. This ensures the correct evaluation and continuity of the accuracy
and convergence analysis, and the restriction in the total number of the studied points.
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Figure 2. The scenario of simulations. The reference surface is depicted is grey tones. Node Location
Environment (NLE) and Target Location Environment (TLE) regions are respectively shown in orange
and purple colors. The discretized points of the TLE zone are the points employed for the optimization
of the Time Difference of Arrival (TDOA) architecture performance. In the case of the NLE area,
the points shown are only a representation of the area where every sensor can be located.

The NLE area expresses the Node Location Environment, which indicates all possible sensor
locations. In the case of the NLE region, the height of the sensors is limited in the range of 3 to 10 m
from the base surface, depicting for a typical outdoor LPS implementation. The discretization of the
NLE region depends on the codification of the individuals of the GA, precisely on the longitude of the
chromosomes implemented. In this way, the resolution of the NLE area varies in the three Cartesian
coordinates from 0.5 to 1 m, alluring a fine setting in the optimization of each sensor.

Tables 1 and 2 show the principal parameters of configuration for the positioning system and the
GA characteristics applied for the optimization.
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Table 1. Parameters of configuration for the positioning system operation. Their selection is based on [19,34].

Parameter Value

Transmission power 100 W
Mean noise power –94 dBm

Frequency of emission 1090 MHz
Bandwidth 100 MHz

Path loss exponent 2.05
Antennae gains Unity

Time-Frequency product 1

Table 2. Configuration of the principal elements of the Genetic Algorithm (GA).

GA Selection

Population size 90
Selection technique Tournament 2

% Elitism 5
Crossover technique Single-point

% Mutation 3
Convergence criteria 80% individuals equals

Values presented in Table 1 were chosen in an attempt to stand for a generic positioning technology,
expressed by the typical parameters of transmission power, frequency of emission and bandwidth.
The configuration of the GA shown in Table 2 has been the subject of deep analysis, looking for the
trade-off between the fitness function maximization and convergence speed.

In the following paragraphs and figures, the results after the optimization process are shown
for distributions of 5 sensors. Firstly, in order to highlight the importance of the sensor distribution,
a random sensor placement is evaluated in terms of accuracy and convergence under a sensor failure
in Figures 3 and 4.Sensors 2020, 20, x FOR PEER REVIEW 9 of 15 
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one of the sensors is not available.
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The benefits of the consideration of the sensor failure in the architecture design have been shown
through the differences in accuracy and convergence from the Figures 2–5. However, a comparison
of the performance of the methodology proposed in this paper with a conventional optimized node
distribution in which the failure conditions are not considered is needed to conclude the beauty of the
technique. In Table 3, we set the parameters considered in each optimization considering nominal
operation, failure conditions and convergence (Case I) and only nominal operating conditions (Case II).
Case II match up with the GA optimization that we previously proposed in [21].

Table 3. Definition of the parameters considered for optimization in Case I and Case II.

Parameter Considered Case I Case II

Nominal Operating Conditions
(5 sensors distribution) 4 4

Failure Conditions
(4 sensors distributions) 4 X

Convergence Maximization 4 X

In Table 4, a comparison between the optimized sensor distribution for sensor failure (Case I)
and the optimized sensor placement of 5 sensors without malfunction consideration and convergence
maximization (Case II) is supplied. It should be stressed that this last optimization is carried out
through a fitness function with the direct evaluation of the CRLB for 5 sensors and the last term of the
Equation (8).
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Table 4. Comparative between the optimizations of Case I and II.

Sensor
Distributions

Sensor
Fail

CRLB Evaluation TDOA (meters) Convergence Evaluation (meters)

Max Mean Min Max Mean Min

Case I

Sensor 1 62.408 0.651 0.233 300 138.684 35
Sensor 2 133.556 0.875 0.216 240 125.786 40
Sensor 3 117.304 0.627 0.223 280 154.237 40
Sensor 4 191.480 2.005 0.196 300 138.851 35
Sensor 5 188.676 7.425 0.237 220 129.149 4

None 0.795 0.326 0.154 300 140.229 40

Case II

Sensor 1 206.049 1.340 0.225 240 103.711 2
Sensor 2 159.772 1.512 0.149 280 84.650 2
Sensor 3 65.487 1.688 0.169 220 102.037 4
Sensor 4 199.168 0.629 0.182 260 113.604 2
Sensor 5 2340.42 9.674 0.181 240 70.850 2

None 0.872 0.312 0.143 300 128.306 10

Tables 4 and 5 show the importance of the optimization of the sensor distribution under possible
sensor failure. This feature is especially remarkable in the analysis of the convergence radius when
some of the sensors are not available for positioning.

Table 5. Comparative between the optimizations of Case I and II. Values presented show the comparison
in relative terms of the failure consideration distribution regarding the optimization for normal operation
of the system.

Performance Analysis Case I Case II Sensor Distribution:
Case I vs Case II

Mean CRLB Evaluation
TDOA (meters)

Failure conditions 2.316 2.969 −22.0 %

Non-Failure conditions 0.326 0.312 +4.3 %

Mean Convergence
Evaluation (meters)

Failure conditions 137.341 94.970 +30.9 %

Non-Failure conditions 140.229 128.306 +8.5 %

The results of these tables reveal that the optimization carried out in Case I not only minimizes the
CRLB (i.e. maximum achievable accuracy based on the conditions of operation) when only 4 sensors
are accessible, it also maximizes the region where the Taylor-based positioning algorithm is able to
operate (together with alliterative methods).

Optimizations with failure-consideration (Case I) increase the radius of convergence by 30.9 % in
failure conditions while they also experience a boost of 8.5% in this confidence interval in the normal
operating condition of five sensors availability. This is due to the convergence radius maximization in
the failure-consideration optimization which is not considered in conventional sensor deployment
methodologies. This shows that an increase in this confidence interval in the distributions of four
sensors has also a direct effect in the convergence radius of the five-sensor normal operating distribution
of the failure-consideration optimization.

The beauty of this combined multi-objective optimization is that the accuracy of the four-sensor
combinations in failure conditions has been increased by 22% while the accuracy of the normal operating
five sensor distribution (Case I) has been reduced by less than 5% with regards to conventional node
deployments (Case II) that only consider the five-sensor optimization.

Furthermore, the achievement of higher values of the convergence radius in the failure-consideration
optimization enhances availability and security in failure conditions by solving the ambiguity
of two valid mathematical solutions and by increasing the confidence interval of applying
Taylor-Based positioning algorithms in normal operating conditions with regards to conventional node
deployment methodologies.
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This new optimization procedure considering sensor failures does guarantee the robustness of the
positioning system in complex conditions of operations, and the design of architectures considering
these situations.

6. Discussion

The location of sensors in LPS has been an active topic of research over the last few years [3,13,21–24].
This is a consequence of its direct relation with the accuracy, stability and robustness of wireless local
sensor networks. Conventional approaches to the optimal node distributions have considered the best
location of the sensors for nominal operating conditions.

Nevertheless, in actual implementations of the LPS, some sensors are possibly denied for
positioning due to the presence of obstacles that disturb signals introducing adverse effects such as
multipath or signal deterioration. Furthermore, a possible sensor malfunctioning introducing noise in
the measurements must be considered.

These facts have not been studied in previous sensor distribution optimizations. In this work,
we propose for the first time in the authors’ best knowledge a node deployment methodology that
enhances position determination in case of a sensor failure. Additionally, we apply this process to
the more restrictive TDOA system to unequivocally determine target location, i.e. five-sensor TDOA
deployments. This leads to a sensor-failure configuration in which we first need to solve the position
ambiguity determination in systems with only four nodes according to the finding that we proposed
in [11].

For this purpose, we performed a multi-objective optimization in a defined 3D irregular scenario
in order to extrapolate the results to normal LPS applications. This optimization reduces the CRLB
while it is also maximizing the radius of convergence of the Taylor-Based algorithm that we use for the
target location determination.

Results show the beauty and importance of this new technique as it is able to enhance the
system behavior in failure conditions with regards to only nominal optimizations. This is particularly
remarkable since conventional optimization approaches are only focused in nominal operating
conditions of LPS and they can suffer from temporal unavailability that can motivate important
drawbacks in autonomous navigation.

7. Conclusions

Local Positioning Systems have emerged over the last few years for high-demanded accurate
applications. Among them, time-based positioning architectures become predominant for its robustness,
stability and trade-off between accuracy and complexity.

In this paper, we propose a method to guarantee system availability under sensor failure. This is a
key factor for the real operation of LPS as a consequence of the possible ineffective link between target
and sensors in complex environments and possible sensor malfunctioning.

In order to simulate an actual operation environment, we have defined a 3D irregular scenario
consisting of a five-sensor deployment of a TDOA architecture. This configuration validates the
methodology proposed for terrestrial and aerial applications in indoor and outdoor environments.
In TDOA architectures, an unequivocal target location can be determined with a minimum of five
sensors according to mathematical standards. However, we have proved that the ambiguity in the
position determination with four sensors can be solved by the used of Taylor-Based positioning
algorithms in a convergence region around the true target location which, in practice, corresponds
with the maximization of the two possible solutions distance.

The achievement of this disambiguation can be obtained through an optimized sensor distribution.
The node deployment must also minimize the time measurement uncertainties which are characterized
by means of the CRLB. For this reason, we implement a multi-objective optimization for the combined
maximization of the accuracy and convergence under each possible sensor failure condition. In addition,
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the optimization needs to guarantee the reduction of the uncertainties for the nominal performance
with five sensors.

Results show that the proposed method can attain both accuracy and convergence requirements
under every possible sensor failure condition. The global optimization with five sensors without sensor
failure consideration overcomes the five-sensor deployment optimization with failure consideration in
terms of medium accuracy during nominal operation by less than 5%. In contrast, in circumstances
where some of the sensors are not available and only 4 sensors can be applied in the target position
calculation, the optimization considering sensor failure increases the average values of convergence
region size and accuracy by 30.9% and 22% respectively, regarding the non-failure optimization.
These results show the importance of considering the anomaly cases of sensor failure during the
LPS node distribution optimization in order to guarantee availability and operation quality in
high-demanding accuracy applications.
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The following abbreviations are used in this manuscript:

AGVs Automatic Ground Vehicles
CRLB Cramer Rao Lower Bound
FIM Fisher Information Matrix
GA Genetic Algorithm
GNSS Global Navigation Satellite Systems
LPS Local Positioning Systems
NLOS Non-Line-of-Sight
PDOP Position Dilution of Precision
RMSE Root Mean Square Error
TDOA Time Difference of Arrival
TOA Time of Arrival
TS Target Sensor
UAVs Unmanned Aerial Vehicles
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