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Abstract. Local Positioning Systems are an active topic of research in the field of
autonomous navigation. Its application in difficult complex scenarios has meant
a solution to provide stability and accuracy for high-demanded applications. In
this paper, we propose a methodology to enhance Local Positioning Systems per-
formance in sensor failure contexts. This fact guarantees system availability in
adverse conditions. For this purpose, we apply a Genetic Algorithm Optimization
in a five-sensor 3D TDOA architecture in order to optimize the sensor deployment
in nominal and adverse operating conditions. We look for a trade-off between
accuracy and algorithm convergence in the position determination in four (failure
conditions) and five sensor distributions. Results show that the optimization with
failure consideration outperforms the non-failure optimization in a 47% in accu-
racy and triples the convergence radius size in failure conditions, with a penalty
of only 6% in accuracy during normal performance.
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1 Introduction

Autonomous navigation has meant a challenge for scientific development over the last
few years. The high accuracy required has entailed the interest in Local Positioning
Systems (LPS) where the positioning signal paths are reduced between targets and
architecture sensors. This fact reduces noise and uncertainties trough the minimization
of the global architecture errors with respect to Global Navigation Satellite Systems
(GNSS).

LPS cover a defined and known space with architecture sensors where the capabilities
of the system are maximized. LPS properties depend on the measurement of the physical
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magnitude used for the determination of the target location: time [ 1], power [2], frequency
[3], angle [4], phase [S5] or combinations of them [6].

Among these systems, the most extended are time-based models due to their relia-
bility, stability, robustness and easy-to-implement hardware architectures. Time-based
positioning computes the total or relative travel time of the positioning signals from the
target to the receivers generating two different system conceptions: total time-of-flight-
Time of Arrival (TOA) [7] - and relative time-of-flight -Time Difference of Arrival
(TDOA) [8] systems-.

TDOA systems compute the relative time between the reception of the positioning
signal in two different architecture sensors. Therefore, the synchronization of these
systems is optional. Asynchronous TDOA architectures measures time differences in a
single clock of a coordinator sensor [9] while in synchronous TDOA all architecture
sensors must be synchronized to compute all together the time measurements.

Time relative measurements lead to hyperboloid surfaces of possible location of
targets. Every two architecture sensors a hyperboloid equation is obtained while only (n —
I) independent equations are achieved from n different sensors [10]. The required number
of sensors to determine unequivocally the target location is 5 sensors for 3-D positioning
in these methodologies. However, the intersection of three different hyperboloids in
TDOA systems leads to two different potential solutions. Nevertheless, these solutions
are not able to be discarded from a mathematical point of view.

In one of our previous works [11], we have shown that a reliable unique solution to the
intersection of three hyperboloids or spheres can be obtained through the maximization of
the distance between the two potential solutions by means of Genetic Algorithms (GA).
We achieve this result by applying Taylor-based algorithms [12] from an initial iteration
point which must be close enough to the final solution. Node deployment showed to
have a direct impact for this achievement.

The sensor distribution has also relation with the accuracy of the LPS. Cramér-
Rao Lower Bound (CRLB) [13, 14] derivations allow the characterization of the White
Gaussian Noise (WGN) in the time measurements, estimating the minimum achievable
error in positioning systems [15]. This has allowed us to study the node deployment
optimization in TDOA systems by means of GA [16, 17]. The reason of the use of
heuristic techniques relies on the NP-Hard problem solution of the 3D sensor deployment
in LPS and it is widespread in the literature [18-20].

However, the consideration of sensor failures has not yet been considered for LPS
sensor distribution optimizations. In this paper, we propose for this purpose a GA opti-
mization for the 3D node deployment in a TDOA system with five architecture sensors
that can suffer from sensor failures. We perform a multi-objective optimization in which
we look for a trade-off between the accuracy of the system with five sensors and every
combination of four nodes in a defined environment of an LPS. This methodology will
ensure the availability of the system with acceptable accuracy in case of sensor failures
in the architecture nodes.

The remainder of the paper is organized as follows: the algorithm for the target
unequivocal location determination is introduced in Sect. 1, the CRLB modeling is
presented in Sect. 2, the GA and the fitness function are detailed in Sect. 3 and Sects. 4
and 5 show the results and conclusions of the present paper.
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2 Taylor-Based Positioning Algorithm in TDOA Systems

Relative time measurements in TDOA systems lead to hyperboloid equations of possible
target locations. Numerical methods are needed to solve the intersection of these non-
linear equations. Taylor-Based algorithms in TDOA systems are linearizations of the
equation of the time difference of arrival:
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where R;; and d;; represent the distance difference of the signal travel from the emitter
to sensors i and j, dg; and dg; are total distance from the emitter (E) to sensors i and j,
¢ is the speed of the radioelectric waves, #; is the time difference of arrival measured
in the architecture sensors, #; and #; is the total time of flight of the positioning signal
from emitter to receivers i and j respectively and (xg, yg, z£), (Xi, yi, zi) and (xj, Vi zj)
are the Cartesian coordinates of the target and the sensors i and j.

Taylor approximation truncated on first order is applied in Eq. 1 to linearize the
equation from an initial iteration point (xg, Yo, 20):

Rir = cty = Ry + R0 a1 2Ry ORi o )
C— ot = R WA Y e’
Y Y vo 0x ay Y 0z <

. . . . e 1. . . IR;  IR; IR;;
where R;j, is the range difference of arrival in the initial iteration point, T Dy and 7

are the partial derivatives of the range differences measured in the i and j architecture
sensors particularized in the initial iteration point. The application of Eq. 2 to every pair
of sensors of the TDOA architecture leads to the following relation, that enables the
obtainment of the target location.
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where H is the partial derivative matrix, and AP represents the incremental values
from the last iteration point in each space direction which supposes the unknown of the
equation.

3 CRLB Modeling in TDOA Systems

CRLB is an unbiased estimator of the lowest variance of a parameter. Its usage in the
localization field is widespread [21-25] since it allows us to determine the minimum
achievable error by the system. The uncertainties introduced in the measurements depend
on the distance traveled by the positioning signal from the emitter to the architecture
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sensors in a heteroscedastic noise consideration. Recent studies [14] developed a matrix
form of the CRLB considering heteroscedasticity in time measurements:

T
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where FIM indicates the Fisher Information Matrix, m and n are the sub-indexes of the
estimated parameters in the FIM, TS is the target sensor Cartesian coordinates, h(TS)
is a vector that contains the travel of the signal in the TDOA architecture to compute a
time measurement:

hrpoa; = TS — ASill — || TS — AS; |
i=1,...,Nas j=1,...,Nas 5

being AS; and AS; the coordinates of the architecture sensors i and j and N4 the number
of sensors involved in the position determination. R(TS) is the covariance matrix of
the time measurements in the architecture sensors. The covariance matrix is built with
a heteroscedastic noise consideration in the sensors modeled by a Log-normal path loss
propagation model [17] obtaining the following variances:

2 n n
5 c dEi dEj
=——  PL = =
7TD0A; = B2(p,/P,) (dO)Kdo) - <d0) }

i=1,...,Nas j=1,...,Nas wherei #j (6)

where B is the signal bandwidth, P7 is the transmission power, P, the mean noise level
determined through the Johnson-Nyquist equation, n the path loss exponent, dy the
reference distance from which the path loss propagation model is applied and PL(dp)
the path-loss in the reference distance.

The trace of the inverse of the Fisher Information Matrix (J) provides the uncertain-
ties associated with each variable to estimate, i.e. the three Cartesian coordinates of the
target for a 3D positioning. The location accuracy is directly evaluated through the Root
Mean Squared Error (RMSE), which is computed based on the trace of the J matrix.

4 GA Optimization

The strong influence of the sensor distribution in the LPS performance enables the max-
imization of their capabilities through the optimization of their sensor placement. This
approach is especially critical in complex 3D environments, where the most important
source of positioning error is promoted by the sensor distribution.

In our previous works [17], a GA for optimizing sensor distributions in 3D irregular
environments is presented. The proposed methodology allows a modular definition of
the optimization region and the reference surface for locating the sensors of the posi-
tioning architecture. In addition, the procedure allows the election of different selection
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techniques, percentage of elitism, crossover methodologies, mutation types, and conver-
gence criteria. After the choice of the optimization method, the next step is the definition
of the fitness function. In this case, we look for a multi-objective optimization for the
combined maximization of the TDOA system accuracy in 3D environments when the
whole architecture is available and when only four sensors are accessible, limited by the
size of the convergence regions that allow the correct execution of the Taylor-based posi-
tioning algorithm. The fulfillment of these objectives guarantees the robustness of the
TDOA architectures in adverse conditions of operation. The fitness function is detailed
hereafter:

Comb

= Z ]% Z |- |:<RM51'Em_/) B 1<RMS;<:14SMSM):|2
1 (rterr)
" % 3 [(ﬁw)l_ gm)]z
(77)

[ o)~ (o)

2
1 N,
(RMSEmf ) > it BLi
C — ==l
+ G T =

)

where Comb is the number of groups of four sensors which are obtainable based on the
total number of architecture sensors, NT is the number of analyzed points, RMSE,r is
the reference accuracy, RMSEgensors 18 the vector that contains the CRLB evaluation
for each point at analysis with each combination of 4 sensors, Dist,,s indicates the
reference distance for the convergence criteria, Dist represents the vector that specifies
the convergence evaluation in terms of the distance between the two possible solutions
for each point at study, RMSEy,s is the vector that contains the CRLB analysis for
each point at study when all architecture sensors are available, Cy are coefficients for
calibration of the individual summands of the fitness function and BL; is the penalization
factor associated with the existence of sensors in banned regions (if they exist).

5 Results

In this section, the results of the optimization for sensor failure in TDOA architectures
are detailed. Initially, a 3D complex scenario has been designed for carrying out the
optimization, proving the adaptability of the proposed methodology in any environment.

In Fig. 1, the term TLE represents the Target Location Environment which defines
the region where the targets are possibly located. For this simulation, the TLE region
extends from 0.5 to 5 m of elevation from the base surface, based on a division of 10 m
in x and y Cartesian coordinates, and 1 ms in z coordinate. This ensures the correct
evaluation and continuity of the accuracy and convergence analysis.

The NLE area expresses the Node Location Environment, which indicates all possible
sensor locations. In the case of the NLE region, the height of the sensors is limited in the
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Fig. 1. The scenario of simulations. The reference surface is depicted is grey tones. NLE and
TLE regions are respectively shown in orange and purple colors.

range 3 to 20 m from the base surface. The discretization of the NLE region depends on the
codification of the individuals of the GA, precisely on the longitude of the chromosomes
implemented. In this optimization, the resolution of the NLE area varies in the three
Cartesian coordinates from 0.5 to 1 m, alluring a fine setting in the optimization of each
sensor. Tables 1 and 2 show the principal parameters of configuration for the positioning
system and the GA applied for the optimization.

Table 1. Parameters of configuration for the positioning system operation [15, 25, 26].

Parameter Value
Transmission power 100 W
Mean noise power —94 dBm

Frequency of emission | 1090 MHz

Bandwidth 80 MHz
Path loss exponent 2.16
Antennae gains Unity

Time-Frequency product | 1

Values presented in Table 1 have been chosen in an attempt to stand for a generic
positioning technology, expressed by the typical parameters of transmission power, fre-
quency of emission and bandwidth. The GA configuration is based on the following
aspects: population of 120 individuals with binary codification, Tournament 3 as selec-
tion procedure with 2% of elitism, single-point crossover, single-point mutation with a
probability of 5%, and 90% of equal individuals as convergence criteria. This election
allows the trade-off between fitness function maximization and processing time. For
more information about the genetic operators and the design of the GA [17]. In addition,
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Cy coefficients are defined as unity, searching for a solution with normal condition pre-
dominance in the final sensor deployment, but with good failure conditions performance.
This GA was coded in the MATLAB software following every of these considerations.
The results after the optimization process are shown for distributions of 5 sensors. The
results for the optimized sensor placement with failure consideration, 5 sensors nominal
operating conditions and convergence maximization (Conf. 1) are provided in Figs. 2

and 3 when two of the sensors are not available.

RMSE TDOA
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Fig. 2. Accuracy analysis in terms of CRLB for the optimized distribution of 5 sensors under
possible failure of two arbitrary sensors of the architecture. Black spheres indicate active sensors
and the red sphere symbolizes the failing sensor.
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Fig. 3. Convergence radius analysis for the optimized distribution of 5 sensors under possible
failure of two arbitrary sensors of the architecture.

In Table 2, a comparison between the optimized sensor distribution for sensor failure
(Conf. 1) and the optimized sensor placement of 5 sensors without malfunction consid-
eration and convergence maximization (Conf. 2) is supplied. It should be stressed that
this last optimization is carried out through a fitness function with the direct evaluation
of the CRLB for 5 sensors and the last term of the Eq. 7.

Results of Table 2 reveal that the optimization carried out in Conf. I not only min-
imizes the CRLB when only 4 sensors are accessible but also maximizes the region
where the Taylor-based positioning algorithm is able to operate. The beauty of this com-
bined multi-objective optimization is that the accuracy of the four-sensor combinations
in failure conditions is increased by 47% while the accuracy of the normal operating
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Table 2. Comparison between two optimized sensor distributions: with (Conf. 1) and without
(Conf. 2) failure consideration.

Operating RMSE (m) Convergence
condition radius (m)
Mean | Max Min Mean
Conf. 1 Non-failure | 1.154 |3.234 40 171.687
Failure 7.061 |181.325 |32 167.312
Conf. 2 Non-failure | 1.085 |7.114 4 145.807
Failure 13.293 | >300 0 37.841

five sensor distribution (Conf. 1) is reduced less than a 6% with regards to conventional
node deployments (Conf. 2) that only consider the five-sensor optimization.

This new optimization procedure considering sensor failures does guarantee the
robustness of the positioning system in complex conditions of operations, and the design
of architectures considering these situations.

6 Conclusions

In this paper, a method to guarantee the system accuracy under sensor failure is proposed.
We address the possible sensor malfunctioning or ineffective link between target and
architecture sensors which are key factors in LPS actual deployments.

For this purpose, we have defined a 3D scenario in which a five-sensor distribution
of a TDOA architecture is deployed in order to achieve practical results. The possible
failure of two sensors in adverse operating conditions leads to the solution of the ambi-
guity in the target position determination with four receivers. We have proved that an
unequivocal solution can be attained through the use of Taylor-Based positioning algo-
rithms in combination with an optimized node location looking for a maximization of
the distance between the two possible solutions in the four-sensor TDOA problem.

Accuracy analysis must be also carried out in both nominal and failure operating
conditions. Therefore, we perform a multi-objective optimization of the node location
by means of a Genetic Algorithm. This optimization looks for the maximization of the
convergence of the positioning algorithms and the accuracy of the architecture to solve
this NP-Hard problem.

Results show that both accuracy and convergence can be achieved under every possi-
ble sensor failure condition. The optimization considering only four effective links with
the architecture sensors in failure conditions triples the values of the convergence region
and increases the accuracy in 47% regarding to conventional optimizations that do not
consider these adverse situations.
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