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Abstract

This paper is a sequel to “Belnap-Dunn semantics for natural implica-

tive expansions of Kleene’s strong three-valued matrix with two designated

values”, where a “bivalent” Belnap-Dunn semantics is provided for all the

expansions referred to in its title. The aim of the present paper is to

carry out a parallel investigation for all natural implicative expansions of

Kleene’s strong 3-valued matrix now with only one designated value.

Keywords : Belnap-Dunn type bivalent semantics; Kleene’s strong 3-

valued matrix; natural conditionals; 3-valued logics; paracomplete logics.

1 Introduction

This paper is a sequel to [16]. Let us provisionally refer by MK31 (resp., MK32)

to the set of all natural implicative expansions of Kleene’s strong 3-valued ma-

trix, MK3, with only one designated value (resp., with two designated values).

Furthermore, let us provisionally use LK31 (resp., LK32) to refer to the set of

all logical systems determined by the matrices MK31 (resp., MK32). There are

exactly 24 systems in LK32 and 6 in LK31.

Following [7], in [16] it is shown how to use a Belnap-Dunn type bivalent

semantics (BD-semantics) to define all the logical systems in LK32, which are

proved (strongly) sound and complete w.r.t. each respective BD-semantics. The
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aim of the present paper is to develop a parallel investigation in the case of the

systems in LK31.

The systems in LK31 differ considerably from those in LK32. On the one

hand, all logics in LK32 are paraconsistent in the sense that the “E contradic-

tione quodlibet” rule, ECQ, i.e.,

 ∧ ¬⇒ 

fails in each one of them. Conversely, ECQ holds in each logic in LK31. On

the other hand, the 6 logics in LK31 are paracomplete in the sense that prime,

consistent theories built upon any of the 6 logics can be incomplete, that is, they

can lack both some formula and its negation, since the “Principle of Excluded

Middle”, PEM, i.e.,

 ∨ ¬

is not a theorem of any of the logics in LK31. Finally, the 24 systems of LK32

can be axiomatized by using no more rules of inference than Adjunction and

Modus Ponens. However, the 6 systems in LK31 can be axiomatized in a general

and unified way only if weak rules of inference are used, which complicates the

formulation and proof of the Extension and Primeness Lemmas (cf. Section 6,

below), and, consequently, the completeness proofs. The facts just pointed out

suggested to develop the systems in LK31 and LK32 in two different papers.

We have leaned upon some of the definitions and facts recorded in [16], but the

present paper is self-contained and can be read independently of its antecedent.

In [16], the fundamental notions “Belnap-Dunn type ‘bivalent’ semantics”,

“Kleene’s strong 3-valued matrix”, and “natural conditional” are explained with

some detail. Let us briefly recall them.

Belnap-Dunn type ‘bivalent’ semantics (BD-semantics) is characterized by

the possibility of assigning  (truth),  (falsity), both  and  or neither 

nor  to the formulas of a given logical language, or, indeed, to the propositions

of a language in general (cf. [5], [6], [8], [9] and references therein). Belnap

and Dunn’s approach has been generalized in the notion of a bilattice, which

has been fruitfully applied in artificial intelligence (cf. [2], [3] and references

therein).

On the other hand, Kleene’s strong 3-valued matrix MK3 was defined in

[12] in the context of the treatment of partial recursive functions. The matrix

MK3 (our label) can be defined as shown in Definition 3.1 below. We use the

digits 0 (falsity), 2 (truth) and 1, which can represent neither truth not falsity

if only 2 is taken as designated value, or both truth and falsity, if 1 is also a

designated value, in addition to 2. Conjunction, disjunction and negation are

the only propositional connectives in MK3.

In the third place, a conditional is “natural” if it fulfills the three following

conditions. (1) It coincides with the classical conditional when restricted to

the classical values  and  ; (2) it satisfies the Modus Ponens ; and (3) it is

assigned a designated value whenever the value assigned to its antecedent is less
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than or equal to the value assigned to its consequent1. The notion of a “natural

conditional” is understood as defined in [20], but it has to be noted that stricter

notions can be found in the literature (cf. [4]).

Given that ∧, ∨ and ¬ are the only propositional connectives in MK3, the
question of how to expand it with a conditional connective arises. There are, of

course, several possibilities, some of which are briefly commented upon in [16].

Here, however, as in the precedent paper, we shall limit ourselves to expansions

of MK3 by means of a natural conditional, this notion being understood as

explained above. In particular, in what follows, we shall consider all natural

implicative expansions of MK3 when 2 is the only designated value.

These “natural implicative expansions” of MK3 will be interpreted by means

of a BD-semantics. Actually, by a variant of it in which formulas can be as-

signed  ,  or neither  nor  . (In [16], we used another possible variant of

BD semantics in which formulas can be assigned  ,  or both  and  . We

have dubbed this second variant “overdetermined (BD-semantics)”, the first one

being named “underdetermined (BD-semantics)”; cf. [15], [17].)

The aim of this paper is then to define all the logics in LK31 by using a

u-determined BD-semantics.

As in the precedent paper [16], we have treated all logics determined by

the implicative expansions of MK3 from a general and unified point of view.

But, as remarked above, the present paper is self-contained and can be read

independently of its predecessor.

Before proceeding to explain the structure of the paper, let us remark the

following fact. In [14], BD-semantics for truth functional expansions of Anderson

and Belnap’s First Degree Entailment Logic, FDE, Priest’s LP and Kleene’s K3

is systematically discussed. Then, in [19], natural deduction systems for the

first-order Belnap-Dunn logics are systematically explored by essentially using

Baaz’ delta operator. However, in the present paper, we concentrate on defining

Hilbert-style systems for the natural implicative expansions of MK3 considered2.

The structure of this paper is as follows. In §2, we define some preliminary

notions as used in the paper. In §3, Kleene’s strong 3-valued matrix is recalled.

In §4, the notion of a “natural conditional” (according to [20]) is introduced

and all natural implicative expansions of MK3 (with only one designated value)

are defined. In §5, three basic logics are presented and some of their properties

are proved. All the logics characterized by the natural implicative expansions of

MK3 defined in §4 (let us name them Lt logics) are axiomatized as extensions of

the basic logics. Some of these logics have not been investigated antecedently in

the literature (cf. §10). In §6, the extension and primeness lemmas are proved.

We follow the strategy in [18] (cf. also [7]). As remarked above, it is to be noted

that these lemmas (and their proof) are here considerably more involved than

those in [16], the reason why being that the Lt-logics are axiomatized with

weak rules of inference. In §7, we define the Lt-logics and prove some of their

properties, while in §8, an underdetermined BD-semantics is defined for each

1Tomova adds a fourth condition: for any   ∈ V , →  ∈ V , in other cases.
2The facts just commented were brought to our attention by a referee of the JANCL to

whom we sincerely thank.
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one of them and the soundness theorems are proved. In §9, the completeness

theorems are proved by means of a canonical model construction. Finally, in

§10, the paper is ended with some concluding remarks on some of the results

obtained.

2 Preliminary notions

In this section, we record some preliminary notions as used in the present paper

(of course, there are alternative definitions of these notions).

Definition 2.1 (Language) The propositional language consists of a denu-

merable set of propositional variables 0 1    and some or all of the fol-

lowing connectives → (conditional), ∧ (conjunction), ∨ (disjunction), ¬ (nega-
tion). The biconditional (↔) and the set of wffs are defined in the customary
way.  etc. are metalinguistic variables.

Definition 2.2 (Logics) A logic L is a structure (L, `L ) where L is a propo-
sitional language and `L is a (proof-theoretical) consequence relation defined on
L by a set of axioms and a set of rules of inference. The notions of ‘proof’ and
‘theorem’ are understood as it is customary in Hilbert-style axiomatic systems

(Γ `L  means that  is derivable from the set of wffs Γ in L; and `L  means

that  is a theorem of L).

Definition 2.3 (Extensions and expansions of a logic L) Let L and L0 be
two propositional languages. L0 is a strengthening of L if the set of wffs of L is
a proper subset of the set of wffs of L0. Next, let L and L0 be two logics built
upon the propositional languages L and L0, respectively. Moreover, suppose that
all axioms of L are theorems of L0 and all primitive rules of inference of L are
provable in L0. Then, L0 is an extension of L if L and L0are the same proposi-
tional language; and L0 is an expansion of L if L0 is an strengthening of L. An
extension L0 of L is a proper extension if L is not an extension of L0.

Definition 2.4 (Logical matrix) A (logical) matrix is a structure (V F)
where (1) V is a (ordered) set of (truth) values; (2)  is a non-empty proper

subset of V (the set of designated values); and (3) F is the set of -ary functions
on V such that for each -ary connective  (of the propositional language in

question), there is a function  ∈ F such that V → V.

Definition 2.5 (M-interpretation, M-consequence, M-validity) Let M be

a matrix for (a propositional language) L. An M-interpretation  is a function

from the set of all wffs to V according to the functions in F. Then, for any

set of wffs Γ and wff , Γ ²M  ( is a consequence of Γ according to M) iff
() ∈  whenever (Γ) ∈  for all M-interpretations 3 .

3 So (Γ) ∈  iff () ∈  for each  ∈ Γ. In particular, ²M  ( is M-valid;  is valid in

the matrix M) iff () ∈  for all M-interpretations . By ²M we shall refer to the relation

defined in M.
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Definition 2.6 (Logics determined by matrices) Let L be a propositional
language, M a matrix for L and `L a (proof theoretical) consequence relation
defined on L. Then, the logic L (cf. Definition 2.2) is determined by M iff for

every set of wffs Γ and wff , Γ `L  iff Γ ²M . In particular, the logic L

(considered as the set of its theorems) is determined by M iff for every wff ,

`L  iff ²M  (cf. Definition 2.5).

3 Kleene’s strong 3-valued matrix with only one

designated value

Kleene’s strong 3-valued matrix with only one designated element, MK3, can

be defined as shown in Definition 3.1.

Definition 3.1 (MK3) The propositional language consists of the connectives

∧∨ and ¬. Kleene’s strong 3-valued matrix with only one designated element,
MK3, is the structure (V F) where (1) V = {0 1 2} and it is ordered as
shown in the following lattice

(2)  = {2}; (3) F = {∧ ∨ ¬} where ∧ and ∨ are defined as glb (or
lattice meet) and lub (or lattice joint), respectively, and ¬ is an involution with
¬(2) = 0 ¬(0) = 2 and ¬(1) = 1. We display the tables for ∧, ∨ and ¬:

∧ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

∨ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

¬ 0
0 2
1 1
2 0

The notions of an MK3-interpretation, MK3-consequence and MK3-validity

are defined according to the general Definition 2.5.

Recall that, as pointed out in the introduction of this paper, we now use 2
for truth and 1 for neither, whereas 0 represents falsity. (We use the symbols
0, 1 and 2 –instead of 0, 12 and 1 because they are convenient for using the
tester in [10], in case the reader needs one.)

Now, let K3 be the logic determined by MK3. A BD-semantics for K3

is defined similarly as in [16], Section 3. Notice, however, that  is the set

{{} {} ∅} here, instead of being {{} {} { }}, as in [16].
It is well-known that the set of valid wffs is empty if we define the conditional

in MK3 similarly as it is defined with disjunction and negation in classical logic.
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In this paper, we consider alternative ways of expanding MK3 with a conditional

connective. In particular, all natural implicative expansions of MK3 will be

investigated. The notion of a natural conditional is defined in the following

section.

4 Natural implicative expansions of MK3

Following Tomova [20], we define “natural conditionals” as follow.

Definition 4.1 (Natural conditionals) Let L be a propositional language with
→ among its connectives and M be a matrix for L where the values  and  rep-
resent the maximum and the infimum in V in the classical sense. Then, an

→-function on V defines a natural conditional if the following conditions are

satisfied:

1. → coincides with (the →-function for) the classical conditional when
restricted to the subset { } of V.

2. → satisfies Modus Ponens, that is, for any   ∈ V, if  →  ∈  and

 ∈ , then  ∈ .

3. For any   ∈ V, →  ∈  if  ≤ .

We have:

Proposition 4.2 (Natural conditionals in 3-valued matrices) Let L be a
propositional language and M a 3-valued matrix for L where V and  are defined

exactly as in MK3. Now, consider the 6 →-functions defined in the following
general table:

TI

→ 0 1 2
0 2 2 2
1  2 2
2 0  2

where  ∈ {0 1 2} and  ∈ {0 1}. The set of functions contained in TI is
the set of all natural conditionals definable in M.

Proof. It is obvious.

Next, the notion of a natural implicative 3-valued matrix is defined and a

proposition collecting the 6 natural implicative expansions of MK3 is proved.

Definition 4.3 (Natural implicative 3-valued matrices) Let L be a propo-
sitional language with the connective →. And let M be a 3-valued matrix where

V and  are defined as in Definition 3.1. Moreover, let → be one of the func-

tions (defining one of the conditionals) in TI (in Proposition 4.2). Then, it is

said that M is a natural implicative 3-valued matrix4 .

4Notice that we are supposing that V is ordered as stated in Definition 3.1.
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Proposition 4.4 (Natural implicative expansions of MK3) There are ex-

actly 6 natural implicative expansions of MK3, Mt1, Mt2,..., Mt6, which are

defined as follows. Each Mt (1 ≤  ≤ 6) is the structure (V F) where
V ∧ ∨ and ¬ are defined exactly as in MK3 (cf. Definition 3.1), whereas
→ is defined according to the table t. Tables t1, t2, ..., t6 are displayed below;

the notions of an Mt-interpretation, etc. are defined according to the general

Definition 2.5.

Proof. Immediate by Proposition 4.2 and Definition 4.3.

List of the 6 tables:

t1

→ 0 1 2
0 2 2 2
1 2 2 2
2 0 1 2

t2

→ 0 1 2
0 2 2 2
1 2 2 2
2 0 0 2

t3

→ 0 1 2
0 2 2 2
1 0 2 2
2 0 0 2

t4

→ 0 1 2
0 2 2 2
1 1 2 2
2 0 1 2

t5

→ 0 1 2
0 2 2 2
1 0 2 2
2 0 1 2

t6

→ 0 1 2
0 2 2 2
1 1 2 2
2 0 0 2

The aim of this paper is to provide an underdetermined BD-semantics for

the logic Lt characterized by each matrix Mt (1 ≤  ≤ 6)

5 The basic logics b3, b31, b
3
2

In this section, the basic logics b3, b31, b
3
2 are defined and some of their properties

are proved. The logic b3 is axiomatized as follows (the label is intended to

abbreviate “basic logic contained in all natural implicative expansions of K3”).

Definition 5.1 (The basic logic b3) The logic b3 is axiomatized with the fol-

lowing axioms and rules of inference5 :

Axioms:

A1. ( ∧)→  / ( ∧)→ 

A2. [(→ ) ∧ (→ )]→ [→ ( ∧)]
A3. → ( ∨) /  → ( ∨)
A4. [(→ ) ∧ ( → )]→ [( ∨)→ ]

A5. [ ∧ ( ∨ )]→ [( ∧) ∨ ( ∧ )]
A6. ¬( ∨)↔ (¬ ∧ ¬)
A7. ¬( ∧)↔ (¬ ∨ ¬)
A8. ↔ ¬¬

5Notice that “ & ” is used as a metalinguistic “and”.
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Rules of inference:

Adjunction (Adj):  &  ⇒  ∧
Modus Ponens (MP): →  & ⇒ 

Disjunctive Modus Ponens (dMP):  ∨ (→ ) &  ∨⇒  ∨
Disjunctive Transitivity (dTrans):  ∨ (→ ) &  ∨ ( → )⇒  ∨ (→ )

Disjunctive ECQ (dECQ):  ∨ ( ∧ ¬)⇒  ∨

Proposition 5.2 (Some theorems and rules provable in b3) The follow-

ing rules and theorems are provable in b3:

Transitivity (Trans). →  &  →  ⇒ → 

ECQ.  ∧ ¬⇒ 

Elimination of Disjunction (E ∨ ). →  &  →  ⇒ ( ∨)→ ( ∨)
Introduction of Conjunction (I ∧ ). →  &  →  ⇒ ( ∧)→ ( ∧)

Summation (Sum). →  ⇒ ( ∨)→ ( ∨)
t1. → 

t2. ↔ ( ∨)
t3. [ ∨ ( ∨)]↔ [( ∨) ∨ ]
t4. [ ∨ ( ∧)]↔ [( ∨) ∧ ( ∨)]

Proof. The rules Trans and ECQ are immediate from their respective disjunc-

tive versions. Then, E∨, I∧, Sum, t1, t2, t3 and t4 are provable in the positive
fragment of Anderson and Belnap’s First Degree Entailment logic, FDE+ (cf.

[1], pp. 158, ff.). (Mention to the use of MP has been omitted.)

We recall that FDE+ is axiomatized with  →  (A0), A1, A3, A5, Trans

and A2 and A4 in rule form (i.e.,  →  &  →  ⇒  → ( ∧ ) and
→  &  →  ⇒ ( ∨)→ ), respectively). For axiomatizing FDE, we
add A8 and the rule Contraposition (Con),  →  ⇒ ¬ → ¬ (notice that

A0 is then derivable as it is the case in b3).

Next, the logics b31, b
3
2 are defined. They are two mutually independent

extensions of b3. The former is contained in 2 of the 6 natural implicative

expansions of K3; the latter, in the remaining 4 expansions. We have tried to

axiomatize all systems with a common base as wide as possible.

Definition 5.3 (The basic logic b31) The logic b
3
1 is axiomatized by adding

to b3 the following axioms:

A9. [(→ ) ∧]→ 

A10.  → (→ )

A11.  ∨ (→ )

8



Definition 5.4 (The basic logic b32) The logic b
3
2 is the result of adding the

following axioms to b3:

A12. [(→ ) ∧]→ (¬ ∨)
A13. [(→ ) ∧ ¬]→ (¬ ∨)
A14. ¬→ [ ∨ (→ )]

A15.  → [¬ ∨ (→ )]

A16. ( ∨ ¬) ∨ (→ )

Next, we prove some properties of b3 and its extensions. We begin by defin-

ing the notion of a b3-theory and the classes of b3-theories of interest in the

present paper (recall that by EL, we generally refer to an extension (or an

expansion, as the case may be) of the logic L; cf. Definition 2.3).

Definition 5.5 (Eb3-theories) Let L be an Eb3-logic. An L-theory is a set

of wffs closed under Adjunction (Adj) and provable L-entailment (L-ent). That

is, T is an L-theory iff we have (1) whenever  ∈ T ,  ∧ ∈ T (Adj); (2)

whenever →  is a theorem of L and  ∈ T , then  ∈ T (L-ent).

Definition 5.6 (Classes of Eb3-theories) Let L be an Eb3-logic and T an

L-theory. We set (1) T is prime iff whenever  ∨  ∈ T , then  ∈ T or

 ∈ T ; (2) T is regular iff T contains all theorems of L; (3) T is inconsistent

iff  ∧ ¬ ∈ T for some wff  (T is consistent iff it is not inconsistent).

Then, we have:

Proposition 5.7 (Eb3-theories and double negation) Let L be an Eb3-logic

and T an L-theory. Then,  ∈ T iff ¬¬ ∈ T .
Proof. Immediate by A8 (the use of L-ent is omitted in this and the proofs

that follow).

Proposition 5.8 (Conjunction and disjunction in prime Eb3-theories)

Let L be an Eb3-logic and T be an L-theory. Then, (1)  ∧  ∈ T iff  ∈ T
and  ∈ T ; (2) ¬( ∧ ) ∈ T iff ¬ ∈ T or ¬ ∈ T ; (3)  ∨  ∈ T iff

 ∈ T or  ∈ T ; (4) ¬( ∨) ∈ T iff ¬ ∈ T and ¬ ∈ T .
Proof. Case 1: by A1 and the fact that T is closed under Adj; case 2: by A3

and A7; case 3: by A3 and the fact that T is prime; case 4: by A6 and the fact
that T is closed under Adj.

Next, we remark some properties of Eb31 and Eb
3
2-theories.

Proposition 5.9 (The conditional in prime regular Eb31-theories) Let L

be an Eb31-logic and T be a prime regular L-theory. Then, →  ∈ T iff  ∈ T
or  ∈ T .
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Proof. (a) From left to right (⇒): Immediate by A9. From right to left (⇐):
Suppose  ∈ T . By A11 and regularity of T ,  ∨ ( → ) ∈ T . Then,

 →  ∈ T by primeness. Suppose now  ∈ T . Then,  →  ∈ T is

immediate by A10.

Proposition 5.10 (The cond. in prime regular consistent Eb32-theories)

Let L be an Eb32-logic and T be a prime regular and consistent L-theory. Then,

→  ∈ T iff ¬ ∈ T or  ∈ T or ( ∈ T and ¬ ∈ T ).
Proof. (a) (⇒): Suppose (1)  →  ∈ T and, for reductio, (2) ¬ ∈ T and

 ∈ T and  ∈ T or (3) ¬ ∈ T and  ∈ T and ¬ ∈ T . Consider case
(2): By Adj, we have (4)  →  ∧  ∈ T , whence by A12, (5) ¬ ∨  ∈ T ,
contradicting 2 by primeness of T . Then, case (3) follows similarly by using
A13. (b) (⇐): Suppose (1) ¬ ∈ T or (2)  ∈ T or (3)  ∈ T and ¬ ∈ T .
We have to prove →  ∈ T . Consider case (1). By A14, ∨ (→ ) ∈ T is
deducible whence →  ∈ T follows by consistency and primeness of T . Then,
case (2) is provable in a similar way by using A15. Finally, case (3) follows by

A16 (( ∨ ¬) ∨ (→ ) ∈ T ) and primeness and regularity of T .

6 Extension and primeness lemmas

Firstly, we set a preliminary definition (cf. [7], pp. 24-25; cf. also [18], Chap.

4).

Definition 6.1 (Disjunctive Eb3-derivability) Let L be an Eb3-logic. For

any sets of wffs Γ, Θ, Θ is disjunctively derivable from Γ in L (in symbols,
Γ `L Θ) iff 1∧  ∧  `L 1 ∨  ∨  for some wffs 1   ∈ Γ and
1   ∈ Θ.
Next, we prove a lemma which is essential in order to prove the extension to

maximal sets lemma. (In the rest of the section the subscript Eb3 (or L) is, in

general, dropped from `Eb3(or L) since no confusion can arise as we are speaking
in general of Eb3-logics.)

Lemma 6.2 (Preliminary lemma to the extension lemma) Let L be an

Eb3-logic whose primitive rules of inference are in the set {Adj, MP, dMP,
dTrans, dEcq}. For any wffs 1  , if {1  } `L , then, for any

wff ,  ∨ (1 ∧  ∧) `L  ∨.
Proof. (Cf. [6], p. 27) Induction on the length of the proof of  from

{1  } (H.I abbreviates hypothesis of induction). (1)  ∈ {1  }.
Let  be  (1 ≤  ≤ ). By elementary properties of ∧, ` (1∧ ∧)→ .

By Sum (→  ⇒ (∨)→ (∨)), ∨ (1∧ ∧) ` ∨. (2)  is an
axiom. By A3, `  ∨. So,  ∨ (1 ∧ ∧) `  ∨. (3)  is by Adj. Then,
 is  ∧  for some wffs  and . By H.I,  ∨ (1 ∧  ∧ ) `  ∨ and
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∨(1∧∧) ` ∨ whence ∨(1∧∧) ` (∨)∧(∨) by Adj. Fi-
nally, ∨(1∧∧) ` ∨(∧) by t4 ([∨(∧)]↔ [(∨)∧(∨)]). (4)
 is by MP. By H.I, ∨(1∧∧) ` ∨( → ) and ∨(1∧∧) ` ∨
for some wff . So,  ∨ (1 ∧  ∧) `  ∨ by dMP. Now, the cases of the
disjunctive rules are proved similarly. For instance, let us prove the case when 

is by dMP. Then,  is ∨ for some wffs  and . By H.I, ∨(1∧∧) `
 ∨ (∨ ) and  ∨ (1∧ ∧) `  ∨ [∨ ( → )] for some wff  , whence

 ∨ (1 ∧ ∧) ` ( ∨)∨ and  ∨ (1 ∧ ∧) ` ( ∨)∨ ( → )
by t3 ([ ∨ ( ∨ )] ↔ [( ∨ ) ∨ ]). So,  ∨ (1 ∧  ∧ ) ` ( ∨) ∨ 
by dMP, and finally,  ∨ (1 ∧ ∧) `  ∨ (∨) by t3, as it was required.
The cases where  is by dTrans and dECQ are proved similarly.

Now, we proceed to show how to extend sets of wffs to maximal sets (cf.

Lemma 9 in [7] and Chapter 4 in [18]).

Definition 6.3 (Maximal sets) Let L be an Eb3-logic. Γ is an L-maximal set
of wffs iff Γ 0L Γ (Γ is the complement of Γ).

Lemma 6.4 (Extension to maximal sets) Let L be an Eb3-logic whose prim-

itive rules of inference are in the set {Adj, MP, dMP, dTrans, dEcq} and let Γ,
Θ be sets of wffs such that Γ 0L Θ. Then, there are sets of wffs Γ0, Θ0 such that
Γ ⊆ Γ0, Θ ⊆ Θ0, Θ0 = Γ0 and Γ0 0L Θ0 (that is, Γ0 is an L-maximal set such
that Γ0 0L Θ0).

Proof. Let 1    be an enumeration of the wffs. The sets Γ
0 and Θ0

are defined as follows: Γ0 =
[
∈N
Γ, Θ

0 =
[
∈N
Θ where Γ0 = Γ, Θ0 = Θ and for

each  ∈ N, Γ+1 and Θ+1 are defined as follows: (i) if Γ ∪ {+1} ` Θ,
then Γ+1 = Γ and Θ+1 = Θ ∪ {+1}; (ii) if Γ ∪ {+1} 0 Θ, then
Γ+1 = Γ ∪ {+1} and Θ+1 = Θ. Notice that Γ ⊆ Γ0, Θ ⊆ Θ0 and that
Γ0 ∪Θ0 = F . We prove (I) Γ 0 Θ for all  ∈ N. We proceed by reductio ad
absurdum. So, suppose that for some  ∈ N, (II) Γ 0 Θ but Γ+1 ` Θ+1.
We then consider the two possibilities (i) and (ii) above according to which Γ+1
and Θ+1 are defined: (a) Γ ∪ {+1} 0 Θ. By (ii), Γ+1 = Γ ∪ {+1} and
Θ+1 = Θ. By the reductio hypothesis (II), Γ∪{+1} ` Θ, a contradiction.
(b) Γ ∪ {+1} ` Θ. By (i), Γ+1 = Γ and Θ+1 = Θ ∪ {+1}. By the
reductio hypothesis (II), (1) Γ ` Θ∪{+1}. Now, let the formulas of Γ and
Θ in this derivation be 1   and 1  , respectively, and let us refer

by  to 1 ∧  ∧ and by  to 1 ∨  ∨ . Then (1) can be rephrased as

follows (2)  `  ∨ +1. On the other hand, given the hypothesis (b), there

is a conjunction 0 of elements of Γ and some disjunction 0 of elements of Θ
such that (3) 0 ∧ +1 `  0. Let us now refer by 00 to  ∧0 and by 00 to
∨ 0; we will show (III) 00 ` 00, that is, Γ ` Θ, contradicting the reductio
hypothesis and thus proving (I). By elementary properties of ∧ and ∨, we have
(4) 00 ∧+1 ` 00 from (3), and (5) 00 ` 00 ∨+1 from (2). By (5), we get

(6) 00 `  00 ∨ (00 ∧ +1) and by (4) and Lemma 6.2, (7) 
00 ∨ (00 ∧ +1)

`  00∨ 00 whence by t2 (↔ (∨)), we have (8) 00∨ (00∧+1) `  00. By
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(6) and (8) we get (III) 00 ` 00, that is, Γ ` Θ, contradicting the reductio
hypothesis. Consequently, (I) (Γ 0 Θ for all  ∈ N) is proved. Thus, we have
sets of wffs Γ0, Θ0 such that Γ ⊆ Γ0, Θ ⊆ Θ0, Γ0 0 Θ0 (since Γ 0 Θ for all
 ∈ N) and Θ0 = Γ0 (since Γ0 ∩ Θ0 = ∅ –otherwise Γ ` Θ for some  ∈ N–
and Γ0 ∪Θ0 = F), as it was required. Finally, notice that Γ0 is maximal (since
Γ0 0 Γ).
Before proving the primeness lemma we pause a second to remark the essen-

tial role Lemma 6.2 has played in the proof of the extension lemma just given

(notice that the rest of syntactical moves required in the said proof can be car-

ried on by leaning on the simple resources of the positive fragment of FDE –cf.

the proof of Proposition 5.2).

Lemma 6.5 (Primeness) Let L be an Eb3-logic whose primitive rules of in-

ference are in the set {Adj, MP, dMP, dTrans, dEcq}. If Γ is a L-maximal set,
then it is a prime L-theory closed under the rules of L.

Proof. (Cf. Lemma 8 in [7]) (1) Γ is a theory: It is trivial to prove that Γ
is a theory closed under the rules of b3. For example, let us prove that Γ is
closed under dTrans. For reductio, suppose that there are wffs  such

that  ∨ ( → ) ∈ Γ,  ∨ ( → ) ∈ Γ but  ∨ ( → ) ∈ Γ. Then,
[∨ (→ )]∧ [∨ ( → )] ` ∨ (→ ) and [∨ (→ )]∧ [∨ ( →
)] `  ∨ ( → ), whence [ ∨ ( → )] ∧ [ ∨ ( → )] `  ∨ ( → )
by dTrans, contradicting the maximality of Γ. (2) Γ is prime: If there are some
wffs  such that ∨ ∈ Γ but  ∈ Γ and  ∈ Γ, then Γ is not maximal by
virtue of t1 (( ∨)→ ( ∨)).

7 Extensions of the basic logics

In this section, 6 different extensions of b3 are defined. It will be proved that

each one of the 6 natural implicative expansions of MK3 defined in Proposition

4.4 characterizes or determines one of these extensions. Two of these extensions

of b3 contain b31 while b
3
2 is contained in the remaining four systems.

The extensions just referred to are axiomatized using the following list of

axioms:

A17. ¬(→ )→ ( ∧ ¬)
A18. ( ∧ ¬)→ ¬(→ )

A19. → [ ∨ ¬(→ )]

A20. ¬ → [¬ ∨ ¬(→ )]

A21. [¬(→ ) ∧ ¬]→ 

A22. ¬(→ )→ ( ∨ ¬)
A23. (¬ ∧)→ (→ )

A24. [¬(→ ) ∧]→ ¬
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A25. ( ∧ ¬)→ [¬ ∨ ¬(→ )]

A26. ¬(→ )→ ¬
A27. ¬(→ )→ 

Definition 7.1 (Extensions of b31) The two extensions of b
3
1 are Lt1 and Lt2.

It will be proved that the logic Lt is characterized by the matrix Mt ( ∈ {1 2}).
These logics are axiomatized by adding the following axioms to b31.

Lt1:

A17. ¬(→ )→ ( ∧ ¬)
A18. ( ∧ ¬)→ ¬(→ )

Lt2:

A19. → [ ∨ ¬(→ )]

Definition 7.2 (Extensions of b32) The four extensions of b
3
2 are Lt3, Lt4,

Lt5 and Lt6. As in the case of the extensions of b31, it will be proved that

the logic Lt is characterized by the matrix Mt ( ∈ {3 4 5 6}). These four
extensions of b32 are axiomatized by adding the following axioms to b

3
2:

Lt3:

A19. → [ ∨ ¬(→ )]

A20. ¬ → [¬ ∨ ¬(→ )]

A21. (¬(→ ) ∧ ¬]→ 

A22. ¬(→ )→ ( ∨ ¬)
A23. (¬ ∧)→ (→ )

A24. [¬(→ ) ∧]→ ¬
Lt4:

A17. ¬(→ )→ ( ∧ ¬)
A25. ( ∧ ¬)→ [¬ ∨ ¬(→ )]

Lt5:

A20. ¬ → [¬ ∨ ¬(→ )

A21. [¬(→ ) ∧ ¬]→ 

A26. ¬(→ )→ ¬
Lt6:

A19. → [ ∨ ¬(→ )]

A24. [¬(→ ) ∧]→ ¬
A27. ¬(→ )→ 
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In what follows, we prove two important propositions on the behavior of

negated conditionals in the extensions of b31 and b
3
2 just defined. Notice that

Lt4 is (an axiomatization of) Łukasiewicz’s 3-valued logic Ł3 (cf. [17] and the

references therein). On the other hand, Lt5 is the logic G31Ł , related to Gödelian

3-valued logic G3, studied in [15].

Proposition 7.3 (Negated conditionals in Eb31-logics) Let L be an ELt-

logic where Lt will refer in each case to one of the extensions of b31 displayed

in Definition 7.1. And let T be a prime, regular and consistent L-theory. We

have:

• ELt1-logics: ¬(→ ) ∈ T iff  ∈ T & ¬ ∈ T .
• ELt2-logics: ¬(→ ) ∈ T iff  ∈ T &  ∈ T .

Proposition 7.4 (Negated conditionals in Eb32-logics) Let L be an ELt-

logic where Lt will refer in each case to one of the extensions of b32 displayed

in Definition 7.2. And let T be a prime, regular and consistent L-theory. We

have:

• ELt3-logics: ¬(→ ) ∈ T iff ( ∈ T &  ∈ T ) or (¬ ∈ T & ¬ ∈
T ).

• ELt4-logics: ¬(→ ) ∈ T iff  ∈ T & ¬ ∈ T .
• ELt5-logics: ¬(→ ) ∈ T iff ¬ ∈ T & ¬ ∈ T .
• ELt6-logics: ¬(→ ) ∈ T iff  ∈ T &  ∈ T .

The proof of Propositions 7.3 and 7.4 is similar to that of 5.9 and 5.10. So,

it will suffice to prove a couple of cases.

Proof. Proposition 7.3. ELt1-logics. The equivalence ¬(→ ) ∈ T iff  ∈ T
and ¬ ∈ T follows immediately by A17 and A18.

Proposition 7.4. ELt3-logics.

(a) (⇒) Suppose (1) ¬( → ) ∈ T and, for reductio, ( ∈ T or  ∈ T )
and (¬ ∈ T or ¬ ∈ T ). There are four cases to consider:

1.  ∈ T & ¬ ∈ T
2.  ∈ T & ¬ ∈ T
3.  ∈ T & ¬ ∈ T
4.  ∈ T & ¬ ∈ T

Then, cases 1, 3 and 4 follow immediately by A21, A23 and A24, respectively,

while case 2 is derivable by A22 and primeness of T .
(b) (⇐) Suppose (1) ( ∈ T &  ∈ T ) or (2) (¬ ∈ T & ¬ ∈ T ).

Then, ¬(→ ) ∈ T follows by (1) and A19, and from (2) and A20.
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8 Belnap-Dunn semantics for the Lt-logics

We will define two types of models. Models for extensions of b31 or Eb
3
1-models,

and models for extensions of b32 or Eb
3
2-models. The two types of models are

distinguished by different necessary and sufficient conditions for assigning truth

and falsity to the conditionals. In particular, we have:

Definition 8.1 (Eb31-models) An Eb
3
1-model is a structure ( ) where (i)

 = {{} {} ∅} and (ii)  is an Eb31-interpretation from the set of all wffs

to , this notion being defined according to the following conditions for each

propositional variable  and wffs : (1) () ∈ ; (2a)  ∈ (¬) iff
 ∈ (); (2b)  ∈ (¬) iff  ∈ (); (3a)  ∈ ( ∧ ) iff  ∈ () and
 ∈ (); (3b)  ∈ ( ∧) iff  ∈ () or  ∈ (); (4a)  ∈ ( ∨) iff
 ∈ () or  ∈ (); (4b)  ∈ ( ∨ ) iff  ∈ () and  ∈ (); (5a)
 ∈ ( → ) iff  ∈ () or  ∈ (); (5b) There are two possibilities for
assigning  to conditionals: (5b1)  ∈ ( → ) iff  ∈ () and  ∈ ();
and (5b2)  ∈ (→ ) iff  ∈ () and  ∈ ().

Definition 8.2 (Eb32-models) An Eb
3
2-model is a structure ( ) where 

and  are defined similarly as in Eb31-models, save for clauses (5a) and (5b),

which are now as follows. (5a)  ∈ ( → ) iff  ∈ () or  ∈ () or
( ∈ () and  ∈ ()); (5b) There are four possibilities for assigning  to

conditionals: (5b1)  ∈ ( → ) iff ( ∈ () and  ∈ ()) or ( ∈ ()
and  ∈ ()); (5b2)  ∈ ( → ) iff  ∈ () and  ∈ (); (5b3)
 ∈ ( → ) iff  ∈ () and  ∈ (); (5b4)  ∈ ( → ) iff  ∈ ()
and  ∈ ().

Then, Lt-models are as follows:

Definition 8.3 (Lt-models) Lt-models are:

• Lt1-models: Lt1-models are Eb31-models with clause (5b1).
• Lt2-models: Lt2-models are Eb31-models with clause (5b2).
• Lt3-models: Lt3-models are Eb32-models with clause (5b1).
• Lt4-models: Lt4-models are Eb32-models with clause (5b2).
• Lt5-models: Lt5-models are Eb32-models with clause (5b3).
• Lt6-models: Lt6-models are Eb32-models with clause (5b4).

Finally, the general notions of Lt-consequence and Lt-validity are defined

as in K3-models (cf. Definition 3.3).

Definition 8.4 (Lt-consequence, Lt-validity) Let M be an Lt-model (1 ≤
 ≤ 6). For any set of wffs Γ and wff , Γ ²M  ( is a consequence

15



of Γ in the Lt-model M) iff  ∈ () whenever  ∈ (Γ) [ ∈ (Γ) iff
∀ ∈ Γ( ∈ ()); ∈ (Γ) iff ∃ ∈ Γ( ∈ ())]. Then, Γ ²Lt  (

is a consequence of Γ in Lt-semantics) iff Γ ²M  for each Lt-model M. In

particular, ²Lt  ( is valid in Lt-semantics) iff ²M  for each Lt-model M

(i.e., iff  ∈ () for each Lt-model M). (By ²Lt we shall refer to the relation
just defined.)

Next, it is proved that the consequence relation ²Mt (cf. Proposition 4.4
and Definition 3.1) and the relation ²Lt just defined are coextensive. Then,
soundness of each Lt-logic w.r.t. both consequence relations will immediately

follow.

Proposition 8.5 (Coextensiveness of ²Mt and ²Lt) For any  (1 ≤  ≤
6), set of wffs Γ and wff , Γ ²Mt  iff Γ ²Lt . In particular, ²Mt  iff

²Lt .

Proof. It is similar to the corresponding proposition in [16], Proposition 7.46.

Now, we can prove soundness.

Theorem 8.6 (Soundness of Lt w.r.t. ²Mt and ²Lt) For any  (1 ≤  ≤
6), set of wffs Γ and wff , if Γ `Lt , then (1) Γ ²Mt  and (2) Γ ²Lt .

Proof. (1) Given a particular logic Lt, it is easy to check that the rules Adj,

MP, dMP, dTrans and dECQ preserve Mt-validity, whereas the axioms of Lt

are assigned 2 by any Mt-interpretation . Consequently, if Γ `Lt , then
Γ ²Mt . (2). Then (2) is immediate by (1) and Proposition 8.5. Finally, if Γ
is the empty set, the proof is similar. (In case a tester is needed, the reader con

use that in [10].)

9 Completeness of the Lt-logics

We shall prove the completeness of Lt (1 ≤  ≤ 6) (cf. Definitions 7.1 and 7.2)
w.r.t. both ²Mt and ²Lt.
Completeness w.r.t. ²Lt is proved by means of a canonical model construc-

tion. Then, completeness w.r.t. ²Mt follows immediately by Proposition 8.5.
We begin by the definition of canonical Lt-models. It will be proved that

if  is not derivable from Γ in Lt, then  does not follow from Γ in some
canonical Lt-model. The concept of a canonical Lt-model is based upon the

notion of a T -interpretation. In what follows, we refer by Lt (1 ≤  ≤ 6) to any
of the 6 extensions of b3 defined in section 7.

Definition 9.1 (T -interpretations) Let  be the set {{} {} ∅} as in De-
finition 8.1. And let L be an ELt-logic and T be a prime, regular and consistent

6 It has to be remarked that the appropriate equivalences are now the following: {} = 2;
∅ = 1; and {} = 0.
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L-theory. Then, the function  from the set of all wffs to  is defined as follows:

for each propositional variable , we set (a)  ∈ () iff  ∈ T ; (b)  ∈ () iff
¬ ∈ T . Next,  assigns a member of  to each wff  according to the corre-

sponding conditions 2, 3, 4 and 5 in Definitions 8.1-8.3. Then, it is said that

 is a T -interpretation. (As in Definition 8.4,  ∈ (Γ) iff ∀ ∈ Γ( ∈ ());
 ∈ (Γ) iff ∃ ∈ Γ( ∈ ()).)

Definition 9.2 (Canonical ELt-models) A canonical ELt-model is a struc-

ture ( T ) where  is defined as in Definition 8.1 and T is a T -interpretation
built upon a prime, regular and consistent L-theory T (L is an ELt-logic).

Definition 9.3 (The canonical relation ²T ) Let (K3, T ) be a canonical
Lt-model. The canonical relation ²T is defined as follows. For any set of wffs
Γ and wff , Γ ²T  ( is a consequence of Γ in the canonical Lt-model (K3,
T )) iff  ∈ T () whenever  ∈ T (Γ). In particular, ²T  ( is true in the

canonical Lt-model (K3, T )) iff  ∈ T ().

By Definitions 9.2 and 9.3, it is clear that any canonical Lt-model is an

Lt-model.

Proposition 9.4 (Any canonical Lt-model is an Lt-model) Let M = (K3,
T ) be a canonical Lt-model. Then, M is indeed an Lt-model.

Proof. It follows immediately by Definitions 9.2 and 9.3 (by the way, notice

that each propositional variable –and so, each wff– can be assigned {} {}
or ∅ since T , although consistent, is not required to be complete in the classical
sense).

Given Proposition 9.4, Lemma 9.5 is the essential fact we have to prove in

order to prove completeness. In this lemma, conditions (a) and (b) in Definition

9.1 are generalized to all wffs. The proof of Lemma 9.5 leans on Propositions

5.7, 5.8, 5.9, 5.10, 7.3 and 7.4.

Lemma 9.5 (T -interpreting the set of wffs) Let L be an ELt-logic and 

be a T -interpretation defined on the L-theory T . For each wff , we have: (1)

 ∈ () iff  ∈ T ; (2)  ∈ () iff ¬ ∈ T .
Proof. Induction on the length of  (H.I. abbreviates “hypothesis of induc-

tion”). Clauses cited in (II) below refer to clauses in Definition 8.1 or Definition

8.2.

(I)  is a propositional variable, a conjunction, a disjunction or a negative

formula. The proof, similar to that of Proposition 8.5 in [16], is easy and leans

upon Propositions 5.7 and 5.8.

(II)  is a conditional  →  assigned  by I.

(IIi) Lt is an Eb31-logic:  ∈ ( → ) iff (clause 5a in Definition 8.1)  ∈
() or  ∈ () iff (H.I.)  ∈ T or  ∈ T iff (Proposition 5.9)  →  ∈ T .
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(IIii) Lt is an Eb32-logic:  ∈ ( → ) iff (clause 5a in Definition 8.2)
( ∈ () or  ∈ ()) or ( ∈ () and  ∈ ()) iff (H.I.) (¬ ∈ T or

 ∈ T ) or ( ∈ T and ¬ ∈ T ) iff (Proposition 5.10)  →  ∈ T .
(III)  is a conditional  →  assigned  by . We have to consider six

different cases, but we think that a couple of examples will be sufficient.

(IIIi) Lt is an Eb31-logic: Let Lt be, for instance, Lt1. We have  ∈ ( →
) iff (clause 5b1 in Definition 8.3)  ∈ () and  ∈ () iff (H.I.)  ∈ T
and ¬ ∈ T iff (Proposition 7.3) ¬( → ) ∈ T .
(IIIii) Lt is an Eb32-logic: Let Lt be, for instance, Lt3. We have  ∈ ( →

) iff (clause 5b1 in Definition 8.3) ( ∈ () and  ∈ ()) or ( ∈ ()
and  ∈ ()) iff (H.I.) ( ∈ T and  ∈ T ) or (¬ ∈ T and ¬ ∈ T ) iff
(Proposition 7.4) ¬( → ) ∈ T .
Next, we recall the notion of set of consequences of a given set of formulas

Γ in Lt and then we prove completeness.

Definition 9.6 (The set of consequences of Γ in Lt) The set of consequences
in Lt of a set of wffs Γ (in symbols CnΓ[Lt]) is defined as follows: CnΓ[Lt] =
{ | Γ `Lt }.
We note the following remark.

Remark 9.7 (The set of consequences of Γ in Lt is a regular theory)
It is obvious that for any Γ, CnΓ[Lt] is closed under Adj, MP, dMP, dTrans
and dECQ and contains all theorems of Lt. Consequently, it is closed under

Lt-entailment.

Theorem 9.8 (Completeness of Lt-logics) For any  (1 ≤  ≤ 6), set of
wffs Γ and wff , (1) if Γ ²Lt , then Γ `Lt ; (2) if Γ ²Mt , then Γ `Lt
.

Proof. (1) Suppose there are set of wffs Γ and wff  such that Γ 0Lt . We
prove Γ 2Lt . If Γ 0Lt , clearly  ∈ CnΓ[Lt]. Thus, CnΓ[Lt] 0Lt {}:
otherwise {1∧ ∧} `Lt  for some 1   ∈ CnΓ[Lt], whence  would
be in CnΓ[Lt] after all. Then, by Lemma 6.4, there is an Lt-maximal set T
such that CnΓ[Lt] ⊆ T and  ∈ T . So, Γ ⊆ T (since Γ ⊆ CnΓ[Lt]) and
 ∈ T . By Lemma 6.5, T is a prime Lt-theory closed under the rules of b3. In
addition, T is regular (since CnΓ[Lt] is regular) and consistent (since otherwise
 ∈ T by ECQ). Thus, T generates a T -interpretation T such that, by Lemma
9.5,  ∈ T (Γ) (since  ∈ T (T )) but  ∈ T (). So, Γ 2T  by Definition

9.3), whence Γ 2Lt  by Definition 8.4 and Proposition 9.4. (2) Completeness

w.r.t. ²Mt is immediate by (1) and Proposition 8.5.
If Γ is the empty set, let Lt be the set of all theorems of Lt. Then, Lt 0Lt 

and we can proceed similarly as in cases (1) and (2) above.
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10 Concluding remarks

We end the paper with some remarks.

1. As pointed out above, Lt4 is equivalent to Łukasiewicz’s Ł3 and Lt5 is

the logic G3
≤
Ł investigated in [15]. In addition, Lt1 is mentioned in p.

65 of [13] (cf. [13] and references therein). The three remaining logics

investigated in the paper have not been treated in the literature as far as

we know (but cf. the introduction to the paper, where [14] and [19] in the

references are briefly commented upon).

2. Given the axiomatizations provided in Definitions 7.1 and 7.2, it is pos-

sible to define all Lt-logics more conspicuously and economically than

in Definitions 7.1 and 7.2. For instance, consider Example 10.1 where

Lt3 and Lt4 (i.e., Łukasiewicz’s Ł3) are defined as negation expansions of

the positive fragment of Lewis’ S4 (cf. [11]) and contractionless positive

intuitionistic logic, respectively.

Example 10.1 Lt3

Axioms: (a1)  → ; (a2) ( ∧ ) →  / ( ∧ ) → ; (a3) [( →
) ∧ ( → )] → [ → ( ∧ )]; (a4)  → ( ∨ ) /  → ( ∨ );
(a5) [( → ) ∧ ( → )] → [( ∨ ) → ]; (a6) [ ∧ ( ∨ )] →
[( ∧ ) ∨ ( ∧ )]; (a7) [ → ( → )] → [( → ) → ( → )];
(a8) ( → ) → [ → ( → )]; (a9) ( → ¬) → ( → ¬);
(a10) (¬ → ) → (¬ → ); (a11) (¬ ∧ ) → ( → ); (a12)
¬→ [ ∨ (→ )]; (a13) ( ∨ ¬) ∨ (→ ).

Rules of inference: (MP)  →  &  ⇒ ; (Adj)  &  ⇒  ∧ ;
(dECQ)  ∨ ( ∧ ¬)⇒  ∨.
Lt4

Axioms: a1-a6 of Lt3 plus (a7) ( → )] → [( → ) → ( → )];
(a8)  → ( → ); (a9) ( → ¬) → ( → ¬); (a10) (¬ → ) →
(¬ → ); (a11) [( → ) ∧ ] → (¬ ∨ ); (a12) ¬( → ) →
( ∧ ¬); (a13) ( ∨ ¬) ∨ (→ ).

Rules: (MP) →  & ⇒ ; (dMP) ∨(→ ) & ∨⇒ ∨;
(dECQ)  ∨ ( ∧ ¬)⇒  ∨.

3. It is possible to endow non-natural implicative logics with a BD-semantics.

For instance, in Example 10.2 we have a negation expansion of classical

positive propositional logic not included in classical propositional logic.

Example 10.2 Consider, for example, the expansion of MK3 based upon

the following table for the conditional (2 is the only designated value)

→ 0 1 2
0 2 2 2
1 2 2 2
2 1 0 2

19



The logic determined by this expansion can be axiomatized by adding to

b31 the following axioms:  → [( ∨ ¬) ∨ ¬( → )]; ¬( → ) → ;

[¬( → ) ∧ ] → ¬ and [¬( → ) ∧ ¬] → ¬, but the last axiom
is not, of course, a classical tautology.

We note that Baaz’ delta operator is definable in this system by using the

following formula  ∧ [( → ) → ] (we owe this remark to a referee
of the JANCL –cf. the paragraph before displaying the structure of the

paper in the introduction to it.)

4. The two Eb31-logics considered in this paper contain classical positive

propositional logic but lack the rule Contraposition (if  → , then

¬ → ¬).
5. All Lt-logics are paracomplete in the sense that not for any prime, regular

and consistent theory T , we have  ∈ T or ¬ ∈ T for any wff .
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